
dx
dt✻

✛✲

❄

DIFFERENTIAL EQUATIONS
AND

CONTROL PROCESSES
N 1, 2014

Electronic Journal,
reg. N ΦC77-39410 at 15.04.2010

ISSN 1817-2172

http://www.math.spbu.ru/diffjournal
e-mail: jodiff@mail.ru

Control problems in nonlinear systems

Kinematic Navigation of a Mobile Robot to the Maximizer of an
Environmental Field without Derivatives Estimation1

A.S. Matveev,1 M.C. Hoy, 2 and A.V. Savkin3

1 Department of Mathematics and Mechanics,
Saint Petersburg University,

Saint Petersburg, Russia,
2,3 School of Electrical Engineering and Telecommunications,

the University of New South Wales,

Sydney, NSW, Australia
E-Mail: 1almat1712@yahoo.com; 2mch.hoy@gmail.com;

3a.savkin@unsw.edu.au

Abstract

We consider a single kinematically controlled mobile robot traveling in a planar region
supporting an unknown field distribution. A single sensor provides the distribution value
at the current robot location. We present a novel navigation strategy that drives the robot
to the location where the field distribution attains its maximum. The proposed control
algorithm employs estimation of neither the entire field gradient nor derivative-dependent
quantities, like the rate at which the available measurement evolves over time, and is non-
demanding with respect to both computation and motion. Its mathematically rigorous
analysis and justification are provided. Simulation results confirm the applicability and
performance of the proposed guidance approach.
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1 Introduction

The paper addresses the problem of driving a single robot to the maximizer

of an unknown scalar environmental field. This may be thermal, magnetic,
electric, or optical field, concentration of a chemical, physical, or biological

agent, intensity of a spatial (electromagnetic, acoustic, etc.) signal, minus
the distance to an unknown location, etc. Examples of missions where this

problem is of interest include environmental studies, geological exploration,
detecting and localizing the source of a hazardous chemicals leakage or vapor
or radiation emission, sources of pollutants and plumes, hydrothermal vents,

etc. This problem was studied under the names of source seeking/localizing
[35, 29, 12] and gradient climbing/acsent [28, 7, 4, 8], though the both also

admit wider meanings [9, 29, 2, 31, 14, 15, 32, 11, 16, 22, 6, 30, 24, 13, 21]. For
source-seeking missions, the interest in maximizers is relevant if the field decays

away from the source. Such situation is typical for steady sources and static
environments, though even if it does not exactly hold, extremum seeking may be

of sense for a primary advancement in a vicinity of the source, where alternative
and more informed methods may be utilized to specify the source location. The
name ‘gradient climbing’ highlights the dominant control paradigm: try to align

the velocity vector of the robot with the field gradient. At the same time, this
is a method of wide applicability, not confined to navigation towards extrema

of environmental fields.

One of the basic challenges in seeking extrema of environmental fields arises

from the fact that the field gradient is not directly measured in many typical
scenarios. A good deal of extensive research in this area2 was based on ex-

plicit on-line gradient estimation. This approach is especially beneficial for
mobile sensor networks thanks to collaborative field measurements in many lo-

cations and data exchange [29, 28, 7, 4, 18]. However even in this scenario,
data exchange degradation due to e.g., communication malfunctions and con-
straints may require each robot in the team to operate autonomously during a

considerable time. The single robot scenario is much more challenging, unless
many spatially distributed sensors are mounted on the robot to provide the field

values at several essentially distant locations. However this may constitute a
separate problem, like for micro and miniature robots. In any case, multiple

vehicle/sensor scenario means more complicated and costly hardware.

A good deal of recent research in the area was devoted to the case where no

2We refer the reader to [28, 7, 12] for a survey.
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multiple sensor information is available. Then a typical method to compensate

for the lack of data is to get extra information via special ‘exploration’ maneu-
vers by systematically ‘dithering’ the sensor position around the basic path to

the extremum, with subsequent non-model based gradient estimation [8, 35, 12].
For example, in accordance with a general approach to the wider problem of

extremum-seeking design [3], the vehicle is excited with probing high-frequency
sinusoidal [35, 12] or stochastic [25] inputs. A similar in spirit approach is ex-
tremum seeking by means of many robots performing biased random walks [27]

or by two robots with access to relative positions of each other and rotational
actuation [17]. However these methods rely, either implicitly or explicitly, on

systematic side exploration maneuvers to collect rich enough data, which gives
rise to serious concerns about waste of resources.

Neither intentional systematic exploration maneuvers nor gradient estima-
tion were employed in the methods from [26, 5]. In [26], a sliding-mode nav-

igation law was proposed that steers a single Dubins-car like mobile robot to
the maximizer of an unknown field based on only a single-sensor and point-wise

measurement of the field value. A PID controller fed by such measurement was
presented in [5]. However, the proposed controllers numerically differentiate
the sensor reading with respect to time, which gives rise to concerns about am-

plification of the measurement noises and its detrimental effects on the overall
performance. Though these effects have been successfully avoided in the par-

ticular scenarios examined in [5, 26], the need to ensure this puts strong extra
burden on controller parameters tuning since reliable numerical differentiation

of sensor data is an intricate problem still representing a real challenge in prac-
tical setting [1, 33, 10]. In the case of [26], this is enhanced by the need to

handle the potential threat of the so-called chattering [23], which cannot be
ignored whenever sliding mode control is employed.

This paper presents a novel kinematic control paradigm for maximum seek-
ing that is completely free from evaluation of any field-derivative data, uses

only finite gains instead of sliding-mode control, and at the same time retains
the benefits of the controller from [26], including monotonic, non-oscillatory
convergence. Instead of conventionally trying to align the velocity vector with

the gradient, it is proposed to keep the velocity orientation angle proportional
to the discrepancy between the field value and a given linear ascending func-

tion of time. Mathematically rigorous justification of this control law is offered.
We also describe a domain of the controller parameters for which the objec-

tive is achieved: the robot inevitably reaches the desired neighborhood of the
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maximizer in a finite time and remains there afterwards. Convergence and per-

formance of the proposed law, including non-oscillatory close-loop behavior, are
confirmed by extensive computer simulations.

