
dx
dt6

�-

?

DIFFERENTIAL EQUATIONS
AND

CONTROL PROCESSES
N 1, 2002

Electronic Journal,
reg. N P23275 at 07.03.97

http://www.neva.ru/journal
e-mail: diff@osipenko.stu.neva.ru

Computer software
for the investigation of differential equations,

dynamical systems, and control processes

TOOLS for SYMMETRY ANALYSIS of PDEs

A.G. MESHKOV

Oryol State University
95 Komsomolskaya str., 302015, Oryol, Russia

e-mail: meshkov@orel.ru

Abstract

The package of routines JET and help files for it are presented. There are html- and
mws-files for help. The package contains more than 30 Maple routines for the symme-
try analysis of evolution partial differential systems with two independent variables and
related problems: computation of Lie-Bäcklund symmetries and conserved densities, com-
putation of canonical densities and investigation of the complete integrability, computa-
tion of differential substitutions and Bäcklund transformations, computation of recursion
operators and Noether operators; several computations in matrix Lie algebras, the check
of the antisymmetry, symplectic and cosymplectic conditions of linear integrodifferential
operators and some others. All routines and algorithms are described in the article. It
can be used as the user’s guide.

Differential Equations and Control Processes, N 1, 2002

Contents

1 Introduction 11

2 Differentiation and Integration 12

3 Lie-Bäcklund Symmetries 16

4 Conserved Densities and Covariants 19

5 Canonical conserved densities 24

6 Differential Substitutions and Bäcklund transformations 27

7 Zero curvature representations 30

8 Recursion operators 36

9 Noether operators 44

10 Auxiliary Routines 54

Bibliography 58

Index 60

1 Introduction

Package JET is free. The unique restriction is to cite each use of the package. The author will
be grateful everyone for any critical remarks and offers.

We wrote and tested our routines during 5 years approximately [1], [2]. The package is
had written for investigation of partial differential systems with two independent variables. We
called this package JET because the jet space language is used. The package includes more
than thirty procedures for Maple 61. The main our intent was to create the full collection of
tools for investigations of the completely integrable evolution systems. But the package can be
used for other purposes as well. We use the same notions and notations as in the known books
[3], [4], [5], [6].

For the independent variables we used the fixed (global) names: t is the temporal variable
and x is the spatial one. For the dependent variables one may use any names but they must
be specified in the global list vard. For example, if you deal with the jet space J∞(R,R2) with
the local coordinates x, ui, vi, then you must assign vard:=[u,v]. Then all input and output
expressions will depend on t, x, u0, v0, u1, v1 and so on.

1Maple V.5 also can read and compile these routines.

Electronic Journal. http://www.neva.ru/journal 11

Differential Equations and Control Processes, N 1, 2002

Let us mention that all procedures work in the interactive mode as a rule. The auto-
matic mode is undesirable in the real problems in view of the following reasons.

1. Equations for the higher conserved densities or Lie-Bäcklund higher symmetries of non-
linear systems is reduced to very cumbersome partial differential systems. Solutions of
that huge systems with dozens thousands terms in the automatic mode would require a
huge RAM of a computer and very long time for computations. Solution of such systems
is an art but not the mechanical process.

2. Probably any software contains the bags. Maple is one of the best pakages, but it contains
the bags too. Here is only two examples:

> int(x^n,x);

xn+1

n+ 1

Here the function int ignores the branch n = −1.

> z:=diff(f(x),x)-1/x*f(x)+2*f(x)^2;

z :=
∂f(x)

∂x
− f(x)

x
+ 2 f(x)2

> dsolve(z,{f(x)});

f(x) =
x

x2 + C1

So, the solution f = 0 is lost. Of course, everybody see that the limit C1 → ∞ is possible
here. But using the automatic mode you can not know which equations were solved and how
much solutions were lost.

2 Differentiation and Integration

Our procedures for differentiation and integration are called dif and INT. There are the built-
in procedures diff and int for differentiation and integration in Maple. Nevertheless we wrote
our own procedures in order to make all expressions more compact. Everybody who computed
Lie-Bäcklund symmetries or conserved densities knows that you are forced to deal with a lot
of arbitrary functions. Equations arising in such problems are often very long. The procedure
depend gives you possibility to hide all arguments of all functions. It creates two sets of
substitutions: var={f1=f1(x1, x2), . . . , fn=fn(y1, . . . ,yk)} and rav={f1(x1, x2)=f1, . . . ,
fn(y1, . . . ,yk)=fn}. The names var and rav are global. Substitutions var are performed before
the differentiation or integration of an expression. Substitutions rav are performed after the
differentiation or integration of an expression to make the output shorter. depend protects
the names of its arguments f1, . . . , fn and returns the set NamesOfdeps={f1, . . . , fn} that
is used in other routines.

Electronic Journal. http://www.neva.ru/journal 12

Differential Equations and Control Processes, N 1, 2002

ATTENTION: Nothing will work in JET until vard and depend are entered.

When we enter the command dif(f,x) the substitutions var are performed and the built-in
procedure diff is called. Therefore the procedures dif possesses the same facilities as the built-
in diff. The following example shows the difference between the built-in and our procedures:

> vard:=[u, v]: depend(f(u0,v0,u1,v1)):

> a:=dif(f,v0)*dif(f,u0$3,v0),

> b:=diff(f(u0,v0,u1,v1),v0)*diff(f(u0,v0,u1,v1),u0$3,v0);

a :=
∂f

∂v0

∂4f

∂u03∂v0
, b :=

∂f(u0, v0, u1, v1)

∂v0

∂4f(u0, v0, u1, v1)

∂u03∂v0

The first expression is a 3-4 times shorter then the second one. It is very important if you deal
with a long expression. The derivatives of arbitrary functions are returned in the inert form:
a:=Diff(f,v0)*Diff(f,v0,‘$‘(u0,3)), for instance. If you wish to assign f:=u0^2+v0^2 for
example, you must enter depend(...) without f beforehand to unprotect the name f :

> depend(g(x)):f:=u0^2+v0^2:

> a; (
∂

∂v0
(u02 + v02)

)(
∂4

∂u03∂v0
(u02 + v02)

)
To compute this expression the substitution Diff=dif is necessary:

> a:=expand(eval(subs(Diff=dif,a)));

a := 0

The procedure dif admits the functional assignment and it is very useful property.

> dif(f,x):=f^3+f-1;

> a:=dif(x^2*f,x);

dif(f, x) := f 3 + f − 1

a := 2xf + x2∂f

∂x

> a:=expand(eval(subs(Diff=dif,a)));

a := 2 xf + x2f 3 + x2f − x2

The procedure INT possesses not only the same facilities as the built-in int but many
others for operating with arbitrary functions using the integration by parts. Examples:

> f:=’f’: depend(f(x,y,z)):

> InT(dif(f,y)*dif(f,x$3,y),x)=INT(dif(f,y)*dif(f,x$3,y),x);

Electronic Journal. http://www.neva.ru/journal 13

Differential Equations and Control Processes, N 1, 2002

∫
∂f

∂y

∂4f

∂x3∂y
dx =

∂f

∂y

∂3f

∂x2∂y
− 1

2

(
∂2f

∂x∂y

)2

> InT(x^2*dif(f,x$3,y),x)=INT(x^2*dif(f,x$3,y), x);∫
x2 ∂4f

∂x3∂y
dx = x2 ∂3f

∂x2∂y
− 2x

∂2f

∂x∂y
+ 2

∂f

∂y

> InT(x^2*dif(f,x),x)=INT(x^2*dif(f,x), x);∫
x2 ∂f

∂x
dx = x2 f − 2 x

∫
f dx

The built-in procedure int returns integrals with arbitrary functions without computation. In
these examples InT is the inert version of the integration procedure. We wrote the new inert
version because the built-in Int possesses one undesirable property:

> expand(Int(f,x));

f

∫
1 dx

The next procedure DF computes the total derivative with respect to x on a jet space
and DN computes the n-fold total derivative. The syntax is DF(F) and DN(F,n) where F is an
expression, n is an integer or a name:

> vard:=[u]: depend(f(x,u0,u1), g(u0)):

> DF(f), DF(g), DN(g,2);

∂f

∂x
+

∂f

∂u0
u1 +

∂f

∂u1
u2,

∂g

∂u0
u1,

∂g

∂u0
u2 +

∂2g

∂u02
u12

DN(g,n) is computed as DN(DF(g), n-1) and DN(F,0)=F, DN(F,1)=DF(F); DN(F,-1) is the
inverse to DF operator. If the control variable flag is zero then the minimal computations are
performed (in the previous example flag was not assigned):

> flag:=0:DF(2*f-k*g), DN(g^2-c*f,2),DF(u3),DN(u2,3),DN(u3,-2);

2DF (f)−DF (k g), DN(g2, 2)−DN(c f, 2), u4, u5, u1

To compute DF(u3) or DN(u2,3) the routines DF and DN create the global set Var =
{u0, u1, . . . , un}, where the number n=maxord may be entered by user. If maxord is not entered
then it is set 50 by default.To simplify the expressions with parameters one can enter the global
set const:

> const:={c,k}: DF(2*f-k*g), DN(g^2-c*f,2);

2DF (f)− k DF (g), DN(g2, 2)− cDN(f, 2)

There are three more control variables fldf, fldn and flpt. If one of them is assigned 1 when
flag=0 then DF and DN acquire the new facilities:

Electronic Journal. http://www.neva.ru/journal 14

Differential Equations and Control Processes, N 1, 2002

> fldf:=1: DF(2*f*g),DF(g^2*f);

2DF (f) g + 2 f DF (g), 2 g DF (g) f + g2DF (f)

> fldn:=1: DN(f*g,3); DN(g^2*f,2); DN(u3*u0,-1),DN(u4*u0,-1);

f DN(g, 3) + 3DF (f)DN(g, 2) + 3DN(f, 2)DF (g) +DN(f, 3) g

g2DN(f, 2) + 4 g DF (g)DF (f) + (2DF (g)2 + 2 g DN(g, 2)) f

u0 u2− 1/2u12, u0 u3− u2u1 +DN(u22,−1)

> fldn:=0:flpt:=1:DN(DN(f,3)*g,-1);DN(DN(f,5)*g,-1);

DN(f, 2) g −DN(DN(f, 2)DF (g),−1)

g DN(f, 4)−DF (g)DN(f, 3) +DN(DN(f, 3)DN(g, 2),−1)

The simultaneous usage fldn=1 and flpt=1 is undesirable in large expressions because
of too large number of levels of the recursion. One can apply the call DN(F,-1) when flag=1
too:

> fldn:=’fldn’:flpt:=’flpt’:flag:=1:vard:=[u]:depend(g(u0)):DN(DN(g,3),-1);

∂2g

∂u02 u1
2 +

∂g

∂u0
u2

Argument of dif, INT, DF, DN and the next routine ED may be any algebraic expression,
array, Vector set, equation or list. The procedure ED computes the evolution derivative

ED(F) → Dt(F) =
∂F

∂t
+

∑
i,α

∂F

∂uα
i

DiKα,

where D is the total derivative with respect to x and Kα are the right hand sides of an evolution
system

uα
t = Kα(u).

One has to enter the vector field K beforehand as the list sys (sys is the global name). For
example, if you deal with the system ut = F, vt = G you must enter the following commands:

> vard:=[u, v]: depend(F(u0,v0,...), G(u0,v0,...)): sys:=[F, G]:

If flag:=0 then the minimal simplifications are executed:

> flag:=0: ED(f1=c*f2), ED(DN(g,k)), ED(DF(g));

ED(f1) = cED(f2), DN(ED(g), k), DF (ED(g))

Here c is the element of the set const. When flag:=1 or flag:=’flag’ all expressions DF(f),
DN(f,n), and ED(f) will be computed completely. There is one more control variables fled. If
fled=1 then ED(f) will be computed completely, but expanding DF(f) and DN(f,k) depend on
their control variables:

Electronic Journal. http://www.neva.ru/journal 15

Differential Equations and Control Processes, N 1, 2002

> vard:=[u]: depend(F(u0,u1),G(u0,u1),f(u0,u1),g(u0,u1)):

> flag:=0:fldf:=’fldf’:fldn:=’fldn’:flpt:=’flpt’:fled:=1:

> sys:=[F, G]: ED(f);

∂f

∂u0
F +

∂f

∂u1
DF (F)

Arguments of DF, DN and ED may depend on nonlocal variables wi = D−1
x ρi, where ρi are

conserved densities and θi are the conserved fluxes of an evolution system under consideration:
Dtρi = Dxθi. Such variables wi are called the weakly nonlocal one, they were heuristically
introduced in [7] and more punctually in [8]. The nonlocal variables wi, densities ρi and fluxes
θi must be specified in the global lists nlo, densities and fluxes respectively. For example,
the KdV equation ut = uxxx + 6uux admits the following conserved densities u and u2:

Dt(u0) = D(u2 + 3 u2
0), Dt(u

2
0) = D(2 u0 u2 − u2

1 + 4 u3
0).

Therefore the new variables w1 = D−1u0 and w2 = D−1u2
0 may be introduced:

> nlo:=[w1,w2]: densities:=[u0,u0^2]:

> fluxes:=[u2+3*u0^2,2*u0*u2-u1^2+4*u0^3]:

> depend(f(x,u0,u1,w1,w2)): vard:=[u]: sys:=[u3+6*u0*u1]:

Now DF, DN and ED are prolonged on w1 and w2:

> flag:=1:DF(f);ED(f);

∂f

∂x
+

∂f

∂u0
u1 +

∂f

∂u1
u2 +

∂f

∂w1
u0 +

∂f

∂w2
u02

∂f

∂u0
(u3 + 6 u0 u1) +

∂f

∂u1
(u4 + 6u12 + 6 u0u2) +

∂f

∂w1
(u2 + 3 u02)

+
∂f

∂w2
(2u0 u2− u12 + 4 u03)

3 Lie-Bäcklund Symmetries

Lie-Bäcklund symmetries for the evolution system ut = K(u) satisfy the following determining
equation (see [3], [4] or [5] for instance):

(Dt −K ′)F = 0, (1)

where the prime means the Frechet derivative

(K ′)α
β =

∂Kα

∂uβ
i

Di. (2)

For example, for the KdV equation ut = uxxx + 6uux the determining equation (1) takes the
following form

(Dt − 6u1 − 6u0D −D3)F = 0.

Electronic Journal. http://www.neva.ru/journal 16

Differential Equations and Control Processes, N 1, 2002

The procedure LBsymm computes the left hand side of the equation (1) and splits it with
respect to higher order variables. The syntax is LBsymm(F) or LBsymm(F,dialog), where F is a
list (a symmetry) and dialog is the keyword. The routine performs a preliminary splitting of
the equations (1) and calls the package diffalg for additional splitting. But sometimes diffalg
works very long time and the keyword dialog was introduced to prevent the call of diffalg. The
output is a set or a list of sets of split equations. If a list arise then you have the branching. The
initial (unsplit) equations are stored in the global set zero. One can use it to check whether
the solution is true or not. The check is necessary because the split system may be incomplete.

