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Abstract.  This paper presents some interesting results of numerical analysis of the Extended Blaschke 

functions, which are constructed by extending Blaschke product. On the complex plane, the convergent 

domains of the functions form fractal patterns of constrained Herman rings with limited-layered structures, 

which demonstrate skip-symmetry, symmetry broken, chaos, and degeneracy in conjunction with 

parameter space. 

 

 

1. Introduction 
 
The family {Fn} of complex analytic functions defined on an open set U is a normal family if every infinite 
sequence of maps from {Fn} has a subsequence, which converges uniformly on compact subsets of U, or 

converges uniformly to ∞ on U. The Fatou set, F(f), on the Riemann sphere is the largest open set such that the 

iterates {f
n
 ∣F : n ≧ 1} form a normal family. The Julia set, J(f), is the complement of the Fatou set. In this 

paper, we adopt the definition of absolute and bounded convergence since the iteration on computer is finite. 

 

Herman rings represent a class in meromorphic dynamical systems [1, 2]. A periodic component U of Fatou set, 
with f

n
 (U) = U, is an annulus and f

n
 acts on U as an irrational rotation, U is then classified as a Herman ring. 

Herman used Arnold’s theorem about real analytical conjugations of real analytic diffeomorphism of circle to 

rigid rotations when the rotation number is like a Siegel number [3]. Herman indicated that the map z → 
exp(iθ)z

-1
[(a-z)/( 1-āz)]

2
 includes such regions with appropriate values of θ and a [4]. 

 

In our previous efforts we extended this map by studying h(z)=Π
4 

{exp(g
i
(z))[(a

i
-z)/(1-ā

i
z)]}, which have been 

further generalized and defined hereby as extended Blaschke products [5]. This set of products reveals some 

interesting characteristics. We have also adopted our studies for the applications in the antenna areas [6, 7] and 

elaborated the mathematical foundation [8]. In addition, we have discussed the special hierarchical structures of 
Herman rings and their chaotic behavior [9, 10]. 

 

In this paper we classify this class of functions and equations in the form of iterated maps by means of 
numerical analysis. We present a set of special features, such as limited number of high-degree Herman rings, 
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skip-symmetry, symmetry broken, chaos, and degeneracy of the rings in conjunction with the parameter space 

of the functions and equations. 

 

2. Function Construction and Class Formation 
 

2.1 Functions and Equations 
 

We define the set of functions  f = z
q 

ΠC
i
 , where z is a complex variable, q is a rational number, and Ci has the 

following form:  

 
Ci = exp(gi(z))[(ai-z)/( 1-āiz)]         (1) 

 
Here āi  is the complex conjugate of a complex number ai. The function f defined hereby can be viewed as 
extended Blaschke products. The degree of f(z) = P(z)/Q(z) is defined as Max{deg P, deg Q}. This function 

explicitly includes the formulas of three important theories in physics. The first one concerns the special 

relativity theory by A. Einstein:  

 

ux’ = ( ux - v ) / ( 1 - vux/c
2 

)         (2) 

 

The term z 
q 

is related to the potential energy of Newtonian mechanics. In this paper we focus on q = -1 case. 
We also illustrate the cases of q = -0.5 and q = -1.5 for discussing fractal and chaos comparing with the q = -1 

case. The term exp(gi(z)) represents the phase parameter which has the form of a solution of Maxwell’s 

equations for electromagnetism. The term gi(z) is a complex function and is assigned by Σn2πinz.  
 

The extended Blaschke equation is defined as follows: 

 

f(z) – z = z
q 

ΠC
i 
– z = 0        (3) 

 

2.2 Parameter Space 
 
To characterize the original and the mapped domains, we define a set of parameters called parameter space. The 

parameter space includes six parameters: (1) z, (2) a, (3) exp(gi(z)), (4) q, (5) iteration, and (6) degree. In the 

context of the paper we use {z, a, exp(gi(z)), q, iteration, degree} to represent this parameter space. For 
example, {a}, is one of the subsets of the parameter space. 

 

2.3 Original and Mapped Domains 
 

A domain can be the entire complex plane, C∞, or a set of complex numbers, such as z = x+yi, with (x
2 

+y
2

)
1/2 

≦ 
R, and R is a real number. For solving the extended Blaschke equations a function f will go through iteration as:  

 

f 
n

(z) = f ◦ f 
n-1

(z),         (4) 
 

Where n is a positive integer indicating the number of iteration. The function operates on a domain called 

original domain and the set of f 
n

(z)  is  mapped domain. In the figures, the regions in black color represent 
Fatou sets, and the blank (white) regions correspond to Julia sets. In the paper we discuss the following 

functions: 
 

 (1) Z
-1

C – second degree of the functions 

(2) Z
-1

C1C2 – third degree the functions 

(3) Z
-1

C1C2C3 – fourth degree of the functions 

(4) Z
-1

C1C2C3C4 – fifth degree of the functions.  
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(5) degrees higher  fifth degree are shown as complementary examples 

 

2.4 Constrained Herman Rings 
 

As defined in Section 1, we have examined the Fatou components that are conformally isomorphic to an 

annulus and the action of some f 
n

is conjugate to irrational rotation. Figure 1(a) and 1(b) show the original and 

the mapped domains of f 
n

of 11
th
 degree respectively. Both domains are at scale of 10

10
. The rings at larger and 

smaller scales are not shown. Due to the complexity of multiple-layered rings we are not able to verify the 

existence of an irrational rotation as defined for Herman rings. We therefore adopt the term of constrained 

Herman rings for these sets.  