For complex dynamical systems, kinematic control is often the first step in
controller design whose objective is to generate the velocity reference signal.

The next step is to design a controller that tracks this signal by means of
forces and torques. This two-stage design works well in many situations and is

especially popular in the face of uncertainties in the dynamical loops. In this
paper, we limit ourselves to only kinematic control and moreover, examine a

non-restrictive holonomic model. At the same time, the proposed control law
is such that it is directly applicable to non-holonomic Dubins-car like vehicles,
provided that the vehicle’s feasible turning rate conforms to the recommended

control gains.

An algorithm somewhat similar to ours can be found in [5], which however

uses the estimated time-derivative of the measurement. Another difference
is that in [5], only a steady harmonic field was examined, which is a severe

limitation, the performance during the transient and the behavior after reaching
a vicinity of the maximizer were not addressed even for general harmonic fields,

and the offered conditions for convergence were partly implicit by giving no
explicit bound on some entities that were assumed sufficiently large. The focus

of this paper is on generic fields (not necessarily harmonic), and we offer study
of the entire maneuver with explicit conditions for non-local convergence.

The body of the paper is organized as follows. Section 2 presents the system,
problem setup, and control law. The assumptions and main results are stated

in Section 3. In Section 4, these results and the proposed controller design are
illustrated for the simple yet instructive case of an isotropic distribution. All
proofs are concentrated in Section 6 and Appendix. Section 5 is concerned with

simulation results.

2 System description and problem setup

A planar point-wise robot travels in a two-dimensional workspace. The robot
is controlled by the time-varying linear velocity ~v whose magnitude does not

exceed a given constant v. The workspace hosts an unknown scalar field D(r),
where r := (x, y)⊤ and x, y are the absolute Cartesian coordinates in the plane

R
2. The objective is to drive the robot to the point r0 where D(r) attains its

maximum and then to keep it in a vicinity of r0, thus displaying the approximate
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location of r0. The on-board control system has access only to the field value

d(t) := D[r(t)] at the robot’s current location r(t) = [x(t), y(t)]⊤. No data
about the derivatives of D are available; in particular, the robot is aware of

neither the gradient ∇D[r(t)] nor the time-derivative ḋ of the measurement d.

The kinematic model of the robot is as follows:

ṙ = ~v, r(0) = rin ‖~v‖ ≤ v, (1)

where ‖ · ‖ is the Euclidian norm. The problem is to design a controller that
drives the robot into the R⋆-neighborhood of the maximizer r0

V⋆ := {r : ‖r − r
0‖ ≤ R⋆} (2)

in a finite time t0 and then t ≥ t0 keeps the robot within V⋆.

In this paper, we propose and examine the following control algorithm:

~v(t) = v~e
{
µ
[
d(t)− v∗t

]
+ θ0

}
, where ~e(θ) := ( cos θsin θ ) (3)

and v∗, µ > 0, θ0 ∈ R are tunable parameters.

3 Assumptions and the main results

In general setting, the problem at hand comprises problems of global optimiza-

tion, which are typically difficult to solve. In the presence of local extrema,
NP-hardness, this mathematical seal for intractability, was established for even

the simplest classes of such problems [20]. To avoid intractability, it is natural
to assume absence of local extrema. So our first assumption considers a smooth
field with a single global spatial maximizer r0 and no local extrema, which field

converges to a finite limit γinf as ‖r‖ → ∞.

Assumption 10 The field D(·) is defined and C2-smooth on the entire plane,

there exists a point r0 such that ∇D(r) 6= 0 ∀r 6= r
0, and ∃ lim‖r‖→∞D(r) =:

γinf < D(r0).

The reader satisfied by this postulation may proceed to Theorem 1. We however
will in fact work with an essentially relaxed version of Assumption 10. The

relaxation takes into account that D(·) often results from an interplay of a
basic field and perturbations, and the latter are likely to cause local extrema

in the regions where the basic field is flat enough. By the Fermat theorem, one
such region surrounds the maximizer. For most physical fields, another region
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lies far enough from the maximizer, where the energy of the basic field becomes

distributed over large areas.

In view of this, we assume that the plane is partitioned into a ‘vicinity’ of

the maximizer Znear, outskirts Zfar, and an intermediary Zreg. In Znear ∪ Zfar,
the field D(·) is more or less arbitrary, may have local maxima or even be

non-smooth. In Zreg, the field is smooth and has no critical points and thus
local extrema. To reduce technicalities, we also assume that these zones are

separated by isolines I(γ) := {r : D(r) = γ}, which can usually be achieved by
properly reducing Zreg. On Znear, the fieldD(·) is assumed to take greater values

than on the complement. So the maximizer belongs to Znear, which justifies the
above interpretation of Znear.

Summarizing, we arrive at the following.

Assumption 1 There exist γ− < γ+ such that on Zreg := {r : γ− ≤ D(r) ≤

γ+}, the distribution D(·) is identical to a C2-smooth function defined on a

larger and open set, ∇D(r) 6= 0 ∀r ∈ Zreg, the isoline I(γ−) is a Jordan curve

and encircles I(γ+). Inside I(γ+), the field D(·) is defined and continuous

everywhere, maybe except for finitely many points r∗ where limr→r∗
D(r) = ∞,

and takes values greater than γ+. Inside I(γ−), the field is defined everywhere,

is continuous, and takes values lesser than γ−.