For example, in order to calculate the first order Lie-Bäcklund symmetries for the nonlinear
Schrödinger like system you must enter the following commands:

> vard:=[u,v]:

> depend(F1(t,x,u0,u1,v0,v1), F2(t,x,u0,u1,v0,v1),

f(u0,v0), g(u0,v0)):

> sys:=[u2+f, -v2+g]: a1:=LBsymm([F1,F2]);

a1 :=
{ ∂2F2

∂v1∂x
= 0,

∂2F1

∂u1∂x
= 0,

∂2F1

∂u12 = 0,
∂F1

∂v0
= 0,

∂F1

∂v1
= 0,

∂2F2

∂v0∂v1
= 0,

∂2F2

∂v12 = 0,
∂F2

∂u0
= 0,

∂F2

∂u1
= 0,

∂2F1

∂u0∂u1
= 0

}
Solving this system we find

F1 = u1h1(t) + g1(t, x, u0), F2 = v1h2(t) + g2(t, x, v0)

and call LBsymm again.

> depend(h1(t),h2(t),g1(t,x,u0),g2(t,x,v0), f(u0,v0),g(u0,v0)):

> a1:=LBsymm([u1*h1+g1,v1*h2+g2]);

Common subsystem{
∂h2

∂t
= −2

∂2g2

∂x∂v0
,
∂2g2

∂v02 = 0,
∂3g2

∂x2∂v0
= 0,

∂2g1

∂u02 = 0

}
for the branches:

a1 :=
[{∂h1

∂t
= 2

∂2g1

∂u0∂x
,
∂2g2

∂v02 = 0,
∂2g1

∂u02 = 0,
∂f

∂v0
= 0,

∂g

∂u0
= 0,

∂3g1

∂x∂u0∂x
= 0,

∂h2

∂t
= −2

∂2g2

∂v0∂x
,

∂3g2

∂x∂v0∂x
= 0

}
,{

h1 = h2,
∂2g2

∂v02 = 0,
∂2g1

∂u02 = 0,
∂h2

∂t
= −2

∂2g2

∂v0∂x
,

∂2g1

∂u0∂x
= − ∂2g2

∂v0∂x
,

∂3g2

∂x∂v0∂x
= 0

}]
These two cases are obtained from the following system:

Electronic Journal. http://www.neva.ru/journal 17

Differential Equations and Control Processes, N 1, 2002

> zero=0;

{
v1
∂h2

∂t
+
∂g2

∂t
+
∂g2

∂v0
g + h2

∂g

∂u0
u1− ∂g

∂u0
u1h1− ∂g

∂u0
g1− ∂g

∂v0
g2 +

+
∂2g2

∂x2
+ 2

∂2g2

∂v0∂x
v1 +

∂2g2

∂v02 v1
2, u1

∂h1

∂t
+
∂g1

∂t
+
∂g1

∂u0
f + h1

∂f

∂v0
v1−

− ∂f

∂u0
g1− ∂2g1

∂x2
− 2

∂2g1

∂u0∂x
u1− ∂2g1

∂u02u1
2 − ∂f

∂v0
v1h2− ∂f

∂v0
g2

}
= 0

The name zero is global. When the object zero is large the automatic splitting of it requires
a long time. In such situations one can use the dialogue mode. To do this call the routine with
additional argument dialog:

> vard:=[u,v]:

> depend(F1(t,x,u0,u1,v0,v1,u2,v2,u3,v3,u4,v4,u5,v5),

F2(t,x,u0,u1,v0,v1,u2,v2,u3,v3,u4,v4,u5,v5),f(u0,v0),g(u0,v0)):

> sys:=[u2+f, -v2+g]:

> a:=LBsymm([F1,F2],dialog):

> a1:=a[1]:

> nops(a1), ord(a1);

248, [7, 6]

Here ord is the routine for computing of the order of an expression. It begin the search of
the variables ui in an expression from the highest order maxord to zero. The name maxord

is global, if it is not entered by user, then the routines ord, DF or DN stand maxord=50 by
default.The previous output means that the expression a1 consists of 248 terms and contains
u7,u6, . . . ,v6,v5, . . . , but does not contain u8, u9, . . . , v7,v8, . . . In general case the call
ord(a) returns a list [m, n, . . .], with partial orders of the expression a. That is, m is the
order with respect to variable vard[1], n is the order with respect to variable vard[2], etc.
More detail information about any expression you can obtain with the help of the built-in
procedure indets. Let us remember that the obtained expression a1 is a polynomial with
respect to the highest order variables u7, u6, and v6 (but others are contained in F), therefore
the built-in procedure degree is useful as well. To extract the terms with u7 one can use the
procedure chn (choose name):

> b1:=chn(a1,u7);

b1 := 2 u7
∂F2

∂u5

The syntax of chn is chn(expr, a,b,...,z) where expr is any expression, a,b,...,z
are any names or powers of names or functions. When type of expr is not ‘+‘ then chn returns
expr if all the objects a,b,...,z are contained in the expr, else chn returns zero. If type of
expr is ‘+‘ then chn returns the sum of those terms what contain all the objects. The initial
expression expr is not changed by chn.

It is easy to see that F2 does not depend on u5 in our example. And the terms with u6
give rise that F2 does not depend on u4. And moreover it follows from zero[2] that F1 does
not depend on v5 and v4. To continue the calculation you must enter the following commands:

Electronic Journal. http://www.neva.ru/journal 18

Differential Equations and Control Processes, N 1, 2002

> depend(F1(t,x,u0,u1,v0,v1,u2,v2,u3,v3,u4,u5),

F2(t,x,u0,u1,v0,v1,u2,v2,u3,v3,v4,v5),f(u0,v0),g(u0,v0)):

> a1:=expand(eval(subs(Diff=dif,a1))): nops(a1), ord(a1);

165, [5, 6]

The substitution Diff=dif is necessary for recalculation of all derivatives because the command
dif(F,x) returns the result in the inert form Diff(F,x) if F is an indefinite function as it was
mentioned above.

One can also use in such calculations the procedure cho (choose order) instead of chn:

> depend(f(t,x,u0,u1,u2)):

> A:=2*u1+f+u3+u4:

> chn(A,u4), cho(A,4);

u4, u4

But

> chn(A,u3), cho(A,3);

u3, u3 + u4

The call cho(A, n) collects and returns those terms from the expression A whose orders > n.
The both cho and chn can find the implicit variables as well:

> chn(A,u2), cho(A,2);

f, f + u3 + u4

The routine cho works faster than chn.

4 Conserved Densities and Covariants

The vector function (ρ, θ) on the jet space is called the conserved current for a system ut = K(u)
if it solves the equation

Dt ρ = D θ, (3)

where Dt is the evolution derivative along the trajectories of the system and D is the total
derivative with respect to x. The function ρ is said to be the conserved density and θ is said
to be the flux. The current (Df, Dt f) is the conserved one for any system and it is called the
trivial conserved current. If one add a trivial current to any other conserved current then the
sum will be the conserved current too. The transformation (ρ, θ) −→ (ρ + Df, θ + Dt f) is
called the equivalence transformation.

One can investigate equation (3) with the help of the Euler operator E

Eα =
∞∑

n=0

(−D)n ∂

∂uα
n

, α = 1, . . . ,m, (4)

Electronic Journal. http://www.neva.ru/journal 19

Differential Equations and Control Processes, N 1, 2002

where m is number of dependent variables (m=nops(vard)). Operator E possesses an important
property: E f = 0 if and only if f = D(F) [10]. Applying the operator E to the equation (3)
we obtain the following equation for the conserved densities

E (Dt ρ) = 0. (5)

JET-package contains the procedure EU that computes the variational derivatives according
to the formula (4):

EU(F, k) −→ Ek F.

So, to obtain the left hand side of the equation (5) you must call EU(ED(rho),k), where
k = 1, 2, . . . , m, and m is the number of the dependent variables. These equations can be
solved by splitting in higher order variables. But if the order of the density ρ is large (> 3) the
object E (Dt ρ) may be too large for your computer.

Another way for solving the equation (3) is to apply the procedure pot (potential). The
command pot(ED(rho)) integrates the equation (3) and computes the flux θ. Let us denote
ϕ = Dt ρ and suppose that the order of ϕ is n + 1, then the order of θ is n and the equation
under consideration takes the following form

D θ ≡ ∂θ

∂uα
n

uα
n+1 +

∂θ

∂uα
n−1

uα
n + · · · = ϕ. (6)

Here and below the summation rule over the repeated indices is implied. If the function ϕ is
nonlinear with respect to uα

n+1 the equation (6) is impossible. Hence one must check vanishing
of all second derivatives

∂2ϕ

∂uα
n+1∂u

β
n+1

= 0. (7)

If this is true and ϕ is linear, ϕ = fα(un)uα
n+1 + g(un), then

∂θ

∂uα
n

= fα(un) (8)

and the compatibility conditions

∂fα

∂uβ
n

=
∂fβ

∂uα
n

(9)

must be satisfied. Setting

F1 =

∫
f1 du

1
n, θ = θ1 + F1,

we obtain from (8)

∂θ1

∂u1
n

= 0,
∂θ1

∂uα
n

= f̃α ≡ fα −
∂F1

∂uα
n

, α > 1. (10)

Now the compatibility conditions for (10) take the form

∂f̃α

∂u1
n

= 0,
∂f̃α

∂uβ
n

=
∂f̃β

∂uα
n

, α, β > 1. (11)

Electronic Journal. http://www.neva.ru/journal 20

Differential Equations and Control Processes, N 1, 2002

We can represent this process in the following form

θ → θ1 = θ − F1, ϕ→ ϕ1 = ϕ−DF1,

Dθ1 = ϕ1 = fα u
α
n+1 + g −DF1 = f̃2 u

2
n+1 + · · ·+ f̃m u

m
n+1 + g̃,

(12)

where the functions

f̃α = fα −
∂F

∂uα
n

, g̃ = g −DF +
∂F

∂uα
n

uα
n+1

do not depend on the variables uα
n+1. If the first of the equations (11) is satisfied we can prolong

the chain (12)

θ1 → θ2 = θ1 − F2, ϕ1 → ϕ2 = ϕ1 −DF2,

Dθ2 = ϕ2 = f̃2 u
2
n+1 + · · ·+ f̃m u

m
n+1 + g̃ −DF2 = f̂3 u

3
n+1 + · · ·+ f̂m u

m
n+1 + ĝ,

where

F2 =

∫
f̃2 du

2
n,

and so on. After m steps we obtain Dθm = ϕm, ordϕm 6 n and the process is repeated.

When the command pot(phi) is entered the procedure pot checks all conditions (7), (9),
(11), . . . and performs the integrations and all equivalence transformations

th := 0 : th := th+ F : ϕ := ϕ−DF (F) :

If some condition is broken the process is stopped, the reminder ϕ−DF1 −DF2 − · · · −DFk

is saved under the global name rm, the message ”Break, rm contains, expr” is printed and the
result F1+F2+· · ·+Fk is returned. The expression ”exp” may be u1

3
2
or u1

2&u
2
3 and all that. The

sense of such messages is that the reminder rm is nonlinear function with respect to u1
3 or u1

2 and
u2

3 (it may be arbitrary function but not the second power) and some compatibility condition
is not satisfied. If rm6= 0 the output G of the command pot(phi) means that ϕ = D(G) + rm
and rm is not the total derivative. Notice that the call DN(phi,–1) returns the same result
in another form G+DN(rm,–1). When all compatibility conditions are satisfied we obtain an
output and the message ”Finish, rm=0”.

Let us consider, for example, the conserved densities for the KdV equation:

> vard:=[u]: depend(): sys:=[u3 + 6*u0*u1]:

> pot(ED(u0^2));

Finish, rm=0

2 u0 u2− u12 + 4 u03

And more example

> th:=pot(ED(u0^3)):

Break, rm contains, u12

> th:=th; rm:=rm;

Electronic Journal. http://www.neva.ru/journal 21

Differential Equations and Control Processes, N 1, 2002

th := 3u02 u2− 3u0 u12 +
9

2
u04

rm := 3u13

Hence Dt u0
3 = D th+ 3 u13 and u03 is not a conserved density.

Notice that there is more short version of pot with the name pt. It works without any
text messages. This quality is necessary to call the routine from another one.

The function pot may be useful for computing of nonlocal conserved densities too. Let us
consider the example.

> vard:=[u]: sys:=[u3+6*u0*u1]:

> nlo:=[w1,w2]: densities:=[u0,u0^2]:

> fluxes:=[u2+3*u0^2,2*u0*u2-u1^2+4*u0^3]:

> depend(f(x,u0,u1,w1,w2)):

> a1:=DF(f);

∂f

∂x
+

∂f

∂u0
u1 +

∂f

∂u1
u2 +

∂f

∂w1
u0 +

∂f

∂w2
u02

> pot(a1);

Finish, rm = 0

f

The result will be just so for any arbitrary function and for some concrete functions:

> a2:=DF(u1^2+u0*u1*w1+w2^2*u2);

a2 := u12w1 + 2 u2 u1 + u2 u0w1 + w22u3 + u02u1 + 2w2u2u02

> pot(a2};

Finish, rm = 0

u12 + u0 u1w1 + w22 u2

But often it is not so

> a3:=DF(u1^2+u0*u1*w1+w2^2);

a3 := u12w1 + 2 u2u1 + u2u0w1 + u02u1 + 2w2u02

> pot(a3}; rm;

See rm, ord(rm) =, [0]

u12 + u0 u1w1

2w2 u02

Electronic Journal. http://www.neva.ru/journal 22

Differential Equations and Control Processes, N 1, 2002

There is another way to construct the conserved densities. Let ρ be a conserved density
of the evolution system (1). Then the covector field γ = Eρ, where E is the Euler operator,
satisfies the following equation [11]

(Dt +K ′+)γ = 0, (13)

where K ′+ is the adjoint to K ′ operator.

If a covector field γ is differentiable in a starlike neighbourhood of the point u = 0 ∈
J∞(R,Rm) and

γ′ = γ′
+

(14)

in this neighbourhood then γ = Eρ̃ [9], [10], where

ρ̃ =

1∫
0

γα(ξu)uα dξ. (15)

Hence if a solution of (13) satisfies to the condition (14) then the formula (15) gives the
conserved density of the evolution system.

Solutions of the equation (13) are called the conserved covariants. They applied not only for
computation the conserved densities but for constructing the recursion and the inverse Noether
operators. There is the routine covariant for solving the equation (13). The syntax is the
same as for LBsymm: covariant(G) or covariant(G,dialog), where G is a list of expressions
and dialog is the keyword. The routine performs the preliminary splitting of equations (13)
and call the package diffalg for additional splitting. Sometimes diffalg works very long time and
to prevent the call of diffalg the keyword dialog is introduced. The initial (unsplit) equations
are stored in the global set zero. One can use it to check whether the solution is true or not.
The check is necessary because the split system may be incomplete.