   
  (a) Original Domain     (b) Mapped Domain 

Fig. 1 (a) Original Domain and (b) Mapped domain of Z
-1

C
10

. 

3. Classification  

 
3.1 Herman Rings of Original Domains  
 

We classify the original domains of functions: Z
-1

C, Z
-1

C1C2, Z
-1

C1C2C3, and Z
-1

C1C2C3C4 with some extension 

to the functions of higher degrees.  
 

 
(a) R1 ~ 10

1
     (b) R1 ~ 10

1
 

Fig. 2 Original Domains of function Z
-1

C. 
 

Figure 2 shows the original domains of the function Z
-1

C. Figure 2 (a) and (b) show that  Fatou and Julia sets 
form a group of 2-layer constrained Herman rings in conjunction with parameter subset {a, iteration}. These 2-

layer domains are in the range of R1 ~10
1 

scale.  Beyond of scale of 10
1

, we have not observed any other existing 
Fatou sets. Fig 2(a) and (b) show fractal patterns for two different values of the parameter {a}. 
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     (a) R2 ~ 10
-2

     (b) R2 ~ 10
1

     (c) R2 ~ 10
3

 

Fig. 3 Original Domains of function of Z
-1

C1C2 

 

Figure 3 shows the original domains of the function Z
-1

C1C2. Figure 3 (a), (b) and (c) show that Fatou and Julia 

sets form a group of 3-layer constrained Herman rings in conjunction with the parameter subset {a, iteration}. 

Figure 3(a) shows several disconnected Fatou sets at scale of R2 ~ 10
-2

. Figure 3(b) shows several Fatou and 

Julia sets at scale of R2 ~ 10
1

. The sets in Figure 3(a) are around the point z = 0 at Figure 3(b). Figure 3(c) shows 

several disconnected Fatou sets at scale of R2 ~ 10
3

. Figure 3(b) is actually the leftmost set on the Figure 3(c).  
 

Figure 4 shows the original domains of the function Z
-1

C1C2C3. Figure 4 (a), (b), (c), (d), and (e) show that the 
Fatou and Julia sets form a group of 5-layer partial Herman-Ring fractal domains in conjunction with parameter 

subset {a, iteration}. 

 

  (a) R3 ~10
-5

   (b) R3 ~10
-2

        (c) R3 =1 

 

      (d) R3 ~ 10
2

     (e) R3 ~10
4

 

Fig. 4 Original Domains of function of  the form Z
-1

C1C2C3. 

 

Figure 4(a) shows a constrained Herman ring at scale of 10
-5

. Figure 4(b) shows a constrained Herman ring at 

scale of R3 ~10
-2

. Figure 4(c) shows a constrained Herman ring at scale of R3 =1. The sets in Figure 4(b) can be 

seen locating around z = 0 in Figure 4(c). Figure 4(d) shows a constrained Herman-Ring at scale of R3 ~ 10
2

. 

Figure 4(c) can be seen locating around z = 0 at Figure 4(d). Figure 4(e) shows a constrained Herman ring at 

scale of R3 ~10
4

. Figure 4(d) is locating around z = 0 at Figure 4(e). We have explored possibly existing Fatou 

sets beyond the scales of 4(a) and 4(e), namely, R3 < 10
-5

and R3 >10
4 

as in the cases of the functions of Z
-1

C and 

Z
-1

C1C2. For the lower bound beyond R3 ~10
-5

, the result is straightforward since there are no blank regions ( the 
Julia sets) existing for forming Herman rings at smaller scales around z = 0 . For the upper bound we have 

elaborated up to 10
100 

range and could not find any existing Fatou sets (black regions). We have hereby 

observed only five layers of constrained Herman rings for this function. 
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Figure 5 shows the original domains of the function Z
-1

C1C2C3C4. Figure 5 (a), (b), (c), (d) and (e) show that the 
Fatou and Julia sets also form a group of 5-layer constrained Herman rings in conjunction with parameter subset 

{a, iteration}. Figure 5(a) shows a constrained Herman ring at scale of R4 ~10
-6