Exceptional points r∗ occur only for some theoretical distributions, like D(r) =
c/‖r − r

0‖ or D(r) = −c ln ‖r − r
0‖; these points are viewed as furnishing the

infinite maximum. Modulo this, Assumption 1 implies that sup
r∈R2 D(r) is

attained at some point r0. If there are several maxima, the control objective
should be achieved for one of them.

Assumption 2 For some maximizer r
0, the isoline I(γ+) lies in the interior

of the vicinity (2). The initial location lies in the domain of D(·) and inside

I(γ−), i.e., γ− < D(rin).

Remark 1 Suppose that Assumption 10 holds. Then so evidently does As-

sumptions 1, where γ± can be arbitrarily chosen subject to γinf < γ− < γ+ <
D(r0). As γ− → γinf and γ+ → D(r0), the set Zreg covers any given annulus

{r : 0 < ε < ‖r− r
0‖ < R <∞}. It follows that Assumption 2 is valid as well.

The first theorem shows that the control objective can always be achieved

by means of the control law (3).
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Theorem 1 Suppose that either Assumption 10 or Assumptions 1 and 2 hold.

Then there exist parameters v∗, µ, θ0 of the controller (3) such that the following

statement is true:

(i) The controller (3) brings the robot to the desired vicinity (2) of a maxi-

mizer in a finite time t0 and subsequently keeps it there: r(t) ∈ V⋆ ∀t ≥ t0.

Moreover, for any compact domain D ⊂ intZreg, there exist common values of

the parameters for which (i) holds whenever the initial location rin ∈ D.

The proofs of the results stated in this section will be given in Sect. 6.

Figure 1: Two isolines

In the rest of the section, we discuss controller tuning. It is orchestrated by

two auxiliary parameters γ⋆⋆ ∈ (γ⋆, γ+) and a > 0. Here

γ⋆ := max
r:‖r−r

0‖=R⋆

D(r) < γ+. (4)

and a is chosen so that (see Fig. 1)

0 < a < dist [I(γ⋆); I(γ⋆⋆)] , a < dist [I(γ⋆⋆); I(γ+)] ,

and a < dist [I(γ−); I[D(rin)]] if D(rin) < γ⋆⋆. (5)

Here dist [A;B] := infra∈A,rb∈B ‖ra−rb‖ is the distance between the sets A and
B. We also introduce the set:

W (a, γ⋆⋆) := {r : γin ≤ D(r) ≤ γ⋆⋆} , (6)

where γin := min
r:dist(r;I[D(rin)])≤a or ‖r−r

0‖=R⋆

D(r).

Due to Assumption 1, this set is compact since γin > γ−.
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The parameters θ0, v∗ of the controller (3) are chosen prior to µ. Whereas

θ0 is arbitrary, v∗ is such that

0 < v∗/v < Ξ := min
r∈W (a,γ⋆⋆)

‖∇D(r)‖. (7)

To tune µ, we use some functions that characterize the gradient∇D(r) rate
of change with respect to r. For r 6= r

0, α ∈ (−π/2, π/2), we put

κ(α, r) :=

〈
D′′(r)Φπ

2
−α∇D(r); Φπ

2
−α∇D(r)

〉

cosα‖∇D(r)‖3
, (8)

where Φα is the matrix of rotation through angle α:

Φα :=
(
cosα − sinα
sinα cosα

)
. (9)

Here κ(0, r) is the signed curvature of the isoline I := {r′ : D(r′) = D(r)} at

the point r. For α 6= 0, the following remark is illuminative; its proof is given
in Appendix A.

Remark 2 In any simply connected open domain D 6∋ r
0, the gradient can be

represented in the form ∇D(r) = ρ(r)~e[ϕ(r)], where ρ(r) := ‖∇D(r)‖ and the
angle of the gradient orientation ϕ(·) is C2-smooth. In these terms,

κ(α, r) =
〈
∇ϕ; Φπ

2
−α~e[ϕ]

〉
+ tanα 〈∇ϕ;~e(ϕ)〉−

2 ln 10

10
tanα sin

α

2

〈
∇ (10 log10 ρ) ; Φ−α

2
~e[ϕ]

〉
, (10)

where the values of all functions are taken at r.

Formula (10) is arranged so that for small α, the order of the addend ascends

from the beginning to the end. In (10),

a) the first addend is the curvature of the curve that transverses the gradient

vector field at the constant angle π
2 − α (or equivalently, transverses the

isolines at the angle −α);

b) the multiplier 〈∇ϕ;~e(ϕ)〉 in the second addend is the curvature of the curve

that goes in the gradient direction;

c) the multiplier
〈
∇ (10 log10 ρ) ; Φ−α

2
~e[ϕ]

〉
in the last addend is the rate at

which the gradient intensity ‖∇D‖ (measured in Db) changes along the
curves that transverse the gradient vector field at the constant angle −α

2 .
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The next function characterizes not the rate but the overall change of the

gradient direction as r goes not necessarily in special directions. For any closed
disc D 6∋ r

0, the angle β of rotation of the vector-field ∇D along a curve

D ⊂ Zreg is uniquely determined by the ordered pair of the ends of γ since
∇D(r) 6= 0 ∀r ∈ D by Assumption 2. Let β(D) be the maximum of |β| over

all pairs in D. We put
B(a) := max

D

β(D), (11)

where the maximum is over all disks of the radius a centered either at rin or on
I(γ⋆⋆).

The choice of the parameter µ is subjected to the constraint

µ > v min
δ≤v∗,vΞ−v∗

λ(δ, a)

δ
, where λ(δ, a) := (12)

max





max
r∈W (a,γ⋆⋆)

|α|≤α(v∗+δ,r)

|κ(α, r)| ;
2

a

(⌈
B(a)

2π

⌉
+ 1

)



,

α(δ, r) := arcsin
δ

v‖∇D(r)‖
, (13)

Ξ is given by (7), and ⌈z⌉ is the integer ceiling of z. This formula shows how

‘large’ µ should be in the last paragraph from Sect. 2.