Let us consider the Schrödinger system for example.

> vard:=[u,v]: sys:=[u2+u0^2*v0,-v2-v0^2*u0]:

> depend(f(u0,v0,u1,v1), g(u0,v0,u1,v1)):

> a:=covariant([f,g]);

a :=

{
∂2g

∂u0∂u1
= 0,

∂2g

∂u12 = 0,
∂g

∂v0
= 0,

∂g

∂v1
= 0,

∂2f

∂v0∂v1
= 0,

∂2f

∂v12 = 0,
∂f

∂u0
= 0,

∂f

∂u1
= 0

}
Solving these equations call the routine again:

> depend(f1(v0), g1(u0)):

> a:=covariant([f1+c1*v1,g1+c2*u1]);

a :=

{
∂2f1

∂v02 = 0, c1 = −c2, ∂
2g1

∂u02 = 0

}

Electronic Journal. http://www.neva.ru/journal 23

Differential Equations and Control Processes, N 1, 2002

> a:=covariant([c1*v1+c3*v0+c4,-c1*u1+c5*u0+c6]);

a := {−2 c5 u0 + 2 u0 c3− 2 c6, −u0 (−u0 c3 + c5 u0 + 2 c6),

−v0 (−c3 v0 + v0 c5− 2 c4), −2 c5 u0 v0 + 2 u0 c3 v0 + 2 u0 c4− 2 v0 c6,

−2 v0 c5 + 2 c3 v0 + 2 c4, −2 c5 + 2 c3}

We have c5 = c3, c4 = c6 = 0 obviously:

> covariant([c1*v1+c3*v0,-c1*u1+c3*u0]), zero;

{ }, { }

So, we obtain two covariants for the Schrödinger system

> gamma1=<v1,-u1>, gamma2=<v0,u0>;

γ1 =

[
v1

−u1

]
, γ2 =

[
v0

u0

]
(16)

and two conserved densities

ρ1 =
1

2
(u0 v1 − u1 v0), ρ2 = u0 v0

according to the formula (15).

5 Canonical conserved densities

In the articles [12] were introduced the canonical conserved densities for completely integrable
systems and the necessary conditions of the complete integrability of an evolution system was
formulated. Then this approach was developed in [13], [6] and many others articles. In cited
papers and books they applied a powerful but difficult for computations operator technique for
obtaining the canonical densities. Another easy way for obtaining the same canonical densities
was presented in [14]. Later this (”Chinese”) technique was explained and generalized on a
wide class systems with two independent variables in [15]. Below we follow this article. Let the
system

F (u) = 0 (17)

can be transformed to the Cauchy-Kowalewski normal form with the help of transformation
of independent variables. Let us denote Φ(Dt, Dx) = F ′, where Dt and Dx are the total
differentiation operators. Then let us consider the following system

Φ(Dt + θ, Dx + ρ)ψ∣∣
F=0

= 0, (c, ψ) = 1, (18)

where (c, ψ) is the Euclidean scalar product and c is a constant vector. The main result is

Electronic Journal. http://www.neva.ru/journal 24

Differential Equations and Control Processes, N 1, 2002

If the system (17) is integrable by the inverse spectral transform method then the system
(18) possesses a formal solution in the following form

ρ =
∞∑

i=−n

ρi k
i, θ =

∞∑
i=−m

θi k
i, ψ =

∞∑
i=0

ai k
i, (19)

where k is a parameter, n > 0, ρ−n 6= 0 or m > 0, θ−m 6= 0 and (ρi, θi), i > min(−m, −n)
are local or weakly nonlocal conserved currents of the system (17). The conserved densities ρi

obtained from the equations (18) coincide with the canonical densities constructed by means of
the original algorithm developed in [6], [12]. But the ”Chinese” technique is simpler from the
computational viewpoint because it deals with the commutative series (19) but not with the
operator series. There is a wide class of the evolution systems for which n = 1 in the expansions
(19). We call these systems as regular. There is an example of the irregular (but nonintegrable)
system when n > 1 [15].

Let us consider the example

ut = u3 + f(u, u1). (20)

A simple calculation gives F ′ = D3 + f1D + f0 −Dt, where fk = ∂f/∂uk. Hence the equation
(18) takes the following form [−Dt − θ + (D + ρ)3 + f0 − (D + ρ) f1] · 1 = 0, or

ρ3 − θ + (D2 + f1) ρ+
3

2
Dρ2 + f0 = 0.

Setting

ρ = k−1 +
∞∑
i=0

ρi k
i, θ = k−3 +

∞∑
i=0

θi k
i,

we obtain the required recursion formula

ρi+2 =
1

3
θi −

i+1∑
j=0

ρj ρi−j+1 −
1

3

i∑
j,k=0

ρj ρk ρi−j−k

− 1

3
(D2 + f1)ρi −D

(
ρi+1 +

1

2

i∑
j=0

ρj ρi−j

)
− 1

3
f0 δi0,

(21)

where i > 0, ρ0 = 0, θ0 = 0, ρ1 = −1
3
f1 and δij is the Kronecker δ-symbol. The recursion

formula (21) can be easily coded in Maple:

> r:=proc(n)

local i;

i:=n-2; if n <= 0 then RETURN(0) fi;

if n = 1 then RETURN(-1/3*dif(f,u1)) fi;

cat(th,i)/3-SU(r,r,0,i+1)-1/3*SU(r,r,r,0,i)

- ’DF’(r(i+1)) -1/2*’DF’(SU(r,r,0,i))-’DN’(r(i),2)/3

- dif(f,u0)*DLT(i,0)/3-dif(f,u1)*r(i)/3

end;

Electronic Journal. http://www.neva.ru/journal 25

Differential Equations and Control Processes, N 1, 2002

Here DLT is the auxiliary procedure for the Kronecker δ-symbol and SU is the procedure for
the multiple sums. For example, the call SU(A,B,C,n,m) returns the sum of the monomials
A(i)*B(j)*C(k) where i, j, k > n and besides i + j + k = m. Number of arguments of SU
may be any and arguments of SU may be under DF or DN operators. That is the expressions of
the type SU(A,DF(B),DN(C,p),n,m) are admissible. Moreover we assume here that the fluxes
θ0, θ1, . . . will be saved under the names th0,th1,

It was proved in the papers [6], [12] that there is another series of conserved densities for
any integrable evolution system. We call them adjoint densities for brevity because they are
obtained from the adjoint to (18) equation. Let us denote the adjoint densities as ρ̃k, then
ρ̃i−ρi ∈ ImD as it was proved in the cited works. This condition is stronger than Dtρi ∈ ImD
obviously. That is why the both ρi and ρ̃i are applied in the symmetry analysis of integrable
systems.

Let us consider the quasi-linear evolution system with m equations

ut = A(u)un + F (u0, . . . , un−1), ∂A/∂un = 0.

If all eigenvalues of the main matrix A are different then one can obtain explicit recursion
formulas for m sequences of ρi and m sequences of ρ̃i choosing different normalization conditions
(c, ψ) = 1: ψ = (1, ψ2, . . . , ψm) or ψ = (ψ1, 1, ψ3, . . . , ψm) and so on. In the case of multiple
eigenvalues explicit recursion formula is impossible. And instead of it some differential equations
arise for ρi and ai [15].

The package JET contains two routines that compute the canonical and adjoint canonical
densities for Nth order regular evolution systems, N > 1 . They are cd and acd respectively.
The both cd and acd use the following algorithm. The routine substitutes the finite series
(19) into system (18) (or its adjoint), collect the obtained polynomials with respect to powers
of k and extract coefficients of the polynomials. These coefficients must be zeroes and they
are stored under the global name EQS. Then the routines, solve the obtained systems with
respect to ρi and ai (or ρ̃i and ãi) and return results. If it is impossible to solve the system
for ρi, ai (because of branches for example) then the routines suggest you to enter some values
or to choose a branch. It is important remember in this moment that the scale transformation
k → k λ is admitted in (19). Therefore when ρ−1 = const one may choose ρ−1 = 1 or −1
without loss of generality.

The call cd(n,m) returns m canonical densities from nth sequence as a rule. But for
some systems the routines may ask you to choose the constant C and the function ρ[−1] = r
and repeat the call with the additional argument cd(n,m,[C,r]). One may also use several
substitutions (such as a[n,m] = value for example) with the help of another optional argument:
cd(n,m,[C,r],S) or cd(n,m,S,[C,r]) or cd(n,m,S), where S is a set of substitutions. The
both routines assign flag:=0 in order to obtain the shortest expressions for the densities and
save the auxiliary functions a[i,k] (or b[i,k]) in the global set SOL. The syntax for acd is the
same.

Let us consider examples. The single equation:

> vard:=[u]: depend(f(u0,u1,u2)): sys:=[u3 + f];

sys := [u3 + f]

> cd(1,2);

Electronic Journal. http://www.neva.ru/journal 26

Differential Equations and Control Processes, N 1, 2002

[
ρ0 = −1

3

∂f

∂u2
, ρ1 =

1

9

(∂f

∂u2

)2

+
1

3
DF

(∂f

∂u2

)
− 1

3

∂f

∂u1

]
The Schrödinger like system:

> vard:=[u,v]: depend(f(u0,u1,v0,v1),g(u0,u1,v0,v1)):

> sys:=[u2+f, -v2-g];

sys := [u2 + f,−v2− g]

> cd(2,2); [
ρ[2,0] = −1

2

∂g

∂v1
, ρ[2,1] =

1

8

(∂g

∂v1

)2

− 1

2
th[2,0] +

1

4

∂f

∂v1

∂g

∂u1

−1

2

∂g

∂v0
+

1

4
DF

(∂g

∂v1

)]
This output is differ from the previous. For a single differential equation we have a single
sequence of canonical densities ρn, n = 0, 1, . . . and for the m-component system we have m
sequences ρ[1,j], ρ[2,j], . . . , ρ[m,j].

The nonlinear diffusion system as a case of the multiple roots:

> vard:=[u,v]: > depend(f(u0,u1,v0,v1), g(u0,u1,v0,v1)):

> sys:=[u2+f, v2-g];

sys := [u2 + f, v2− g]

> cd(1,1);

ED(rho[i, k] = DF (th[i, k])

SOL =

{
a21,0 = RootOf

(
2DF (Z)− Z

∂f

∂u1
− ∂f

∂v1
Z2 − ∂g

∂v1
Z − ∂g

∂u1

)}
Be careful, multiple roots[

ρ1,0 = −1

2

∂f

∂u1
− 1

2

∂f

∂v1
RootOf

(
2DF (Z)− Z

∂f

∂u1
− ∂f

∂v1
Z2 − Z

∂g

∂v1
− ∂g

∂u1

)]
So, ρ[1,0] and a2[1,0] are nonlocal functions in general case.

For the systems with two and more equations the canonical densities may consist of the
dozen hundred terms. The evolution derivative of such long expression consists of dozen thou-
sand terms. Processing a large expression requires very long time. And moreover if the number
of addends in an expression is more then 40000 then Maple V.4 or Maple V.5 finish computation
and inform: ”Object too large”. In Maple 6 no restriction on the size of the object probably
but the time of an computation exponentially depend on the size of the object. To solve this
problem we apply the procedure entry. The command z:=entry(F,N) returns the list z so
that each entry of z contains N addends from F; number of addends in the last entry of z will
be less or equal to N. After obtaining the list z one can perform the required operations with
each element z[i] separately and obtain the final result. This approach requires less time and
memory than the direct computation. Another method is based on using the procedure cho.
As the terms with the greatest order are most interesting then the procedure cho is very useful.

Electronic Journal. http://www.neva.ru/journal 27

Differential Equations and Control Processes, N 1, 2002

6 Differential Substitutions and Bäcklund transforma-

tions

Let us consider a pair of an evolution differential systems

ut = K(u) (22)

and

vt = H(v), (23)

where u : R2 −→ Rm, v : R2 −→ Rm and K, H are some smooth vector differential operators.
Let we also have a smooth vector differential operator f : C∞(R2, Rm) −→ C∞(R2, Rm). If for
any solution v of the system (23) the function u defined by the formula

u = f(v) (24)

satisfies the system (22) then the equation (24) is called the differential substitution. The order
of the operator f is called the order of the differential substitution.

The first order differential substitutions are considered as a rule, the well-known example
is the Miura substitution. But the higher order substitutions exist as well [16].

Let the operator K be known. To compute the substitution (24) one has to differentiate
the equation (24) with respect to t

K(u)− ∂f

∂vn

DnH(v) = 0 (25)

and substitute u = f(v), u1 = Df(v), u2 = D2f(v), . . . into this equation. As a result we
obtain a system containing only variables vi. After spiting this system with respect to the
higher order variables vi we obtain sufficiently many differential equations to find f and H.

Bäcklund transformations can be considered as the implicit differential substitution. The
first order Bäcklund transformation between systems (22) and (23) takes the following general
form F (u, u1, v, v1) = 0. If ∂F/∂u1 = 0 we have the simple differential substitution (24). And
if ∂F/∂u1 6= 0 we can solve the equation F = 0 with respect to u1 and write the Bäcklund
transformation in the following form

u1 = f(u, v, v1). (26)

To find the explicit form of the function f one must to differentiate the equation (26) with
respect to t. This gives

DK(u)− ∂f

∂u
K(u)− ∂f

∂vα
n

DnH(v) = 0. (27)

Substituting into this equation u1 = f(u, v, v1), u2 = Df(u, v, v1), . . . , we obtain a system con-
taining variables vi and u. This system is much more cumbersome than that obtained from (25)
but algorithm is the same. Therefore the both (25) and (27) can be obtained with the help of
one and the same procedure difsub. The syntax is difsub({u=f}) or difsub({u=f},dialog)
for a differential substitution and difsub({u1=f}) or difsub({u1=f},dialog) for a Bäcklund

Electronic Journal. http://www.neva.ru/journal 28

Differential Equations and Control Processes, N 1, 2002

transformation. Here f is a vector function on the jet space, dialog is the keyword. If difsub
is called with one argument then the equation (25) or (27) is preliminary split by means of the
differentiation and then the package diffalg is called. But this require very long time especially
for computation the Bäcklund transformations. When difsub is called with two argument
then the preliminary split system is returned. In the both these cases the original system is
stored in the global set zero. For the scalar equation (22) the first argument may be equation:
difsub(u=f,dialog).

Let us consider the Bäcklund transformation for the nonlinear Schrödinger system.

> vard:=[u,v,U,V]:

> depend(f1(u0,v0,U0,V0,U1),f2(u0,v0,U0,V0,V1) }:

> sys:=[u2+u0^2*v0,-v2-u0*v0^2,U2+U0^2*V0,-V2-U0*V0^2]:

> a:=difsub({u1=f1,v1=f2},dialog): ord(%);

[0, 0, 2, 2]

If one do not use dialog then the routine works a very long time.