Theorem 2 Suppose that the assumptions of Theorem 1 hold and for some

a obeying (5), the controller parameters satisfy (7) and (12). Then (i) from

Theorem 1 is true.

Remark 3 i) Consecutive choice of the parameters satisfying (5), (7), and
(12) is always possible since the right-hand sides of the inequalities from
(5) and (7) are positive, whereas the right-hand side of (12) is finite.

ii) Practically, this choice is typically based on estimates of the domain

W (a, γ⋆⋆) and the concerned characteristics of D(·) based on an a priory
knowledge about the field.

iii) Now we outline a way to follow these lines in the case from Remark 1,

assuming that D[rin] < min
r:‖r−r

0‖=R⋆
D(r) to reduce technicalities. The

starting step is upper estimating the isoline I[D(rin)]) ⊂ intC by a com-

pact simply connected domain C ⊃ {r : ‖r − r
0‖ ≤ R⋆}, and lower es-

timating the distances from (5), where I(γ−) and I(γ+) are replaced by
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the boundary of C and {r0}, respectively, in accordance with the last

claim from Remark 1. Let ν(γ⋆⋆) be the minimum among these esti-
mates. It is reasonable to pick γ⋆⋆ as the maximizer γ0 of ν(·). Then

W (a, γ⋆⋆) ⊂ Ŵ := {r ∈ C : ‖r − r
0‖ ≥ ν(γ0)}. Hence the last inequality

from (7) is implied by

v∗/v < Ξ̂ := min
r∈Ŵ

‖∇D(r)‖.

This is constructive if a lower estimate of the gradient is available, whereas

the other inequalities regulating the choice of v, v∗ are explicit. As for µ,
we put q(r) := ‖D′′(r)‖

‖∇D(r)‖
and note that by (11), |B(a)| ≤ 2aζ(a), where

ζ(a) := max
r∈Ŵ or ν(γ0)−a≤‖r−r

0‖≤ν(γ0)

‖D′′(r)‖

‖∇D(r)‖
.

Since the first argument in the max from (12) is not affected by a and the

second does not exceed Ω(a) := 4(ζ(a)2π + 1
a), it is reasonable to pick a so

that it nearly furnishes infa∈(0,ν(γ0))Ω(a). Furthermore, in (12),

max
r∈W (a,γ⋆⋆)

|α|≤α(v∗+δ,r)

|κ(α, r)|

(8)

≤ max
r∈Ŵ

max
|α|≤α(v∗+δ,r)

‖D′′(r)‖

‖∇D(r)‖ cosα

(13)
== max

r∈Ŵ

v‖D′′(r)‖√
‖∇D(r)‖2 − (v∗+δ)2

v2

≤
vmax

r∈Ŵ
‖D′′(r)‖√

Ξ̂2 − (v∗+δ)2

v2

.

Thus we see that the requirement (12) to µ is implied by

µ > v min
δ≤v∗,vΞ̂−v∗

max





vQ

δ
√

Ξ̂2 − (v∗+δ)2

v2

;
Ω(a)

δ




,

which is constructive whenever an upper estimate Q ≥ ‖D′′(r)‖ ∀r ∈ Ŵ

of the second derivative is available.

The estimates underlying iii) are essentially rough; relatively brief presenta-

tion is the main reason to discuss this method. More sophisticated approaches
based on extra a priory knowledge are illustrated in the next section.
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4 Isotropic Distribution

Now we illustrate the discussion of the previous section in the simple yet instruc-

tive case where the scalar field is caused by energy emanation from a point-wise
source, and we deal with this process at equilibrium. In isotropic media, the

mathematical model for such fields is often as follows:

D(r) = cf(‖r − r
0‖), (14)

where c characterizes the energy of the source and is unknown, whereas the
twice continuously differentiable function f : (0,∞) → R is known, strictly

decaying and convex

f ′(z) < 0, f ′′(z) > 0 ∀z > 0, (15)

with f(z) := 1
z and f(z) := − ln z being typical examples. The location r

0 of
the source is unknown. The objective is to display this location by bringing the

robot to its vicinity (2) on the basis of the following known estimates

c ≥ c− > 0,
∥∥
rin − r

0
∥∥ ≤ Rin. (16)

We assume that Rin > R⋆ to simplify the formulas.

Corollary 1 Suppose that (14)—(16) hold and the parameters of the controller

(3) are chosen so that

0 < v∗/v < Ξ∗ := c−|f
′(Rin + R⋆/2)|, (17)

µ > v min
δ≤v∗

vΞ∗−v∗

max

{
8

δR⋆
; max
R⋆/2≤z≤Rin+R⋆/2

B(z, δ)

}

B(z, δ) :=

[
1

δz
+

δf ′′(z)

vc−f ′(z)2
√
c2−v

2f ′(z)2 − δ2

]
. (18)

Then the robot driven by the controller (3) reaches the desired vicinity (2) of

the maximizer in a finite time and remains there afterwards.

In the typical cases where f(z) = 1
z or f(z) = − ln z, elementary calculus

show that B(z, δ) is convex with respect to z and so attains its maximum over
z ∈ [R⋆/2, Rin +R⋆/2] at the ends of the interval. Thus (18) shapes into

µ > v min
δ≤v∗

vΞ∗−v∗

max

{
8

δR⋆
;B(R⋆/2, δ) ;B(Rin + R⋆/2, δ)

}
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and for particular v∗ := λvΞ∗, λ ≥ 1/2 is implied by

µ > vmax
{ 8

R⋆(1− λ)vΞ∗
;B(R⋆/2, (1− λ)vΞ∗) ;

B(Rin +R⋆/2, (1− λ)vΞ∗)
}
.

PROOF OF COROLLARY 1: Assumption 1 holds with γ− ≈ 0 and γ+ ≈ ∞

since

∇D(r) = cf ′(‖r − r
0‖)

r − r
0

‖r − r
0‖

6= 0∀r 6= r
0. (19)

The isolines are circles centered at r
0. In (5), I(γ⋆⋆) can have any radius

R⋆⋆ ∈ (0, R⋆) modulo the freedom to manipulate γ⋆⋆ and γ+, and 0 < a <
min{R⋆ − R⋆⋆;R⋆⋆}. For R⋆⋆ := R⋆/2, a := R⋆/2− ε, ε > 0, ε ≈ 0, (6) yields

W (a, γ⋆⋆) ⊂

{
r : R⋆⋆ ≤ ‖r − r

0‖ ≤ Rin +
R⋆

2

}
. (20)

So (7) follows from (16) and (19) (for small enough ε). As for (12), we note

that for the radial vector-field (19) (see Fig. 2(a)), the maximal directional
divergence β(D) from (11) is achieved at the points r−, r+ from Fig. 2(b) and so

β(D) = 2 arcsin a
‖r∗−r

0‖ . Hence by (11), B(a) = 2 arcsin a
R⋆⋆−a < π and in (12),

(a) (b)

Figure 2: (a) Radial vector-field, (b) Maximal directional divergence

2
a

(⌈
B(a)
2π

⌉
+ 1
)
= 8

R⋆

. To evaluate κ(α, r), we separately estimate the addends

in (10). For the radial vector-field (19), the curve from claim a) (following
Remark 2) is the equiangular spiral. At a given point r, the maximal among

such spirals curvature is achieved in the case where the angle between the curve
tangent and the radial line is right [19], i.e., for the circle. Hence the modulus
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of the first addend in (10) does not exceed ‖r − r
0‖−1. The second addend

is zero since the curves from b) are radial straight lines. Since the gradient
from the third addend is evidently radial (see Fig. 2(a)), this addend is equal

to 2 tanα sin α
2
f ′′(‖r−r

0‖)
f ′(‖r−r

0‖) cos
α
2 . Thus

|κ(α, r)| ≤ ‖r − r
0‖−1 + | tanα|| sinα|

|f ′′(‖r − r
0‖)|

|f ′(‖r − r
0‖)|

and so (12) follows from (18) and (20). Theorem 2 completes the proof. �

5 Results of the Simulation Tests

Simulations were carried out with the point-mass robot (1) driven by the control
law (3). The numerical values of the parameters used for simulations are shown

in Table 1 (where ud is the unit of measurement of the field value d = D(r)).
The control was updated with a sampling time of 0.1s.

v 1m/s µ 0.8rad/ud

v∗ 0.299ud/s θ0 1.5rad

Table 1: Numerical values of the parameters used for simulation.

The first test deals with the linear field

D(x, y) = n
(
x cosϕ+ y sinϕ

)
+D0,

where n > 0, ϕ,D0 ∈ R are given. Since any smooth field is well approximated

by a linear one in sufficiently small (and sometimes not so small) areas, the focus
on linear fields permits us to disclose basic behavioral primitives that underly,
more or less, the closed-loop behavior in general fields. A typical simulation

result is displayed in Fig. 3 for the field with the orientation angle of 0.5 rad
and the ascension rate of 0.3m−1. It demonstrates monotonic, non-oscillatory

gradient climbing with the steady state angular error of ≈ 0.082rad.

Fig. 4 presents the results of tests in the following field with a point-wise

source:

D(r) = −0.8 · ‖r − r
0‖.

As can be seen, the robot succesfully converges to the source and then
wheels around it in a close proximity, thus displaying its location.
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Figure 3: Behavior in a linear field: (a) Path (b) Robot’s orientation
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Figure 4: Seeking a point source: (a) Path (b) Robot’s orientation

In Fig. 5, the same simulation setup was used, except measurement noise, a

different field shape, and kinematic constraints were added. The robot’s heading
was not allowed to change faster than 0.5rads−1, which in fact transforms (1)
into the non-holonomic Dubins-car model since the robot’s speed is constant

by (3). The field readings were corrupted by a random additive noise uniformly
distributed over the interval [−2.5, 2.5], whereas the field was corrupted by two

perpendicular plane waves:

D(r) = −0.8 · ‖r − r
0‖+ 5 · [sin(0.05 · x) + sin(0.05 · y)] .

However all these do not essentially alter the closed-loop behavior.

Fig. 6 is concerned with even more intricate scenario where in the simulation

setup from Fig. 5, the field source moves from left to right. As can be seen,
the vehicle still successfully reaches the source and then escorts it in a close

proximity.

Simulations were also carried out for a more realistic model of a field caused

by a constant-rate emanation of a certain substance (heat, gas, etc.) from a
point-wise source and its subsequent steady state diffusion in an isotropic two-
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Figure 5: Seeking a source under measurement noise and kinematic constraints: (a) Path (b)
Robot’s orientation
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Figure 6: Simulations with a moving source.

dimensional medium. In many cases, this process is described by the heat
equation ∂D/∂t = ρ∆D + δ[r − r

0(t)]. Here ∆ is the spatial Laplacian, ρ =

16000m2s−1 is the diffusion rate, δ is the spatial Dirac delta-function, r0(t)
is the source location, and the emanation rate was set to unity. The steady
state field distribution was calculated prior to navigation tests by the finite

difference method. In doing so, the time and space steps were 0.001s and 4m,
respectively. To approximately generate to steady state distribution, the system

was simulated for 100s. and only then commenced motion the results were
stored with the sampling rate 1s. During the navigation test, the distribution

value was obtained through bilinear interpolation over each spatial step. Like
in the previous experiment, the vehicle turning rate was bounded by 0.5rads−1.