> dif(a,U2); dif(a,V2);

{
0,−2

∂2f2

∂U1∂V 1
, 2

∂2f1

∂U1∂V 1
,−2

∂2f2

∂U12 , 2
∂2f1

∂U12

}
,{

0, 2
∂2f1

∂V 12 ,−2
∂2f2

∂U1∂V 1
, 2

∂2f1

∂U1∂V 1
,−2

∂2f2

∂V 12

}
So, the functions f1 and f2 are linear with respect to U1, V 1. To abridge the example let us
follow to [17] and set

f1 = U1 + (u0 + U0)h+ k (u0− U0), f2 = V 1 + (v0 + V 0)h− k (v0− V 0),

where the function h depend on (u0− U0) (v0− V 0) only and k is a constant.

> depend(h(u0,v0,U0,V0)):

> dif(h,U0):=-dif(h,u0): dif(h,V0):=-dif(h,v0):

> a:=difsub({u1=U1+(u0+U0)*h+k*(u0-U0),

v1=V1+(v0+V0)*h-k*(v0-V0)},dialog):

> a:=factor(eval(subs(Diff=dif,a))):ord(%);

[0, 0, 0, 0]

> a[2], a[5];

(u0 + U0)

(
u0 + 4h

∂h

∂v0
− U0

)
,− (v0 + V 0)

(
v0 + 4h

∂h

∂u0
− V 0

)
These equations give rise the solution h =

√
c− 1

2
(u0− U0) (v0− V 0) where c is a constant.

If one substitutes this result into the set zero then {0} is returned.

The next example will be a first order differential substitution for the mKdV equation
ut = u3 + 2u2

0 u1. Let another equation be unknown vt = F (v0, v1, v2, v3):

Electronic Journal. http://www.neva.ru/journal 29

Differential Equations and Control Processes, N 1, 2002

> vard:=[u,v]: depend(f(v0,v1),F(v0,v1,v2,v3)):

> sys:=[u3+2*u0^2*u1, F];

sys := [u3 + 2u02 u1, F]

> a:=difsub(u0=f);

There is a branching

a :=

[{
∂f

∂v1
= 0

}
,

{
∂F

∂v3
= 1

}]
As ∂f/∂v1 6= 0 then F = v3 +G(v0, v1, v2) and we enter the new command.

> depend(f(v0,v1),G(v0,v1,v2)): sys:=[u3+2*u0^2*u1, v3+G]:

> a:=difsub(u0=f, dialog);

{
3

∂2f

∂v0∂v1
v1 + 3

∂2f

∂v12 v2−
∂f

∂v1

∂G

∂v2

}
If one do not use dialog here then the time of computation is around one second but too much
branches occur. Integrating the obtained equation one can define more precisely the input
parameter and repeat the call, etc.

There is another type of substitutions. When the zero order conserved density ρ exists for
an evolution system one can perform the following nonlocal contact transformation [18], [19]
(t, x, u(t, x)) → (τ, y, U(τ, y))

τ = t, d y = ρ d x+ θ d t, U(τ, y) = u(t, x), (28)

where θ is the flux corresponding to the density ρ. This means that

∂y

∂x
= ρ,

∂y

∂t
= θ, Dxu = ρDyU, Dtu = (Dτ + θDy)U

This transformation is analogous to the transformation between Lagrange and Euler variables
in the fluid dynamics. Therefore the procedure executing the transformation (28) was called
as L E. The syntax is L_E(rho,theta,VARD), where rho=ρ is a conserved density, theta=θ
(optional) is the flux corresponding to the density ρ and VARD is a list of new dependent
variables. If vard=[u, v], then you may choose VARD=[U, V] for instance. Let us transform
the KdV equation taking ρ = u0, for example:

> L_E(u0,[U]);

[U τ = U03 U3 + 3U02 U1U2 + 3U02 U1]

If one call the procedure L E with the three parameters then it works slightly faster because
the θ is entered but is not computed.

Electronic Journal. http://www.neva.ru/journal 30

Differential Equations and Control Processes, N 1, 2002

7 Zero curvature representations

Let us consider the following linear matrix system

Ψx = U Ψ, Ψt = V Ψ, (29)

where Ψ is a column, U and V are the square matrices depending on the jet space coordinates
t, x, uα

n and a parameter λ. The system (29) is compatible if and only if the following equation
is valid

Ut − Vx + [U, V] = 0. (30)

If the equation (30) is satisfied on the solutions manifold of an evolution partial differential
system

ut = K(u), (31)

but not identically then they say the system (31) possesses the zero curvature representation.

The systems (29) and (30) are covariant under the gauge transformation:

Ψ → Ψ̃ = SΨ, U → Ũ = S U S−1 + SxS
−1, V → Ṽ = S V S−1 + StS

−1.

This transformation may be used for simplification the matrices U and V .

There are several functions in the package JET for manipulating with commutators. The
first of them is com (commutator). Arguments of com may be both symbolic matrices (names)
and arrays. If F and G are linear forms of some symbolic matrices then the call com(F,G)
returns the expanded expression, but the symbolic matrices must be specified in the global
set matrices. If F and G are arrays then the explicit value of the commutator [F,G] will be
returned as array. Procedure com knows all properties of commutators. For example,

> matrices:={A,B,C,E,U,V}:

> a:=com(c1*A+2*B, c2*A+3*B+U);

a := 3 c1 ′[A,B]′ + c1 ′[A,U]′ − 2 c2 ′[A,B]′ + 2 ′[B,U]′

The strange primes appeared here because of the undesirable property of lists in the recent
versions of Maple (V.5 or 6):

> 2*[A,B];

[2A, 2B]

Therefore we were forced introduce the additional primes in the auxiliary procedure
‘print/com‘:

> ‘print/com‘:=proc(a,b) ’’[a,b]’’ end:

But you can remove this procedure from the package if you wish. We omit all primes below for
brevity. Let us continue our examples.

Electronic Journal. http://www.neva.ru/journal 31

Differential Equations and Control Processes, N 1, 2002

> vard:=[u]:depend(U(u0), V(u0)):

> com(U, 2*U+3*V}, com(V,U), dif(com(U,V),u0);

3 [U, V], −[U, V],
[∂U
∂u0

, V
]

+
[
U,

∂V

∂u0

]
com orders its arguments in the alphabetical order. Integration of com(A,B) is possible only if
A and B are constants, but it is sufficient for analysis of the equations (30). Let us consider now
operations with the arrays.

> a:=com(A,B)+C; A:=array(1..2,1..2,[[1,0],[0,-1]]);

B:=array(1..2,1..2,[[c1,c2],[c3,c4]]);

a := [A,B] + C

A :=

[
1 0

0 −1

]

B :=

[
c1 c2

c3 c4

]

> a;

[
0 2 c2

−2 c3 0

]
+ C

> evalm(%);

[
C 2 c2

−2 c3 C

]

That’s why all arrays must be substituted simultaneously:

> C:=array(1..2,1..2,[[a1,0],[0,a2]]): evalm(a);

[
a1 2 c2

−2 c3 a2

]

The better way is to create the set of substitutions

> A:=’A’: B:=’B’: C:=’C’:

> s:={A=array(1..2,1..2,[[1,0],[0,-1]]),

B:=array(1..2,1..2,[[c1,c2],[c3,c4]]),

C:=array(1..2,1..2,[[a1,0],[0,a2]])}:evalm(eval(subs(s,a)));

Electronic Journal. http://www.neva.ru/journal 32

Differential Equations and Control Processes, N 1, 2002

[
a1 2 c2

−2 c3 a2

]

It is possible to abbreviate the last command:

> evsub(s,a);

[
a1 2 c2

−2 c3 a2

]

The procedure of JET evsub have the following syntax evsub(expr) or evsub(s,expr), where
expr is an algebraic expression or square matrix, s is an equation or a set of equations. The first
calling sequence is applied for computation the expression or matrix expr. The second calling
sequence is applied for two purposes. The first purpose is the substitution of the matrices into
the expression expr as in our example and the second one is to substitute some parameters
into the matrix expr.

Let (31) be the KdV equation. Let us consider how one can solve the equation (30).

> vard:=[u]:depend(U(u0), V(u0,u1,u2)):

> matrices:={U,V}: sys:=[u3+6*u0*u1]:

> z:=ED(U) - DF(V) + com(U, V);

z :=
∂U

∂u0
(u3 + 6 u0 u1)− ∂V

∂u0
u1− ∂V

∂u1
u2− ∂V

∂u2
u3 + [U, V]

Here all the flags are unassigned or flag=1. Splitting this equation with respect to u3 we obtain

> dif(z,u3), F1+ INT(dif(z,u3),u2);

∂U

∂u0
− ∂V

∂u2
, F1 +

∂U

∂u0
u2− V

> depend(U(u0), V(u0,u1,u2), F1(u0,u1)):

> matrices:={U,V,F1}: s:={V= dif(U,u0)*u2+F1};

z:=expand(eval(subs(s,Diff=dif,z)));

s :=
{
V =

∂U

∂u0
u2 + F1

}
z := 6

∂U

∂u0
u0u1− u1

∂2U

∂u02u2− u1
∂F1

∂u0
− ∂F1

∂u1
u2− u2

[
∂U

∂u0
, U

]
− [F1, U]

Finding now F1 as we find V

F1 = F2 −
1

2
u2

1

∂2U

∂u02 − u1

[
∂U

∂u0

, U

]
,

substitute it into the expression z:

Electronic Journal. http://www.neva.ru/journal 33

Differential Equations and Control Processes, N 1, 2002

> depend(U(u0), V(u0,u1,u2), F1(u0,u1), F2(u0)):

> matrices:={U,V,F1,F2}:

> s:={V= dif(U,u0)*u2+F1,

F1=F2-1/2*u1^2*dif(U,u0$2)-com(dif(U,u0),U)*u1}:

> z:=expand(eval(subs(s,Diff=dif,z)));

z := 6
∂U

∂u0
u0 u1− u1

∂F2

∂u0
+

1

2
u13 ∂

3U

∂u03 +
3

2
u12

[∂2U

∂u02 , U
]

−[F2, U] + u1
[[∂U
∂u0

, U
]
, U

]
It is obvious from this equation that U is the second degree polynomial of u0. But it is known
that U is the first degree polynomial of u0. Substituting U = A1u0 + A2 into z one can find

U = A1 u0 + A2, V = A1 u2 + A3 + 3A1 u
2
0 − 1

2
u2

0 [A1, [A1, A2]]

−[A2, [A1, A2]]u0 − [A1, A2]u1

where the constant matrices Ai satisfy the following equations

2 [[A2, [A1, A2]], A1]− 6 [A1, A2]− [A2, [A1, [A1, A2]]] = 0,

[A1, [A1, [A1, A2]]] = 0, [A2, A3] = 0,

[A1, A3] + [[A2, [A1, A2]], A2] = 0.

(32)

To simplify such equations one may denote some of the commutators as new matrices ([A1, A2] =
A4, for example) and use the Jacoby identity. There is the procedure Jac that transforms the
nested commutators according to the Jacobi identity:

> matrices:={U,V,A,B,C,E}:

> z1:=com(A, com(B, E)) + com(C, com(A, B));

z1 := [A, [B,E]] + [C, [A,B]]

> Jac(z1,A,B,C);

[A, [B,E]]− [A, [B,C]] + [B, [A,C]]

> Jac(z1,A,B,B);

[C, [A,B]] + [B, [A,E]]− [E, [A,B]]

Jac searches the first nested commutator containing A, B and C in z1, transforms it and return
the result, but the arguments may coincide. In the first example A, B and C are contained in
the second term and it was transformed. In the second example A and B are contained in the
first term that’s why the different results are obtained. The procedure Jac has two optional
arguments:

Jac(expr,A,B,C,N), Jac(expr,A,B,C,nested),

Jac(expr,A,B,C,nested,N)=Jac(expr,A,B,C,N,nested),

Electronic Journal. http://www.neva.ru/journal 34

Differential Equations and Control Processes, N 1, 2002

where expr is an algebraic expression, A, B, C are matrices, N is a number of the position in
expr from which the search is begun, nested is the keyword. If the 5th or 6th argument is
nested then Jac transforms the internal commutator. Here is one more example

> z2:=com(A,com(B,C)) + com(E,com(C,com(A,B)));

z2 := [A, [B,C]] + [E, [C, [A,B]]]

> Jac(z2,A,B,C,2); Jac(z1,A,B,C,nested,2);

[A, [B,C]] + [C, [E, [A,B]]] + [[A,B], [C,E]]

[A, [B,C]]− [E, [A, [B,C]]] + [E, [B, [A,C]]]

The 5th argument 2 in the first case make Jac begin the search from the second addend. If one
calls Jac(z1,A,B,C,nested) then Jac try to transform the internal commutator [B, C] in the
first addend and the information on the error will be returned. The call Jac(z1,A,B,C,2,nested)
gives the same result as Jac(z1,A,B,C,nested,2).

When the equation (30) is solved the next problem is to construct Lie algebra. Let us
consider for example the equations (32), where [A1, A2] = A4:

[A1, [A2, A4]] + 2A4 = 0, [A1, A2] = A4,

[A1, [A1, A4]] = 0, [A2, [A2, A4]] = [A1, A3], [A2, A3] = 0.
(33)

There are different ways to solve this system. For example, one can choose one of the matrices
in the Jordan normal form and try to solve the equations directly. But this way is difficult for
large matrix dimensions and the better way is to investigate the equations (33) in the spirit of
the ideas by H.D. Wahlquist and F.B. Estabrook [21]. They suggested to introduce the new
matrices and reduce the problem to the Lie algebra. Introducing in our example matrices

A5 = [A2, A4], A6 = [A1, A4], A7 = [A1, A3]

we obtain 7 matrices and 8 commutator relations. This is unclosed Lie algebra as 7-dimensional
algebra has 21 independent commutator relations. The main idea is: if a commutator [Ai, Aj]
is unknown then

or [Ai, Aj] is a linear combination of known elements of the Lie algebra,

or [Ai, Aj] is a new element linear independent with the previous elements.

So, for (33) the following suggestions are possible:

or A1, . . . , A7 are linear dependent,

or A1, . . . , A7 are linear independent and form the basis,

or A1, . . . , A7 are linear independent but do not form the basis.

Electronic Journal. http://www.neva.ru/journal 35

Differential Equations and Control Processes, N 1, 2002

Investigating these possibilities step by step with the help of the Jacobi identity one can close
the algebra. To investigate the second step when we know the basis the following algorithm is
useful. To obtain the closed table of commutators

[Ai, Aj] = Ck
ij Ak (34)

let us define some of commutators [Ai, Aj] = x1
ij A1 + · · · + xn

ij An, where xk
ij are the indef-

inite coefficients. Then we can construct the adjoint representation Ai → Ci. It is known
that the matrices Ci satisfy the same relations (34). Therefore substituting Ai = Ci into the
commutator relations (34) we can obtain the complete set of equations for xk

ij and can find the
structural constants Ci

jk. This algorithm is realized in the procedure struct. The syntax is:
struct(bas, s, x), where bas is the list of the basis elements Ai of an algebra, s is the set
of equations (34) and x is a free name. The procedure creates the global array C, global set
EQ for the closed table (34) and the global set S for substitutions basi = Ci. If a system for
the indefinite coefficients xi is satisfied identically or if the algebra is closed then the empty
set is returned. If the set of equations contains the explicit contradictions then the message
Contradiction, 1=0 is returned. In all other cases the system for xi is returned.