The results of these simulations are shown in Figs. 7. It may be seen in all
cases the correct behavior was observed.
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Figure 7: Simulations with a diffusion source

6 Proofs of Theorems 1 and 2

We examine the robot driven by the control law (3). Based on (7) and (12), we

pick δ > 0 and η > 0 such that

δ < v∗, v min
r∈W (a,γ⋆⋆)

‖∇D(r)‖ − v∗, (21)

µ >
v

δ
max

r∈W (a,,γ⋆⋆),|α|≤α(v∗+δ,r)
|κ(α, r)|+ η, (22)

µ >
2v

aδ

(⌈
B(a)

2π

⌉
+ 1

)
(23)

Since these inequalities are strict, they, along with (5), remain true with a + ε
and γ⋆⋆ + ε put in place of a and γ⋆⋆, respectively, for small enough ε > 0.

We observe that the closed-loop system (1), (3) is described by the following
autonomous ordinary differential equations (ode) with respect to r, θ

ṙ = v~e(θ), θ̇ = µ
[
ḋ− v∗

]
, ḋ = v 〈∇D(r);~e(θ)〉 , (24)

where 〈·; ·〉 is the standard inner product For any state (r, θ) of the system (24),
we define σ(r, θ) = σ

σ :=





0 if ∇D(r) and ~e are linearly dependent

1 if the angle from ∇D(r) to ~e is positive

−1 if the angle from ∇D(r) to ~e is negative

The first lemma displays the major feature of the control law (3) that ultimately
ensures achievement of the objective.
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Lemma 1 There exists ω > 0 such that whenever r ∈ W (a + ε, γ⋆⋆ + ε), the

following implications hold

ḋ = v∗ + δ ⇒

{
d̈ ≤ −ω if σ = 1

d̈ ≥ ω if σ = −1

ḋ = v∗ − δ ⇒

{
d̈ ≥ ω if σ = +1

d̈ ≤ −ω if σ = −1

. (25)

Proof Whenever |ḋ− v∗| = |v 〈∇D;~e〉 − v∗| ≤ δ, a simple trigonometry shows
that

~e = ‖∇D(r)‖−1Φσ(π

2
−α)∇D(r),

where

|α| ≤ α(v∗ + δ, r) (26)

and α(δ, r) is given by (13). Hence due to (24), we have

d̈ = v
〈
∇D(r); ~̇e

〉
+ v 〈D′′(r)ṙ;~e〉

(1)
== vθ̇

〈
∇D(r); Φπ

2
~e
〉
+ v2 〈D′′(r)~e;~e〉 (27)

= vθ̇

〈
∇D(r); Φπ

2
+σ(π

2
−α)∇D(r)

〉

‖∇D(r)‖

+v2

〈
D′′(r)Φσ(π

2
−α)∇D(r); Φσ(π

2
−α)∇D(r)

〉

‖∇D(r)‖2

= v2
〈∇D(r); Φ−σα∇D(r)〉

‖∇D(r)‖

{
− σ

θ̇

v

+

〈
D′′(r)Φπ

2
−σα∇D(r); Φπ

2
−σα∇D(r)

〉

‖∇D(r)‖ 〈∇D(r); Φ−σα∇D(r)〉

}

(8)
= σv2 cosα‖∇D(r)‖

{
−
θ̇

v
+ σκ(σα, r)

}
; (28)

v2 cosα‖∇D(r)‖
(26)

≥ v
√
v2‖∇D(r)‖2 − (v∗ + δ)2

≥ ξ := v
√
v2 min

r∈W (a+ε)
‖∇D(r)‖2 − (v∗ + δ)2

(21)
> 0.
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Whenever ḋ = v∗ + δ, (24) implies that

−
θ̇

v
+ σκσ(α, r) = −

µ(ḋ− v∗)

v
+ σκσ(α, r)

≤ −
µδ

v
+
∣∣κσ(α, r)

∣∣ (22)≤ −
µδ

v
+
δ(µ− η)

v
= −

δη

v
< 0.

Similarly whenever ḋ = v∗ + δ,

−
θ̇

v
+ σκσ(α, r) ≥

µδ

v
−
∣∣κσ(α, r)

∣∣
(22)

≥
µδ

v
−
δ(µ− η)

v
=
δη

v
> 0.

These inequalities complete the proof. �

Lemma 2 Suppose that ḋ ≤ v∗ − δ during a time interval ∆ = [t0, t1]. For

t ∈ ∆, the direction vector ~e(θ) rotates clockwise with the angular velocity

θ̇ ≤ −µδ. The space deviation from the initial location and the total turning

angle ϕ := |θ(t)− θ(t0)| obey the inequality

‖r(t)− r(t0)‖ ≤ q(ϕ) :=
2v

µδ

⌊ ϕ
2π

⌋
+

v

µδ
[1− cosmin{⇃ϕ⇂; π}] (29)

where ⌊·⌋ is the integer floor and ⇃ϕ⇂:= ϕ− 2π
⌊

ϕ
2π

⌋
.

Proof Without any loss of generality, it can be assumed that r(t0) = 0, θ(t0) =

0. The first claim of the lemma is immediate from the second equation in (24):

θ̇
(24)
= µ

[
ḋ− v∗

] ḋ≤v∗−δ
≤ −µδ.

So s := −θ can be taken as a new independent variable:

dr

ds
= u~e(−s), u := −

v

θ̇
∈

[
0,

v

µδ

]
.