Let us consider the following simple example:

> s:={com(A1,A2)=A4}: bas:=[A1,A2,A4]:

> z:=struct(bas,s,x);

Structural constants are given by array C[i][kj]=Cˆk {ij}
Table of commutators [e i,e n]=Cˆk {in}∗e k is given by set EQ

Substitutions bas[i]=C[i] are set S, and constraints are:

z :=[[[−x4x3 + x6x1, x1x3 + x6x2, x
2
1 + x2x4, x1 + x5], plex(x5, x2, x1, x4, x3, x6), {}],

[[x6, x3, x1 + x5], plex(x5, x2, x1, x4, x3, x6), {x2
1 + x2x4}]]

> EQ;

{[A1, A4] = x1A1 + x2A2 + x3A4, [A2, A4] = x4A1 + x5A2 + x6A4, [A1, A2] = A4}
The obtained list z contains two variants:

(a) x1 x6 − x3 x4 = 0, x3 x1 + x2 x6 = 0, x2
1 + x2x4 = 0, x5 = −x1,

(b) x5 = −x1, x3 = x6 = 0, x2
1 + x2x4 6= 0.

Setting in (b) x1 = −x5 = 2, x2 = 0 for example, we find the sl(2) algebra

[A1, A2] = A4, [A1, A4] = 2A1, [A2, A4] = x4A1 − 2A2. (35)

These equations and A3 = −x4A2 solve the equations (33). Constructing then a representation
of the obtained Lie algebra we can find an explicit form of the matrices U and V .

For solving the considered in this section problems the following two procedures Cmetric
and Killing are useful. The call Cmetric() returns the Cartan metric tensor gij of a Lie algebra.
And the call Cmetric(y) returns the quadratic form gij y

i yj. The command Killing(A,B)

returns the value of the Killing form < A,B >=trace(adA adB) of the pair elements A,B of
a Lie algebra. In order to these routines Cmetric and Killing can work the program struct

must be run beforehand.

Electronic Journal. http://www.neva.ru/journal 36

Differential Equations and Control Processes, N 1, 2002

8 Recursion operators

The recursion operator R for the evolution system ut = K(u) (31) satisfies the following
equation

[Dt −K ′, R] = 0 (36)

by definition (see [3]–[5]). There are three algorithms for constructing the recursion operators
of the evolution systems at least. The first one is the direct solving of the equation (36). The
second approach uses the equation for the gradient of the spectral parameter [22], it was late
developed in [23] and independently in [24]. The third algorithm [25] is based on the perfectly
other ideas. It is more powerful but it is not realized in routines now.

Let us remind the results of the gradient algorithm. If an evolution system (31) possesses
the zero curvature representation (30) then the system (29) and its adjoint

hx = −hU, ht = −hV (37)

are compatible. In view of these equations the function

gα =
δ

δuα
< h, Uψ >, α = 1, . . . ,m, (38)

where the angle brackets denote the Euclidean scalar product, satisfies the equation for con-
served covariants

(Dt +K ′+) g = 0.

Here + denotes the formal conjugation. If ordU 6 1 then we have the following explicit formula

gα =

〈
h,

([
U,

∂U

∂uα
1

]
+
δU

δuα

)
ψ

〉
.

If U depend on higher order variables the analogous formulas exist. We adopt that the matrix
U is embedded into some Lie algebra

U =
n∑

i=1

fi(u, λ)Ai, (39)

where

[Ai, Aj] = Ck
ij Ak, i, j, k = 1, 2, . . . , N > n. (40)

and λ is a parameter. It is obvious from these formulas that the function (38) is a linear form
on the Lie algebra

gα =
N∑

i=1

Gi(u)ei, ei =< h, Aiψ > . (41)

Using (29), (37) and (39) one can easily to see that the functions ei satisfy the following
equations

Dei =< h, [Ai, U]ψ >=
N∑

j,k=1

Ck
ij fj(u, λ)ek. (42)

Electronic Journal. http://www.neva.ru/journal 37

Differential Equations and Control Processes, N 1, 2002

So, the vector function (41) and all its derivatives may be expressed in the terms of ei. And vice
versa, differentiating gα in the form (41) sufficiently many times one can express the functions
ei in the terms of derivatives Dkgα, α = 1, . . . ,m, k = 0, 1, . . . ,M <∞. Continuing the process
of differentiating and substituting ei into obtained equations one can find a linear differential
system for the function g:

Dpgα +
∑

06 i6 p−1
06 β6 m

Aβ
i, αD

igβ = 0

As the matrix U depend on a parameter λ then the matrices Ai depend on λ too. It is
remarkable that very often the previous equation for g = 0 can be reduced into the form

Lg = µ(λ)g, (43)

where L is an independent on λ integrodifferential operator and µ is a scalar function. And
moreover the recursion operator R takes the form R = L+. This fact gives a possibility to find
the recursion operator with the help of the equation (43) for the function (38).

There are two procedures in JET for finding the recursion operator. If you know the
zero curvature representation for your system (31) then you can try to exploit the eigenvalue
equation (43) for the function (38). To do this one must expand the matrix U with respect to
the basis [Ai] of a Lie algebra and find the closed table of commutators (40). Then try to call the
procedure triada that use the second algorithm described above. The syntax is triada(U,s)
or triada(U,s,p), where U is the matrix U in the symbolic form (39), s is the set of equations
(40) and p is integer positive number, number of steps executing by the routine. The third
parameter is optional. The name U is fixed in the auxiliary routine df that is called from
triada therefore you must use this name only for the first matrix (39) of the zero curvature
representation.The routine triada computes the functions (38) in the form (41), differentiates
them according to (42) and expresses ei as linear forms of gα: ei = Li(g). These equations are
stored in the pair of global sets SUB and SUB1. The independent on ei linear system for gα is
returned.

Let us consider, for example, the KdV equation possessing the algebra (35). If we set there
x4 = −4λ, A2 = A′2 − λA1 and A′3 = A4 then U = A1(u0 − λ) + A′2 and [A1, A

′
2, A3] is the

Cartan-Weyl basis:

[A1, A
′
2] = A′3, [A1, A

′
3] = 2A1, [A′2, A

′
3] = −2A′2, (44)

We shall use this basis now:

> vard:=[u]: depend():

> U:=A1*(u0-k)+A2: matrices:={A1,A2,A3}:

> s:={com(A1, A2) = A3,com(A1, A3)=2*A1, com(A2, A3) = -2*A2}:

> triada(U,s); [
∂3g

∂x3
+ 4u0

∂g

∂x
− k

∂g

∂x
+ 2u1 g

]
Transforming the obtained equation (or system in the vector case) to the form (43) we find R+

and

R = D2 + 4u0 + 2u1D
−1. (45)

Electronic Journal. http://www.neva.ru/journal 38

Differential Equations and Control Processes, N 1, 2002

This is the well-known Lenart operator.

When the matrices U and V are embedded in the Lie algebra of a small dimension then
the gradient algorithm works satisfactory. But when the matrix U is embedded in a Lie algebra
with dimension > 15 then the equation L(u, k)g = 0 is too large object. In this case you can
try use the third argument of triada, but it will be better to compute the recursion operator
solving the equation (36) directly.

It is known (see [25] for instance) that the recursion operators for evolution systems take
the following form

R =
n∑

i=0

Fn−i(u)D
i + S(u)D−1Gt(u), (46)

where Fn−i are square matrices, the matrices S and Gt may be rectangular. In particular it
is possible that S is a column and Gt is a row. For a single evolution equation S and Gt are
vectors in general case. One can prove that the columns of S are Lie-Bäcklund symmetries and
the rows of Gt are conserved covariants. That is,

(Dt −K ′)S = 0, (Dt +K ′+)GtT = 0 (47)

and these equations can be solved beforehand. Let us mention that the integral term in (46)
may be transformed according to the formula

S(u)D−1Gt(u) = (S(u)C)D−1(C−1Gt(u)) ≡ S̃(u)D−1G̃t(u),

where C is any non-singular constant matrix. This means that one may take the basis symme-
tries for columns of S then the rows of Gt will be the linear combinations of the basis covariants.
And vice versa rows of the Gt may be the basis covariants then columns of the S are the linear
combinations of the basis symmetries.

To obtain from (36) equations for the coefficients Fi, S and Gt of the recursion operator
the following formula for integration by parts is used

D−1FDk =
k∑

s=1

(−1)s−1(Ds−1F)Dk−s + (−1)kD−1(DkF). (48)

The equations for the coefficients Fi, S and Gt are coded in our procedure recursion. One
can call it with one or two input parameters, the call recursion(m) is possible if m=0 only,
m is the number of the calling equation. If the order n of the operator (46) is known then
another calling sequence is possible recursion(m,n), in this case the complete sequence of
values m=0,1, . . . , n+N are allowed where N=ord(K). If one assume n > k then the third
calling sequence is useful recursion(m,C>=k), where C is a free name. The first parameter m
may be in this case 0,1, . . . ,k.

Let us consider the KdV equation for example:

> vard:=[u]: sys:=[u3+6*u0*u1]: depend():

> a:=recursion(0);

a := 0

Electronic Journal. http://www.neva.ru/journal 39

Differential Equations and Control Processes, N 1, 2002

> b:=recursion(1);

Error, (in recursion) First argument is too large

> b:=recursion(1,n>=1); c:=recursion(2,n>=2);

b := −3K3DF (F0) + nF0DF (K3)

c := −2K2DF (F0)− 3K3DN(F0, 2) + nF0DF (K2)− 3K3DF (F1)

+(n− 1)F1DF (K3) +
1

2
n(n− 1)F0DN(K3, 2)

Here n is the order of the recursion operator, F0, F1, . . . are exactly the coefficients of the
operator (46). The name n is global. K0, K1, . . . are the coefficients of the operator

K ′ =
N∑

i=0

KiD
i,

The number N is determined from the list sys (N=3 in our example). To solve the equations
for F0, F1, . . . you must create and perform the following set ot substitutions

> s:={seq(cat(K,i)=Frechet(sys)[i],i=0..3)};

s := {K2 = 0, K0 = 6u1, K1 = 6u0, K3 = 1}

where Frechet is the routine for the Frechet derivative of the scalar and vector fields on the
jet space. The syntax is Frechet(F) where F is an algebraic expression or a list of expressions.

ATTENTION: All substitutions are allowed when flag=0 only! The routines
recursion, Noether and INoether, stand flag=0 automatically.

Continuing the previous dialog we find

> b:=expand(eval(subs(s,b)));

b := −3DF (F0)

This means that F0 = F0(t). Let us assume that F0 = 1 and n = 2, then

> s:=s union {F0=1}:

> c:=recursion(2,2): c:=expand(eval(subs(s,c)));

c := −3DF (F1)

Assuming F1 = 0, one can find F2 = 4 u0 from the third equation, and the fourth is

Electronic Journal. http://www.neva.ru/journal 40

Differential Equations and Control Processes, N 1, 2002

> s:=s union {F1=0,F2=4*u0}:

> a:=recursion(4,2): a:=expand(eval(subs(s,a/3)));

a := 12DF (u1)− 6DN(u0, 2)− 3 (DF (S)& ∗ Gt)− 3 (S& ∗DF (Gt))

To solve such equations one must find S and Gt from the equations (Dt −K ′) S = 0, (Dt +
K ′+) GtT = 0. But in our example the solution is obvious S = 2u1, Gt = 1 and we obtain
Lenart’s operator (45).

Let us consider now the Kupershmidt equation

ut = u5 + 5u1 u3 + 5 u2
2 − 5 u2

0 u3 − 20u0 u1 u2 − 5 u3
1 + 5 u4

0 u1. (49)

This equation possesses the six order recursion operator in the form (46) where S and Gt are
two-dimensional vectors [29], [30].

> vard:=[u]: depend(F1(x),F2(x)):

> sys:=[u5+5*u1*u3+5*u2^2-5*u0^2*u3-20*u0*u1*u2-5*u1^3+5*u0^4*u1]:

> s:={seq(cat(K,i)=Frechet(sys)[i],i=0..5),F0=1,F1=0}:

If one use the shown substitution s, then the equations 0− 2 are satisfied and the next is

> a:=recursion(3,6): a:=expand(eval(subs(s,a)));

6DF (u1)− 6DF (u02)−DF (F2)

> pot(%);

Finish, rm = 0

6u1− F2− 6u02

> solve(%,{F2});

{F2 = 6 u1− 6u02}

> s:=s union %:

Notice that the routine pot stands flag=1 and restores the previous value of flag before returning
the result. Therefore one must declare all functions in depend before calling pot. One can find
F3, . . . , F6 by the same way and the next commands are

> depend(_Gt(x),_S(x)):

> a:=recursion(8,6): a:=expand(eval(subs(s,a))):

> flag:=1: a:=expand(eval(subs(s,a/5)));

a :=− 30 u2u0u3− 10 u0u1u4 + 10u03u4 + 50u02u22 + 20 u14 − 20u12u3

− 30 u1u22 + 160u0 u12u2− 60u04u12 + 80u02u1 u3− 2u4 u2− 2u0 u6

− 12 u05u2− S& ∗ ∂ Gt
∂x

− ∂ S

∂x
& ∗ Gt− 4 u5 u1

Electronic Journal. http://www.neva.ru/journal 41

Differential Equations and Control Processes, N 1, 2002

ATTENTION: It will be the error if you enter flag=1 immediately after
a:=recursion(8,6).

> b:=pot(a);

Can not integrate

b := −2u0u5− 2 u1u4− 10 u3 u0u1 + 10 u3u03

−10u0 u22 − 10 u12u2 + 50 u02u1u2 + 20u0u13 − 12 u05u1

> rm;

− S& ∗ ∂ Gt
∂x

− ∂ S

∂x
& ∗ Gt

The routine pot can not integrate rm, but everybody can do it by hand and the result is
< S, Gt >= b, where the angle brackets denote the scalar product < S, Gt >= S1 Gt1 +
S2 Gt2. Equation (49) is time independent and it possesses the symmetry S1 = ut = sys[1] =
u5 + . . . and u0 is the conserved covariant. Hence one can try set S1 = sys[1], Gt1 = −2 u0:

> c:=factor(b+2*u0*sys[1]);

c := −2u1
(
−5 u0u12 + 5u1u2 + u4− 5 u02u2 + u05

)
The field u1 is the symmetry with respect to translations along the axis X and the expression in
the brackets is the conserved covariant as it can be easily checked with the help of the routine
covariant. If one add to the set s two more equations

> s:=s union {_S=<-2*op(sys),-2*u1>,

_Gt=<u0,u4-5*u0^2*u2-5*u0*u1^2+5*u1*u2+u0^5>}:

then this set contains the solution of all equations for the recursion operator.