The squared distance ‖r(ϕ)‖2 does not exceed the maximal value of I in the

following optimization problem:

I := ‖r(ϕ)‖2 → max subject to

dr

ds
= u~e(−s) s ∈ [0, ϕ], r(0) = 0, u(s) ∈

[
0,

v

µδ

]
.
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By [34], its solution r
0(·), u0(·) exists and satisfies the Pontryagin’s maximum

principle: there exists a differentiable function ψ(s) ∈ R
2 such that

dψ

ds
= −

∂

∂r
u0ψ⊤~e(−s) = 0 ⇒ ψ = const,

ψ = ψ(ϕ) = −2r0(ϕ),

u0(s) = argmaxu∈[0,v/(µδ)]uψ
⊤~e(−s)

=





v/(µδ) if ψ⊤~e(−s) > 0

0 if ψ⊤~e(−s) < 0

unclear if ψ⊤~e(−s) = 0

.

If r
0(ϕ) = 0, (29) is evident. Let r

0(ϕ) 6= 0. Then ψ 6= 0 and so as s

progresses, the function u0(·) interchanges the values 0 and v/(µδ), each taken
on an interval of length π possibly except for the extreme intervals whose lengths

do not exceed π. Inequality (29) is straightforward from direct computation of
‖r(ϕ)‖ for such controls u(·), along with picking the maximum among these

results. �

Lemma 3 Let the robot start at t = t0 with ḋ ≤ v∗ − δ either from the isoline

I(γ⋆⋆) or from rin, in which case D(rin) ≤ γ⋆⋆ . Then there exists a time t∗ ≥ t0
such that ḋ(t∗) = v∗ − δ, d̈(t∗) ≥ 0, ‖r(t)− r(t0)‖ ≤ a ∀t ∈ [t0, t∗].

Proof For k :=
⌈
B(a)
2π

⌉
, ϕ := 2π(k + 1) > 0, we have

ϕ = 2π

(⌈
B(a)

2π

⌉
+ 1

)
≥ B(a) + 2π, (30)

q(ϕ)
(29)
==

2v

µδ
(k + 1)

(23)
< a. (31)

If ḋ(t0) = v∗− δ, d̈(t0) ≥ 0, the claim is clear. Otherwise either ḋ(t0) < v∗− δ or
ḋ(t0) = v∗−δ, d̈(t0) < 0; in both cases, the open set S := {t > t0 : ḋ(t) < v∗−δ}

contains all t > t0 that are close enough to t0. For the leftmost connected
component (0, t∗) of the intersection S ∩ {t > t0 : |θ(t)− θ(t0)| < ϕ}, evidently
either 1) |θ(t∗)− θ(t0)| = ϕ, ḋ(t∗) < v∗ − δ or 2) ḋ(t∗) = v∗ − δ. For t ∈ [t0, t∗],

the robot remains in the disk D := {r : ‖r − r(t0)‖ ≤ a} due to (29) and (31).
This disk does not contain r

0 thanks to (5).

1) As t runs from t0 to t∗, the gradient ∇D[r(t)] turns through an angle
that does not exceed B(a) due to (11). Meanwhile, ~e(θ) turns clockwise through
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the angle ϕ. By (30) and the continuity argument, ∇D[r(t)] and ~e[θ(τ)] are

identically directed at some time instant τ ∈ [0, t∗]. Then

ḋ(τ) = v 〈∇D[r(τ)];~e[θ(τ)]〉 = v ‖∇D[r(τ)]‖
(7)
> v∗,

which is impossible since ḋ(t) ≤ v∗ − δ ∀t ∈ [0, t∗] ⊂ S. Hence case 1) does not
occur.

2) The proof is completed by noting that ḋ(t) < v∗− δ ∀t ∈ (0, t∗)∧ ḋ(t∗) =
v∗ − δ ⇒ d̈(t∗) ≥ 0. �

Lemma 4 In a finite time, the robot reaches the set V⋆⋆ := {r : D(r) > γ⋆⋆}

bounded by the isoline I(γ⋆⋆).

Proof Suppose to the contrary that the claim is incorrect

rin 6∈ V⋆⋆ ⇔ D(rin) ≤ γ⋆⋆ ∀t ≥ 0 (32)

and consider separately several cases.

(a) v∗ − δ ≤ ḋ(0) ≤ v∗ + δ, σ(0) = 1. By (25), L := {t ≥ 0 :
r(t) lies in the interior of W (a + ε, γ⋆⋆ + ε)} and M := {t > 0 : v∗ − δ <

ḋ(t) < v∗ + δ} contain all small enough t > 0. Let (0, t∗) be the leftmost con-
nected component of L ∩M . Since 0 < v∗ − δ < ḋ(t) ∀t ∈ (0, t∗), (32) implies

that t∗ <∞. So (6) entails that either 1) ḋ(t∗) = v∗± δ or 2) D[r(t∗)] = γ⋆⋆+ ε
(since d(t) ascends while t ∈ (0, t∗)). However 2) does not hold by (32). As t
runs from 0 to t∗ in the case 1),

|〈∇D[r(t)];~e[θ(t)]〉| =
|ḋ(t)|

v
≤
v∗ + δ

v

(21)
< ‖∇D[r(t)]‖.

So ∇D[r(t)] and ~e[θ(t)] are not co-linear and hence σ does not change its value

1. Hence ḋ(t) cannot arrive at the values v∗ ± δ by (25). Thus we have arrived
at a contradiction.

(b) ḋ(0) ≤ v∗ − δ. By Lemma 3 (with t0 := 0), there exists a time t∗ ≥ t0
such that ‖r(t)− r(t0)‖ ≤ a and so by (6), r(t) ∈ W (a, γ⋆⋆) for all t ∈ [t0, t∗],

and ḋ(t∗) = v∗ − δ, d̈(t∗) ≥ 0. Then σ(t∗) = 1 by (25), and retracing the
arguments from (a) still results in a contradiction.