Our next example is the Schrödinger system

ut = u2 + u2
0 v0, vt = −v2 − v2

0 u0. (50)

To find the recursion operator one must enter the following commands:

> vard:=[u,v]: depend():

> sys:=[u2+u0^2*v0,-v2-v0^2*u0]:

> s:={K0=Frechet(sys)[0],K1=Frechet(sys)[1],K2=Frechet(sys)[2]};

K0 =

[
2 u0 v0 u02

−v02 −2 u0 v0

]
, K1 =

[
0 0

0 0

]
, K2 =

[
1 0

0 −1

]
Let us call now the routine recursion.

Electronic Journal. http://www.neva.ru/journal 42

Differential Equations and Control Processes, N 1, 2002

> a:=recursion(0);

a := (F0& ∗K2)− (K2& ∗ F0)

As K2 is the diagonal matrix with the different elements then F0 is diagonal too. Follow to
[31] we set n = 1, F0 = K2, F1 = 0, then a = 0 and the next equation is

> const:={F0,K2}:

> s:=s union {F0=Frechet(sys)[2],F1=0}:

> a:=recursion(2,1):a:=eval(subs(F1=0,K1=0,a));

a := (F0& ∗K0)− (K0& ∗ F0)−& ∗ (K2, S, Gt) + & ∗ (S, Gt,K2)

One can prove that if one set

> {_S=array(1..2,1..2,[[u0,0],[-v0,0]]),

_Gt=array(1..2,1..2,[[v0,u0],[0,0]])};{
S =

[
u0 0

−v0 0

]
, Gt =

[
v0 u0

0 0

]}
then all equatons are satisfied and the well known operator is obtained.

Recursion operators for many important equations are hereditary. Operator R is called
hereditary one if the bilinear form Φ(f, g) = R′[Rf]g − RR′[f]g is symmetric [26] – [28]. The
routine hered computes and simplifies the expression Φ(f, g)−Φ(g, f) using the differentiation
rules and the formula (48). If zero is obtained then true is returned else false is returned
and the simplified expression is stored under the name rm.The syntax is hered(L,k) where
L = [F0, F1, . . . , Fn, S,Gt] is the list of the coefficients of the operator in the form (46), k is the
matrix dimension of the operator. Let us consider the examples.

For the Lenart operator (45) one has to enter the following commands:

> vard:=[u]:hered([1,0,4*u0,2*u1,1],1);

true

One more example is the recursion operator for the potential Sawada-Kotera equation [29]

R = D6 + 6u1D
4 + 3u2D

3 + (8u3 + 9u2
1)D

2 + (2u4 + 3u2u1)D

+ 3u5 + 13u3u1 + 3u2
2 + 4u3

1 − 2u1D
−1(u4 + u2u1)

− 2D−1(u6 + 3u4u1 + 6u3u2 + 2u2u
2
1)

> vard:=[u]: L:=[1,0,6*u1,3*u2,8*u3+9*u1^2,2*u4+3*u2*u1, 3*u5+13u3*u1

+3*u2^2+4*u1^3,<-2*u1,-2>,<u4+u2*u1,u6_3*u4*u1+6*u3*u2+2*u2*u1^2>]:

> hered(L,1);

true

It was the difficult test, to perform it the Intel processor at 400 Mhz worked 67 s.

Electronic Journal. http://www.neva.ru/journal 43

Differential Equations and Control Processes, N 1, 2002

If the routine returns false the transformed expression Φ(f, g) − Φ(g, f) is stored under
the name rm for the visual control and moreover the integral terms in the form D−1FD−1G
or D−1F are stored separately under the name zero.

The next example is the recursion operator for the nonlinear Schrödinger system:

R =

[
1 0

0 −1

]
D + 2

[
u0 0

−v0 0

]
D−1

[
v0 u0

0 0

]

> L:=[matrix([[1,0],[0,-1]]),0,2*matrix([[u0,0],[-v0,0]]),

matrix([[v0,u0],[0,0]])];

> vard:=[u,v]:hered(L,2);

true

9 Noether operators

The Noether operator Θ maps the set of conserved covariants of an evolution system

ut = K(u) (51)

into the set of its Lie-Bäcklund symmetries. The operator J performing the inverse map is
called the inverse Noether operator.

The Noether operator Θ and the inverse Noether operator J satisfy the following equations

(Dt −K ′)Θ = Θ(Dt +K ′+), (52)

(Dt +K ′+)J = J(Dt −K ′). (53)

Of course, if Θ satisfies the equation (52) and Θ−1 exists then it satisfies the equation (53).
But one can not find Θ−1 (or J−1) explicitly as a rule.

Let us consider the following operators

Θs =
1

2
(Θ + Θ+), Θa =

1

2
(Θ−Θ+),

Js =
1

2
(J + J+), Ja =

1

2
(J − J+).

Θs (Js) and Θa (Ja) are called the symmetric and antisymmetric parts of the operator Θ (J)
respectively. It follows from the definitions (52) and (53) that the both Θs and Θa are the
Noether operators; Js and Ja are the inverse Noether operators. There is the observation that
Noether and inverse Noether operators are antisymmetric for the systems possessing the zero
curvature representations. Nevertheless we consider below the operators Θ and J in general
form.

If an evolution system admits two Noether operators Θ1 and Θ2 and Θ2 is invertible then
Θ1 Θ−1

2 is the recursion operator. If two inverse Noether operators J1 and J2 exist and J2 is
invertible then J−1

2 J1 is the recursion operator. Some of the evolution systems possess the

Electronic Journal. http://www.neva.ru/journal 44

Differential Equations and Control Processes, N 1, 2002

Noether operator Θ and the inverse Noether operator J (6= Θ−1) then ΘJ is the recursion
operator [35].

The most general form of the Noether operators known today is

Θ =
n∑

i=0

Fn−iD
i + S D−1St, (54)

J =
n∑

i=0

Jn−iD
i +GD−1Gt. (55)

where Fi, Ji, S, St, G and Gt are matrices depending on the jet space variables. The columns
of S and rows of St are Lie-Bäcklund symmetries of the evolution system; the columns of G
and rows of Gt are conserved covariants of the system. This means that for the system writing
in the form (51) the following equations must be satisfied

(Dt −K ′)S = 0, (Dt −K ′)StT = 0, (56)

(Dt +K ′+)G = 0, (Dt +K ′+)GtT = 0, (57)

where T is the transposition symbol. It’s happened sometimes that S = 0 or G = 0 in (54) and
(55).

Let us mention that the integral term in (54) (and (55)) may be transformed according to
the formula

S D−1St = (SC)D−1(C−1St) ≡ S̃ D−1S̃t,

where C is any non-singular constant matrix. This means that one may take the basis symme-
tries for columns of S then the rows of St are the linear combinations of the basis symmetries.
And vice versa rows of the St may be the basis symmetries then the columns of the S are the
linear combinations of the basis symmetries. By analogy one may take for the columns of G or
for the rows of Gt the basis conserved covariants.

There are two procedures in JET for finding the operators (54) and (55). The procedure
Noether returns the equations for the matrices Fi of the operator (54). The equations (56)
must be solved beforehand. The procedure INoether returns the equations for the matrices
Ji of the operator (55). The equations (57) must be solved beforehand. The both procedures
Noether and INoether have the same syntax as the procedure recursion. They may be
called with one or two parameters, but the call Noether(m) is possible for m=0 only; m is the
number of returned equation. If you know that the order n of Θ is greater or equal to k you
can call Noether(m,C>=k), where C is any free name. In this case m = 0, 1, . . . , k and output
depend on parameter n that is the global variable. When you know exactly that the order
of Θ is n the call Noether(m,n) is possible for m=0,1, . . . , n+N, N=ord(sys) and gives the
complete system of equations (52).

The coefficients Fi and Ji of the operators (54) and (55) take in our routines the same
names Fi. The coefficients S, St, G and Gt are denoted as S, St, G and Gt respectively,
these coefficients are declared as the matrices in the global set matrices automatically.The
coefficients Fi of Θ and J are square matrices and S, St, G, Gt may be rectangular. But in
the scalar case Fi are scalar functions, S, St, G and Gt may be scalars or vectors. The
coefficients of the operators K ′ =

∑
KiD

i and K ′+ =
∑

(−D)iKT
i are coded as K0, K1, . . .

and tK0, tK1, . . . respectively. That is, tK0 is the transposed of K0, etc.

Let us consider examples. The first will be the KdV equation:

Electronic Journal. http://www.neva.ru/journal 45

Differential Equations and Control Processes, N 1, 2002

> vard:=[u]: depend(): sys:=[u3+6*u0*u1]:

> s:={seq(cat(K,i)=Frechet(sys)[i],i=0..3)}; a:=Noether(0);

s := K0 = 6 u1, K1 = 6u0, K2 = 0, K3 = 1

a := 0

> a:=Noether(1,C>=1);

a := 2F0K2− (n+ 3)F0DF (K3) + 3K3DF (F0)

> a:=expand(eval(subs(s,a)));

3DF (F0)

Let us take F0 = 1 and n = 3, then

> s:=s union {F0=1}:

> a:=Noether(2,3): a:=expand(eval(subs(s,a)));

a := 3DF (F1)

Assuming that operator Noether does not depend on t we obtain F1 = c1 = const,

> s:={K0=6*u1,K1=6*u0,K2=0,K3=1,F0=1,F1=c1}: const:={c1}:

> a:=Noether(3,3): a:=expand(eval(subs(s,a)));

a := 12u1− 24DF (u0) + 3DF (F2)

To find F2 one can apply pot:

> depend(F2(u0,u1),F3(u0,u1)):

> pot(-a/3);

Finish, rm = 0

−F2 + 4 u0

This means that F2 = 4u0 + c2.

> s:=s union {F2=4*u0+c2}: const:={c1,c2}:

> a:=Noether(4,3): a:=expand(eval(subs(s,a)));

a := 12 u1 c1 + 18DF (u1)− 24DN(u0, 2)− 18 c1DF (u0) + 3DF (F3) + 2 S& ∗ St

Assuming S = 0 one can find as above F3 = 2 u1 + 2 c1 u0 + c3. The 5th equation is satisfied
identically and the 6th gives c1 = c3 = 0. So, we obtained the well known operator

Θ = D3 + (4u0 + c2)D + 2u1 = D3 + 2 (u0D +Du0) + c2D, (58)

where c2 is arbitrary parameter.

Let us consider now the Kupershmidt equation.

ut = u5 + 5u1 u3 + 5 u2
2 − 5 u2

0 u3 − 20u0 u1 u2 − 5 u3
1 + 5 u4

0 u1. (59)

This equation admits Noether operator Θ = D and the inverse Noether operator J . Operator
J takes the form (55) where n=5, G and Gt are vectors. The following commands are necessary

Electronic Journal. http://www.neva.ru/journal 46

Differential Equations and Control Processes, N 1, 2002

> depend(F1(u0,u1),F2(u0,u1)): vard:=[u];

> sys:=[u5+5*u1*u3+5*u2^2-5*u0^2*u3-20*u0*u1*u2-5*u1^3+5*u0^4*u1]:

> s:={seq(cat(K,i)=Frechet(sys)[i],i=0..5)}: a:=INoether(0);

0

The first and the second equations give F0 = 1 and F1 = c1 respectively. To find the third
equation one must enter the commands

> s:=s union {F0=1,F1=c1}: const:={c1,F0,F1,K5}:

> a:=INoether(3,5): a:=expand(eval(subs(s,a)));

a := 20 u2− 40u0u1 + 10DF (u1)− 10DF (u02)− 5DF (F2)

To integrate this and the next equations enter the command

> depend(F2(u0),F3(u0),F4(u0),F5(u0)):

Then

> solve(c2+pt(a/5),{F2}); s:=s union %:

> const:=const union {c2}:

{F2 = c2 + 6u1− 6u02}

One can find by the same way F3, F4 and F5 from the 4th, 5th and 6th equations respectively.
These functions contain arbitrary constants c3, c4 and c5. The 7th equation contains the term
DF (G& ∗ Gt) and the order of this equation is equal 5. Hence the covariants G and Gt have
the fourth order. Applying the routine covariant one can find that the general fourth order
covariant takes the following form

g = a1

(
u4 + 5(u1 − u2

0)u2 − 5u0 u
2
1 + u5

0

)
+ a2 u0 + a3, (60)

where ai are constants. So, one can set

> {_G=<u4+5*(u1-u0^2)*u2-5*u0*u1^2+u0^5,u0,1>, _Gt=<g1,g2,g3>}; G =


u4 + 5

(
u1− u02

)
u2− 5u0 u12 + u05

u0

1

 , Gt =


g1

g2

g3




where gi are the covariants in the general form (60). Including this set in the set s, we found
from the seventh and eighth equations all previous constants ci = 0 and the covariants gi:

g1 = −2u0, g2 = −2(u4 + 5(u1− u02)u2− 5u0 u12 + u05), g3 = const

The operator D is the Noether operator for the Kupershmidt equation and D−1 is the inverse
Noether operator. Therefore one may set g3 = 0 as this constant gives the trivial term g3D

−1

Electronic Journal. http://www.neva.ru/journal 47

Differential Equations and Control Processes, N 1, 2002

in the operator J . Extracting the coefficients Fi from the set s we obtain

J = D5 + 6(u1 − u2
0)D

3 + 9(u2 − 2u0 u1)D
2

+ (5u3 − 22 u0 u2 − 13u2
1 − 6u1 u

2
0 + 9u4

0)D

+ u4 − 8 u0 u3 − 15u1 u2 − 3 u2
0 u2 − 6 u0 u

2
1 + 18u3

0 u1

− 2(u4 + 5 (u1 − u2
0)u2 − 5u0 u

2
1 + u5

0)D
−1u0

− 2u0D
−1(u4 + 5 (u1 − u2

0)u2 − 5u0 u
2
1 + u5

0).

(61)

The computed operator coincides with the operator J from [29].

One more example is the Drinfeld-Sokolov-Hirota-Satsuma system [32], [33]

ut =
1

2
u3 + 3uu1 − 6vv1, vt = −v3 − 3uv1. (62)

This system is often cited in the West as Hirota-Satsuma system. It possesses the first order
inverse Noether operator (see [29], for example).

> vard:=[u,v]: sys:=[1/2*u3+3*u0*u1-6*v0*v1,-v3-3*u0*v1]:

> depend(F1(u0),F2(u0),F3(u0),F4(u0),F5(u0),F6(u0),_Gt(x),_G(x)):

> s:={}:for i from 0 to 3 do s:=s union {cat(K,i)=Frechet(sys)[i],

cat(tK,i)=linalg[transpose](Frechet(sys)[i])} od:

> a:=INoether(0);

a := & ∗ (F0, K3)−& ∗ (tK3, F0)

As K3 is the diagonal matrix and tK3 = K3 = diag(1/2, −1) then F0 is also diagonal. We
assume that F0 is a constant matrix:

> s:=s union {F0=matrix([[c1,0],[0,c2]])}:

> const:={F0,K3,tK3,c1,c2}:

> a:=INoether(1,C>=1);

a := & ∗ (F0, K2) + & ∗ (tK2, F0) + & ∗ (F1, K3)−& ∗ (tK3, F1)− 3DF (& ∗ (tK3, F0))

As this is the algebraic equation then no need to declare any functions

> s:=s union {F1=matrix([[c3,c4],[c5,c6]])}:

> a:=evsub(s,a);

a :=

[
0 −3/2 c4

3/2 c5 0

]

> s:=s minus {F1=array(1..2,1..2,[[c3,c4],[c5,c6]])} union

{F1=array(1..2,1..2,[[c3,0],[0,c6]])}:

But the command minus does not work here. There are two ways to solve this problem: or
copy the output and remove the old expression for F1 by hand or add to s two equations
c4 = 0, c5 = 0. The next equation contains the covariants G and Gt therefore one must find
them now. Very simple computation gives that g = [c1u0+c2,−2c1v0] is the general first order
covariant:

Electronic Journal. http://www.neva.ru/journal 48

Differential Equations and Control Processes, N 1, 2002

> covariant([c1*u0+c2,-2*c1*v0]), zero;

{ }, { }

Let us try to set

> {_G=matrix([[u0,1],[-2*v0,0]]),

_Gt=matrix([[k1*u0+k2,-2*k1*v0],[k3*u0+k4,-2*k3*v0]])};

> s:=s union %: const:=const union {c3,c6,k1,k2,k3,k4}:{
G =

[
u0 1

−2 v0 0

]
, Gt =

[
k1u0 + k2 −2 k1 v0

k3u0 + k4 −2 k3 v0

]}
Then we obtain the following equations

> a:=INoether(2,1); a:=evsub(s,a);

a := −& ∗ (tK3,G ,G t) + & ∗ (F0, K1)−& ∗ (tK1, F0) + & ∗ (F1, K2)

+& ∗ (tK2, F1) + & ∗ (F0, DF (K2)) + 2DF (& ∗ (tK2, F0))

−3DF (& ∗ (tK3, F1))− 3DN(& ∗ (tK3, F0), 2) + & ∗ (G, Gt,K3)

a :=

[
0 3u0 k1 v0 + 3 k3 v0− 6 c1 v0

−3u0 k1 v0− 3 v0 k2 + 6 c1 v0 0

]

> s1:={k1=0,k2=2*c1,k3=2*c1}:

> s:=s union s1: a:=evsub(s,a);

a :=

[
0 0

0 0

]

> a:=INoether(3,1): a:=evsub(s,a):flag:=1:a:=evsub(s,a);

a :=

[
0 −12 c1 v1− 3 c2 v1− 6 c3 v0

−12 c1 v1− 3 c2 v1 + 6 c3 v0 0

]

> s1:=s1 union {c3=0,c2=-4*c1}:

> s:=s union {c3=0,c2=-4*c1}: a:=evsub(s,a);

a :=

[
0 0

0 0

]

> a:=INoether(4,1): a:=evsub(s,a):flag:=1:a:=evsub(s,a);

Electronic Journal. http://www.neva.ru/journal 49

Differential Equations and Control Processes, N 1, 2002

[
0 −3 c6 v1− 6 v0 k4

−3 c6 v1 + 6 v0 k4 3 c6 u1

]

> s1:=s1 union {c6=0,k4=0}:

> s:=s union {c6=0,k4=0}:

> a:=evsub(s,a);

a :=

[
0 0

0 0

]

It was the last equation. Let us extract now the solution from the set s.

> z:={F0,F1,_G,_Gt}:S:={}:

for i in s do if has(z,lhs(i)) then S:=S union {i} fi od;

> S:=evsub(s1,S);

S :=

{
G =

[
u0 1

−2 v0 0

]
, F1 =

[
0 0

0 0

]
, F0 =

[
c1 0

0 −4 c1

]
,

Gt =

[
2 c1 0

2 c1u0 −4 c1 v0

]}

If we set c1 = 1/2 this solution coincides with one that is presented in [29]:

J =

[
1/2 0

0 −2

]
D +

[
u0 1

−2 v0 0

]
D−1

[
1 0

u0 −2 v0

]
(63)

Often it is important to know whether the Noether or inverse Noether operator antisym-
metric. The routine asymm checks the antisymmetry condition (L + L+)F = 0, ∀F for the
operators taking the following form

L = L0D
n + L1D

n−1 + · · ·+ Ln + AD−1B, (64)

where Li are n × n matrices, A and B are such matrices that AB is n × n matrix. When
n = 1 A and B may be scalars or vectors. The syntax is asymm(L,n), where L is the list
L = [L0, L1, . . . , Ln, A,B], and n is the matrix dimension of the coefficients Li. If the operator
is antisymmetric then true is returned, else is returned false. The routine stands flag=1 and
restore the previous value of flag before returning the result. Let us consider the examples. If
we have

L = D3 + uD +Du = D3 + 2uD + u1,

then

> vard:=[u]: asymm([1,0,2*u0,u1,0,0],1);

Electronic Journal. http://www.neva.ru/journal 50

Differential Equations and Control Processes, N 1, 2002

true

Let us add the integral terms uD−1u+D−1 or uD−1 +D−1u:

> asymm([1,0,2*u0,u1,<u0,1>,<u0,1>],1);

true

> asymm([1,0,2*u0,u1,<u0,1>,<1,u0>],1);

true

But adding D2, we obtain

> asymm([1,1,2*u0,u1,0,0],1);

false

In such cases the expression (L+ L+)F is stored under the global name rm

> rm;

2
∂2F01

∂x2

for the visual control.

Let us consider the matrix operator (63):

> L:=[matrix([[1/2,0],[0,-2]]),matrix([[0,0],[0,0]]),

matrix([[u0,1],[-2*v0,0]]),matrix([[1,0],[u0,-2*v0]])]:

> vard:=[u,v]: asymm(L,2);

true

Noether operator of an integrable evolution system is the implectic (Hamiltonian, cosym-
plectic) operator as a rule and the inverse Noether operator is the symplectic operator as a
rule. We follow below to the definitions from [34], [35].

The operator Θ is called the implectic one if it is antisymmetric Θ+ = −Θ and the bracket
{f, g, h; Θ} =< f, Θ′[Θ g]h > satisfies the Jacobi identity

{f, g, h; Θ}+ {g, h, f ; Θ}+ {h, f, g; Θ} ∈ ImD. (65)

The operator J is called the symplectic one if it is antisymmetric J+ = −J and the bracket
[f, g, h; J] =< f, J ′[g]h > satisfies the Jacobi identity

[f, g, h; J] + [g, h, f ; J] + [h, f, g; J] ∈ ImD. (66)

The angle brackets denote here the Euclidean scalar product and f, g, h are arbitrary
functions on the jet space. But it is sufficient to consider that f, g, h depend on x only. Let us
mention that there exists the powerful technique of the functional multivectors [4] for the check

Electronic Journal. http://www.neva.ru/journal 51

Differential Equations and Control Processes, N 1, 2002

the identity (65). This technique is very useful for the hand computation, but it was simpler
for us to code the direct reduction of (65) and (66) with the help of the integration by parts.

The procedure implectic checks the identity (65). The syntax is the same as for asymm:
implectic(L,n), L=[L0, L1, . . . , Ln, A,B] is the list of the coefficients of the operator (64),
the second parameter n is the matrix dimension of the operator L. But if n 6= nops(vard),
then the message on the error is returned. The parameter n was introduced for the control of
correctness.

The routine symplectic checks on the identity (66). The syntax is symplectic(L,n) with
the same parameters as for implectic. The output is true or false, for the both implectic

and symplectic. If false is returned the reminder of integration is stored under the global
name rm for additional control.

Let us consider, for example, the Noether operator (58). It is antisymmetric as it was
shown above. Let us check the identity (65).

> vard:=[u]: implectic([1,0,4*u0+c2,2*u1,0,0],1);

true

The both identities (65) and (66) are satisfied for any linear operator with constant coefficients.
For example, for the operators D and D3 we have:

> implectic([1,0,0,0],1),implectic([1,0,0,0,0,0],1);

true, true

The potential Sawada-Kotera equation ut = u5 + 5u1 u3 + (5/3)u3
1 admits the following

implectic Noether operator Θ = D + 2(u1D
−1 +D−1u1) (see [29]). Let us check this

> implectic([1,0,2*<u1,1>,2*<1,u1>],1);

true

The DSHS system (62) admits the following Noether operator (see [29])

Θ =

[
1 0

0 1

](1

2
D3 + 2uD + u1

)
+

[
0 1

1 0

]
(2vD + v1).

Let us check is it implectic or not:

> vard:=[u,v]: L:=[1/2*matrix([[1,0],[0,1]]), 0, 2*matrix([[u0,v0],[v0,u0]]),

matrix([[u1,v1],[v1,u1]]),0,0]:

> implectic(L,2);

true

The nonlinear Schrödinger system (50) admits the following Noether operator

Θ =

[
0 1

1 0

]
D +

[
u 0

−v 0

]
D−1

[
u −v

0 0

]

Electronic Journal. http://www.neva.ru/journal 52

Differential Equations and Control Processes, N 1, 2002

> vard:=[u,v]: L:=[matrix([[0,1],[1,0]]),0,matrix([[u0,0],[-v0,0]]),

matrix([[u0,-v0],[0,0]])]:

> implectic(L,2);

true

Let us consider now the examples with inverse Noether operators. The Kupershmidt
equation (59) possesses the inverse Noether operator (61). The check of the symplecticness:

> L:=[1,0,6*u1-6*u0^2,9*u2-18*u0*u1,

5*u3-22*u0*u2-13*u1^2-6*u1*u0^2+9*u0^4,

u4-8*u0*u3-15*u1*u2-3*u0^2*u2-6*u0*u1^2+18*u0^3*u1,

<u4+5*(u1-u0^2)*u2-5*u0*u1^2+u0^5,u0>,

-2*<u0,u4+5*(u1-u0^2)*u2-5*u0*u1^2+u0^5>]:

> vard:=[u]: symplectic(L,1);

true

The Sawada-Kotera equation

ut = u5 + 5uu3 + 5u1 u2 + 5u2 u1

possesses the following inverse Noether operator

J = D3 + 2uD + u1 +
(
u2 +

1

2
u2

)
D−1 +D−1

(
u2 +

1

2
u2

)
.

The check of the symplecticness:

> L:=[1, 0,2*u0,u1,<u2+u0^2/2,1>,<1,u2+u0^2/2>]:

> vard:=[u]: symplectic(L,1);

true

ATTENTION: We coded in implectic and symplectic integration of the most
typical expressions. If the integral terms in an operator are cumbersome then

we do not sure that integration will be completely performed. Therefore in such
cases the message ”Probably false”, see rm is typed and simplified

expression (65) or (66) is stored in rm. In such cases you have to look at the
reminder rm and investigate it by hand.

Let we have, for example

J =

[
1 0

0 2

]
D3 +

[
u0 v0

v0 u0

]
D + 1/2

[
u1 v1

v1 u1

]

−
[

1 u02 + v02

0 ku0 v0

]
D−1

[
u02 + v02 ku0 v0

1 0

]
then entering vard:=[u,v]: L:=[...]: we have

Electronic Journal. http://www.neva.ru/journal 53

Differential Equations and Control Processes, N 1, 2002

> asymm(L,2); symplectic(L,2);

true

Probably false, see rm

> factor(rm);

v0 (k − 2)

(
∂G01

∂x
F02H01− ∂G01

∂x
F01H02 +

∂F01

∂x
H02G01

+
∂H01

∂x
G02F01− ∂F01

∂x
H01G02− ∂H01

∂x
G01F02

)
It is obvious that J is symplectic if and only if k = 2.

10 Auxiliary Routines

The routine Desol is useful for solving the ordinary differential equations or systems in the
JET notations:

> vard:=[u,v]: depend(f(x,u0,v0));

> a:=dif(f,x$2)+f;

a :=
∂2f

∂x2
+ f

> Desol(a,{f(x)});

f = C1 sin(x) + C2 cos(x)

Desol transforms an input equation into standard Maple form, calls the built-in function dsolve

and returns the result in the notations of the package JET. The first parameter of Desol is an
equation or set of equations, the second parameter is the set of functions.

The routine entry transform the sums into lists:

> a:=b-c+d+e-f+g*x^2+k*y-r*sin(x):

> entry(a,3);

[b+ d− c, −f + g x2 + e, k y − r sin(x)]

The first parameter of entry is an expression, the second parameter is an integer number,
number of addends of elements in the output list.

The routine vrd returns the sequences of the dependent variables:

> vard:=[u]:vrd(4);

u0, u1, u2, u3, u4

Electronic Journal. http://www.neva.ru/journal 54

Differential Equations and Control Processes, N 1, 2002

> vard:=[u,v]:vrd(4);

u0, v0, u1, v1, u2, v2, u3, v3, u4, v4

> vard:=[u,v]:vrd(4,2);

v0, v1, v2, v3, v4

The routine DLT returns unit or zero:

> DLT(1,2),DLT(1,-1),DLT(-2,-2),DLT(1,1);

0, 0, 1, 1

The routine InT is the inert form of the integration routine. It differs from the built-in
Int:

> expand(InT(f^2,x)), expand(Int(f^2,x));∫
f 2 dx, f 2

∫
1 dx

The routine ‘print/InT‘ provides output of the integrals in the mathematical form.

> InT(sin(x),x)=INT(sin(x),x);∫
sin(x) dx = − cos(x)

The routine ‘print/com‘ provides output of the commutators in the mathematical form
and the routine ‘diff/com‘ introduces the rule of differentiation of the commutators (see p.
31).

The routine pr can multiply two matrices, or two vectors, or matrix and vector, or scalar
and vector, or scalar and matrix, or two scalars. It processes the both arrays and symbolic
matrices or vectors and symbolic vectors. It is called from the routines recursion, Noether and
INoether. The routine ‘print/pr‘ provides output as the noncommutative product: A& ∗B.

The routine binom computes the binomial coefficients with the both numerical and sym-
bolic arguments:

> binom(5,0), binom(5,1), binom(k,2);

1, 5, binom(k, 2)

> notneg:={k,n}: binom(k,2), binom(n,3);

1/2 k (k − 1), 1/6n (n− 1) (n− 2)

The name notneg is global. If k ∈ notneg then k > 0. The name n is global for recursion,
Noether, Inoether and binom, it is assumed n > 0 always. There is the third optional
argument, the calls binom(n,m,k) or binom(m,n,k) means that n > k, where k is a non-
negative integer number:

Electronic Journal. http://www.neva.ru/journal 55

Differential Equations and Control Processes, N 1, 2002

> notneg:={k,n}: binom(k,k-2), binom(n-1,3), binom(n-1,3,2);

1/2 k, (k − 1), binom(n− 1, 3), 1/6 (n− 1) (n− 2) (n− 3)

The routine rec computes the coefficients Fi of recursion or Noether or inverse Noether
operators.The call rec(i) returns cat(F,i) if 0 6 i 6 n or 0 in all other cases. Here n is the
order of the operator.