(c) ḋ(0) > v∗ − δ. Let [0, t∗) be the leftmost connected component of
{t ≥ 0 : ḋ(t) > v∗− δ}. Since v∗ > δ by (21), t∗ < ∞ due to (32) and D[r(t)] ≥

D[rin] ∀t ∈ [0, t∗]. By retracing the arguments from (b) (with t0 : +t∗), we
arrive at a contradiction once more.
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The contradictions obtained prove that (32) does not hold, which completes

the proof. �

Lemma 5 The robot cannot leave the desired vicinity (2) of the maximizer from

any location in V⋆⋆.

Proof Suppose to the contrary that the robot leaves V⋆ from some location

r(0) ∈ V⋆⋆. Here D[r(0)] > γ⋆⋆ by the definition of V⋆⋆ from Lemma 4, and due
to (4), (5), the robot necessarily intersects the isolines I(γ∗) and I(γ⋆⋆), where
I(γ) = {r : D(r) = γ}. Let t1 > 0 be the earliest time t such that D[r(t)] = γ⋆,

and let t0 be the latest time t ∈ (0, t1) such that D[r(t)] = γ⋆⋆. Then D[r(t)] <
γ⋆⋆ ∀t ∈ (t0, t1) and so ḋ(t0) ≤ 0 < v∗ − δ. By Lemma 3, there exists a time

t∗ ≥ t0 such that ḋ(t∗) = v∗ − δ, d̈(t∗) ≥ 0, ‖r(t) − r(t0)‖ ≤ a ∀t ∈ [t0, t∗].
The last relation and (5) imply that the robot does not reach the isoline I(γ⋆)

for t ∈ [t0, t∗] and so γ⋆ < D[r(t)] ≤ γ⋆⋆ t ∈ [t0, t∗]. By (6), this yields that
r(t∗) ∈ W (a + ε, γ⋆⋆ + ε). Then ḋ(t∗) = v∗ − δ, d̈(t∗) ≥ 0 imply that σ(t∗) = 1
thanks to (25). By retracing the arguments from (a) in the proof of Lemma 4,

we conclude that since t∗ and until the robot enters V⋆⋆ once more, d(t) ascends.
So D[r(t)], t ≥ t0 cannot reach the value γ⋆ earlier than it reaches γ⋆⋆ for the

second time, in violation of the definitions of t0, t1. The contradiction obtained
proves the lemma. �

PROOF OF THEOREM 2: This theorem is immediate from Lemmas 4
and 5. �

PROOF OF THEOREM 1: This theorem is immediate from Theorem 2
and Remark 3. �
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[28] P. Ögren, E. Fiorelli, and N. E. Leonard. Cooperative control of mobile

sensor networks: Adaptive gradient climbing in a distributed environment.
IEEE Trans. Autom. Control, 49(8):1292–1301, 2004.

[29] B. Porat and A. Neohorai. Localizing vapor-emitting sources by moving
sensors. IEEE Trans. Signal Processing, 44(4):1018–1021, 1996.

[30] P. Pyk, S. Badia, U. Bernardet, P. Knsel, M. Carlsson, J. Gu, E. Chanie,
B. Hansson, T. Pearce, and P. Verschure. An artificial moth: Chemical

source localization using a robot based neuronal model of moth optomotor
anemotactic search. Autonomous Robots, 20(3):197–213, 2006.

[31] I. F. Sivergina, M. P. Polis, and I. Kolmanovsky. Source identification
for parabolic equations. Mathematics of Control, Signals, and Systems,
16(16):141–157, 2003.

[32] P. Tzanos and M. Z̆efran. Locating a circular biochemical source: Modeling
and control. In Proceedings of the 2007 IEEE Int. Conf. on Robotics and

Automation, pages 523–528, Rome, Italy, 2007.

[33] L. K. Vasiljevic and H. K. Khalil. Error bounds in differentiation of noisy

signals by high-gain observers. Systems & Control Letters, 57:856–862,
2008.

[34] R. B. Vinter. Optimal Control. Birkhäuzer, Boston, 2000.
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A Proof of Remark 2

∇D = ρ~e(ϕ) ⇒
D′

x = ρ cosϕ

D′
y = ρ sinϕ

⇒ D′′ =

=

(
ρ′x cosϕ− ρϕ′

x sinϕ ρ′y cosϕ− ρϕ′
y sinϕ

ρ′x sinϕ+ ρϕ′
x cosϕ ρ′y sinϕ+ ρϕ′

y cosϕ

)

= ~e(ϕ) (∇ρ)⊤ + ρΦπ

2
~e(ϕ) (∇ϕ)⊤ ; (33)

D′′
xy = D′′

yx ⇒
〈
∇ρ; Φπ

2
~e(ϕ)

〉
= ρ 〈∇ϕ;~e(ϕ)〉 ; (34)

κ(α, r)
(8)
==

〈
D′′(r)Φπ

2
−α~e(ϕ); Φπ

2
−α~e(ϕ)

〉

ρ cosα

(33)
==

〈
∇ρ; Φπ

2
−α~e(ϕ)

〉 〈
~e(ϕ); Φπ

2
−α~e(ϕ)

〉

ρ cosα

+
ρ
〈
∇ϕ; Φπ

2
−α~e(ϕ)

〉 〈
Φπ

2
~e(ϕ); Φπ

2
−α~e(ϕ)

〉

ρ cosα

=
tanα

ρ

〈
∇ρ; Φπ

2
−α~e(ϕ)

〉
+
〈
∇ϕ; Φπ

2
−α~e(ϕ)

〉
;

〈
∇ρ; Φπ

2
−α~e(ϕ)

〉
=
〈
∇ρ; Φπ

2
~e(ϕ)

〉

+
〈
∇ρ;

[
Φπ

2
−α − Φπ

2

]
~e(ϕ)

〉 (34)
== ρ 〈∇ϕ;~e(ϕ)〉

+2 sin
α

2

〈
∇ρ; Φ−α

2
~e(ϕ)

〉
.

Summarizing, we arrive at (10).
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