The routine rsys computes the coefficients Ki of the operator K ′ = K0 + K1D + · · · +
KN D

N , where K is the list sys. The call rsys(i) returns cat(K,i) if 0 6 i 6 N or 0 in all
other cases.

The routine trsys computes the coefficients tKi of the operator K ′+ = KT
0 −DKT

1 + · · ·+
(−D)NKT

N , (tKi = KT
i). The call trsys(i) returns cat(K,i) for a single evolution equation

and cat(tK,i) for a system if 0 6 i 6 N or 0 in all other cases.

The routine newmatr helps to enter the square matrices with arbitrary elements:

> A:=newmatr(3,k);

A :=


k1 k2 k3

k4 k5 k6

k7 k8 k9


The routine eqord is used for sorting the equations x[i] = Hi with respect to the index i

of the indexed variable x[i]:

> sort([x[2]=0,x[4]=f,x[1]=1,x[3]=g],eqord);

[x[1] = 1, x[2] = 0, x[3] = g, x[4] = f]

The routine eqord2 is used for sorting the equations x[i, j] = Hij with respect to the second
index j of x[i, j]. The both eqord and eqord2 are called from cd and acd.

The routine numdif computes the differential order of a monomial with respect to indicated
variable:

> depend(f(x,y),g(x,y)): a:=2*f*dif(f,x,y$3)*dif(g,x$2,y):

> numdif(a,x),numdif(a,y);

2, 3

This routine is called from INT, implectic and symplectic.

The routine moddif computes the differential polynomial by modulo ∂/∂x (x is the global
name):

> depend(f(x),g(x),h(x)):

> a:=5*f*dif(g,x$4)*dif(h,x);

a := 5 f
∂h

∂x

∂4g

∂x4

Electronic Journal. http://www.neva.ru/journal 56

Differential Equations and Control Processes, N 1, 2002

> b:=moddif(a,x); b[2]+dif(b[1],x);

b :=

[
5 f

∂h

∂x

∂3g

∂x3
− 5

∂h

∂x

∂f

∂x

∂2g

∂x2
− 5 f

∂2h

∂x2

∂2g

∂x2
, 10

∂2h

∂x2

∂f

∂x

∂2g

∂x2
+ 5

∂h

∂x

∂2f

∂x2

∂2g

∂x2
+ 5 f

∂3h

∂x3

∂2g

∂x2

]
5 f

∂h

∂x

∂4g

∂x4

It is obvious from this example that the initial expression a is equivalent to b[2]. The routine
is called from implectic and symplectic.

The routine df performs the differentiation according to the formula (42) where we identify
the functions ei and elements of the basis Ai of lie algebra.

> df(f,0), df(f,1), df(f,2);

f, DF (f), DN(f, 2)

> matrices:={A1,A2,U}:

> df(A1,1),df(U,1),df(com(A1,A2),1),df(A1,2);

[A1, U], 0, [[A1, A2], U], [[A1, U], U]

This routine is called from triada. The name U is global for df (U is one of the matrices of
the zero curvature representation).

The routine opt optimizes the process of solving the linear algebraic system so that large
denominators do not arise. It is called from triada.

Acknowledgements

Some of the routines were written in collaboration with I. Kulemin and D. Demskoy. Author
is grateful to them for the help.

Author is also grateful to Dr. Jan Sanders for hospitality and stimulating discussions
during February 2001.

Electronic Journal. http://www.neva.ru/journal 57

Differential Equations and Control Processes, N 1, 2002

References

[1] Meshkov A.G., Kulemin I.V. Package JET for computation the conserved densities and
symmetries. Algebraic and Analytic Methods in the Differential Equations Theory. Proc.
Int. Conf. Orel, 14-19 November 1996. Orel, 1996, 99–103 [in Russian].

[2] Meshkov A.G. Computer Package for Investigation of the Complete Integrability. Proc. of
the Third Int. Conf. Symmetry in Nonlinear Physics. Kyiv, 12-18 July 1999. Part 1. Kyiv,
2000, p.35-46.

[3] Ibragimov N.H. Transformation Groups in Mathematical Physics. Nauka, Moskow, 1983
[in Russian].

[4] Olver P.J. Applications of Lie Groups to Differential Equations. Springer-Verlag, 1986. (In
Russian Mir, Moskow, 1989).

[5] CRC Handbook of Lie Group Analysis of differential equations. Ed. Ibragimov N. H. CRC
Press, London, Tokio, 1994, 1995.

[6] Mikhailov A. V., Shabat A. B. and Sokolov V. V. The symmetry approach to the clas-
sification of integrable equations in: Integrability and kinetic equations for solitons, 1990,
213–279, Naukova Dumka, Kiev, [in Russian]; in English see What is Integrability ?/
Springer-Verlag (Springer Series in Nonlinear Dynamics), 1991, 115–184.

[7] Akhatov I. S., Gazizov R. K. and Ibragimov N H. Nonlocal Symmetries. Heuristic Ap-
proach. In Sovrem. Probl. Math. 1989, V. 34, Moscow: VINITI, P. 3. (In Russian).

[8] Sokolov V. V. and Svinolupov S. I. Weak nonlocalities in evolution equations. Mat. Zamet-
ki, 1990, V. 48, no. 6, 91–97 (in Russian); translation in Math. Notes, 1990, 48, no.5-6,
1234–1239, (1991).

[9] Volterra V. Theory of Functionals and Integrodifferential equations. London, 1929
(reprinted in 1959 by Dover).

[10] Galindo A., Martinez L. Kernels and ranges in the variational formalism. Lett. Math. Phys.,
1978, V.2, no.5, 385–390.

[11] Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure
and Appl. Math. 1968, V.21, 467–490.

[12] N. H. Ibragimov and A. B. Shabat. Evolution equations with nontrivial Lie-Bäcklund
groups. Functs. Anal., 1980, V.14, no.1, 25–36 [in Russian]; N. H. Ibragimov and A. B.
Shabat. On the infinite Lie-Bäcklund algebras. Functs. Anal., 1980, V.14, no.4, 79–80 [in
Russian].

[13] V. V. Sokolov and A. B. Shabat. Classification of integrable evolution equations. Soviet
Sci. Rev. C, 1984, V.4, 221–280. Harwood Academic Publ.

[14] Chen H.H., Lee Y.C., Liu C.S. Integrability of nonlinear Hamiltonian systems by inverse
scattering transform. Phys. scr., 1979, V.20, N 3, 490–492.

Electronic Journal. http://www.neva.ru/journal 58

Differential Equations and Control Processes, N 1, 2002

[15] Meshkov A.G. Necessary conditions of the integrability. Inverse Problems, 1994, V.10,
635–653.

[16] V. V. Sokolov. Pseudosymmetries and differential substitutions. Functs. Anal. i ego Pril.,
1988, V.22, no.2, 47–56 [in Russian]; translation in Functional Anal. Appl., 1988, 22, no.2,
121–129.

[17] Lamb G. L., Jr. Bäcklund transformations for certain nonlinear evolution equations. J.
Math. Phys., 1974, V.15, no. 12, 2157–2165.

[18] Rogers C. Application of reciprocal Bäcklund transformations to a class of nonlinear bound-
ary value problems. J. Phys. A.,1983, V.16, no. 14, L493–L495.

[19] Holm D. D., Kupershmidt B. A., Levermore C. D. Canonical maps between Poisson brack-
ets in Eulerian and Lagrangian descriptions of continuum mechanics. �Phys. Lett., 1983, V.
A98, no. 8-9, 389–395.

[20] Mikhailov A. V., Shabat A. B. and Yamilov R. I. Extension of the module of invertible
transformations. Dokl. AN SSSR, 1987, V.295, no.2, 288–291 [in Russian]; Extension of
the module of invertible transformations. Classification of integrable systems. Commun.
Math. Phys., 1988, V.115, no.1, 1–19.

[21] Wahlquist H.D., Estabrook F.B. Prolongation structures of nonlinear evolution equations.
J. Math. Phys., 1975, V.16, 1–7.

[22] Fokas A.S., Anderson R.L. On the use of isospectral eigenvalue problems for obtaining
hereditary symmetries for Hamiltonian systems. J. Math. Phys., 1982, V.23, N 6, 1066–
1073.

[23] Meshkov A.G. Symmetries and Conservation Laws for Evolution Equations. VINITI, no.
1511–85, Moskow, 1985 [in Russian].

[24] Prikarpatsky A.K. Gradient algorithm for constructing the criteria of integrability of non-
linear dynamical systems. Dokl. AN SSSR, 1986, V.287, no.4, 827–832 [in Russian].

[25] Gurses M., Karasu A. and Sokolov V. V. On constructing of recursion operator from Lax
representation, J. Math. Phys., 1999. Gürses M. and Sokolov V. V. On constructing of
recursion operator from Lax representation. ibid. 2000.

[26] Asano N., Kato Y. Spectrum method for a general evolution equation. Progr. Theor. Phys.,
1977, V. 58, no. 1, 161–174.

[27] Fuchssteiner B. Application of hereditary symmetries to nonlinear evolution equations.
Nonlinear Anal. Theor. Meth. Appl., 1979, V. 3, no. 6, 849–862.

[28] Fuchssteiner B. The Lie algebra structure of nonlinear evolution equations admitting in-
finite dimensional Abelian symmetry groups. Progr. Theor. Phys., 1981, V. 65, no. 3,
861–876.

[29] Wang Jing Ping. Symmetries and Conservation Laws of Evolution Equations. PhD thesis,
de Vrije Univrsiteit te Amsterdam, 1998.

Electronic Journal. http://www.neva.ru/journal 59

Differential Equations and Control Processes, N 1, 2002

[30] Fordy A. P., Gibbons J. Integrable nonlinear Klein-Gordon equations and Toda lattice.
Commun. Math. Phys.,1980, V.77, 21–30.

[31] Oevel W. Rekursionsmechanismen für Symmetrien und Erhaltungssätze in Integrablen Sys-
temen. PhD thesis, Universität-Gesamthochschule Paderborn, 1984.

[32] Drinfeld V. G. and Sokolov V. V. New evolution equations having (L-A)-pairs, Trudy Sem.
S. L. Soboleva, Inst. Mat. Novosibirsk, 1981, 2, 5-9 [in Russian].

[33] Hirota R., Satsuma J. Soliton solutions of a coupled Korteweg-de Vries equations. Phys.
Lett. 1981, V. A85, no. 8, 407–408.

[34] Focas A.S., Fuchssteiner B. On the structure of symplectic operators and hereditary sym-
metries. Lett. Nuovo Cimento, 1980, v.28, no.8, 299-303.

[35] Fuchssteiner B., Focas A.S. Symplectic structures, their Bäcklund transformations and
hereditary symmetries. Physica, 1981, V. D4, no.1, 47–66.

Electronic Journal. http://www.neva.ru/journal 60

Index

acd, computation of adjoint canonical den-
sities for evolution systems 17

asymm, the check of antisymmetry of an
operator 41, 43

binom, binomial coefficients 46

C, global variable 27
cd, computation of canonical densities for

evolution systems 17
chn, extracting of similar terms from an ex-

pression 9
cho, extracting of the higher order terms

from an expression 10, 18
Cmetric, Cartan metric of Lie algebra 27
com, commutator of linear symbolic matrix

expressions 22
const, global variable 5, 6
covariant, computation of conserved covari-

ants for evolution systems 14, 33, 38

densities, global variable 7
depend, declaration of arguments of any

functions 3–5
Desol, solving ode equations in the JET no-

tations 45
DF, total differentiation with respect to spa-

tial variable x 5, 16
df, auxiliary routine for struct 29, 48
dialog, keyword 8, 9, 14, 19
dif, partial differentiation 3
Diff, inert form of the partial differentiation

4
diff/com, differentiation rule for the com-

mutators 46
difsub, computation of differential substitu-

tions and Bäcklund transformations
19, 20

DLT, Kronecker delta symbol 16, 46
DN, multiple total differentiation with re-

spect to spatial variable x 5, 16

ED, evolution differentiation (differentiation
along the trajectories of an evolution
system) 6

entry, splitting of an expression into the
parts 18, 45

EQ, global variable 27
eqord, auxiliary routine for acd and cd 47
eqord2, auxiliary routine for acd and cd 47
EQS, global variable 17
EU, Euler operator (variational derivative)

11
evsub, substitution of expressions and ar-

rays into expressions and arrays and
computation them 23, 24

flag, control variable 5, 6, 31, 32
fldf, control variable 5
fldn, control variable 5
flpt, control variable 5
fluxes, global variable 7
Frechet, computation of the Frechet deriva-

tive on the jet space 31

hered, the check of heredity of on operator
34

implectic, the check of implecticness of on
operator 43

INoether, direct computation of the inverse
Noether operator for evolution sys-
tem 36

INT, indefinite integration 3, 4
InT, inert form of the indefinite integration

5, 46

Jac, reduction of the multiple commutators
with the help of the Jacobi identity
25

Killing, Killing scalar product of a pair el-
ements of Lie algebra 27

L E, performing the contact transformation
like the transformation between La-
grange and Euler variables in con-
tinuum mechanics 21

LBsymm, computation of the Lie-Bäcklund
symmetries 8

matrices, global variable 22, 36

61

Differential Equations and Control Processes, N 1, 2002

maxord, global variable 5, 9
moddif, 47

n, global variable 31, 36, 46
NamesOfdeps, global variable 3
nested, keyword 25
newmatr, entering the square matrices with

arbitrary elements 47
nlo, global variable 7, 13
Noether, computation of the Noether op-

erator of an evolution system 36
notneg, global variable 46
numdif, computation of the order of a dif-

ferential monomial 47

opt, auxiliary routine for triada 48
ord, computation of the order of any expres-

sions on a jet space 9

pot, inverse of DF on the jet space 11, 12,
32

pr, auxiliary routine for recursion, Noether
and INoether 46

print/com, prettyprint for commutator 22,
46

print/InT, prettyprint for integral 46
pt, almost the same as pot 13

rav, global variable 3
rec, auxiliary routine for recursion, Noether

and INoether 47
recursion, computation of the recursion op-

erator of an evolution system 30
rm, global variable 12, 34, 42, 43
rsys, auxiliary routine for recursion, Noether

and INoether 47

S, global variable 27
SOL, global variable 17
struct, computation of the structural con-

stants of (unclosed) Lie algebras 26
SU, computation of the multiple sums 16
SUB, global variable 29
SUB1, global variable 29
symplectic, the check of symplecticness of

on operator 43

triada, computation of the recursion oper-
ator by the eigenvalue system 29

trsys, auxiliary routine for recursion, Noether
and INoether 47

U, global variable 29, 48

Var, global variable 5
var, global variable 3
vard, global variable 2
vrd, fast typing of the sequences of depen-

dent variables 45

zero, global variable 9, 14, 19, 34

Electronic Journal. http://www.neva.ru/journal 62