. Figure 5(b) shows a constrained 

Herman ring at scale of R4 ~10
-2

. Figure 5(c) shows a constrained Herman ring at scale of R4 = 1. The sets in 

Figure 5(b) can be seen locating around z = 0 point at Figure 5(c). Figure 5(d) shows a constrained Herman ring 

at scale of R4 ~ 10
2

. Figure 5(c) can be seen locating around z = 0 point at Figure 5(d). Figure 5(e) shows a 

constrained Herman ring at scale of R4 ~10
6

. Figure 5(d) is locating around z = 0  at Figure 5(e). The constrained 

Herman ring at scale of 10
-6 

is topologically similar to that at scale of 10
2 

and the Herman ring at scale of 10
-2 

is 

topologically similar to that at 10
6

. This portrait is similar to the Herman rings for both Z
-1

C1C2 and Z
-1

C1C2C3 

functions. We call the symmetry that a skip-layer symmetry. This symmetry is important to understand the 

mapping between original and mapped domains. 
 

We have explored several functions with degrees higher than the 5
th

-degree and found that the number of layers 

keeps the same as  for Z
-1

C1C2C3, namely, only 5 layers constrained Herman rings are observed at 12
th 

degree as 
an example. The skip-layer symmetry is also observed in the higher-degree sets.  

 

 

  (a) R4 ~10
-6

     (b) R4 ~10
-2

            (c) R4 = 1 

 

       (d) R4 ~ 10
2

      (e) R4 ~10
6

 

Fig. 5 Original Domains of the functions of the form Z
-1

C1C2C3C4  
 

Figure 6 shows the constrained Herman rings at R = 1 scale for different function degrees. The number of 

branches of the central portion of the fractals is two less than the functional degree. For example, the 7
th

-degree 
domain has 5 branches, and each branch extends into 5 bulbs. The individual bulb further extends into 5 second-

level bulbs on the 2
nd

 layer and so on. The high-level bulbs will further close to the boundary of unit circle with 

radius = 1. 

 

 
    (a) 6

th
 Degree    (b) 7

th
 Degree      (c) 8

th
 Degree 
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                    (d)  9

th
 Degree    (e) 12

th
 Degree 

 

Fig. 6 Herman Rings for different function degrees for R = 1 scale. 
 

Table 1 shows the layers and corresponding scales of the sets for different function degrees. 

 
Z

-1
 ∏iCi d = 2 d= 3 d= 4 d = 5 d = 6 d = 7 d = 8 d = 9 

Layers 2 3 5 5 5 5 5 5 

Scale 1 10
1
 10

-2
 10

-5
 10

-6
 10

-7
 10

-9
 10

-10
 10

-11
 

Scale 2 10
1
 10

1
 10

-2
 10

-2
 10

-2
 10

-3
 10

-4
 10

-5
 

Scale 3  10
3
 1 1 1 1 1 1 

Scale 4   10
2
 10

2
 10

3
 10

3
 10

3
 10

4
 

Scale 5   10
4
 10

6
 10

7
 10

9
 10

9
 10

11
 

Table 1 Scales of Fatou Sets for different degrees (d) for a particular parameter {a} 

3.2 Mapped Domains 

 

There are several scenarios to examine the mapped domains. We have chosen the following three scenarios: 

 

1. The mapped domains of the Fatou sets in the original domains. 
2. The mapped domains of a special set of the original domain. This set includes both Fatou and Julia sets. 

For example, a circle on complex plane with radius = 0.5. 

3. The trace of each step of the iteration of a specific point in a Fatou or a Julia set. 
 

Fig. 7 shows the mapped domain of the original domain of the function Z
-1

C1C2C3 (Fig. 4(c)) with R3 = 1. This 
mapped domain is obtained through 20  iteration and with points distributed within circle with radius = 1 on the 

complex plane. Further examining on this mapped domain, we find that the point set in the region defined by (x
2 

+y
2

)
1/2 

< 1 is symmetrical to the real axis, y =0; while the point set on (x
2 

+y
2

)
1/2 

= 1 is randomly distributed. We 

will discuss this observation in the next section. 

 

 

Fig. 7 A mapped domain of a original convergent domain (Fatou sets) of the function Z
-1

C1C2C3 (Fig. 4(c)) with 

scale of R =1. 
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(a) 2

nd
 Degree   (b) 3

rd
 Degree         (c) 4

th
 Degree 

 
(d) 5

th
 Degree    (e) 12

th
 Degree        (f) 21

th
 Degree 

 
Figure 8 Mapped domains for different degrees. 

 

For the second scenario, we define a circle on the complex plane as an original domain and compute the mapped 
domain. Figure 8 shows some mapped domains for different function degrees. From geometrical perspective, 

the algebraic curves in Fig. 8(a) and 8(b) can be the trajectories on torus with genus = 1, while the ones of 3
rd

 

degree or higher can not be projections of trajectories on torus with genus = 1. 
 

For the third scenario, we select a point in the original domain and compute the trajectories generated by 

iteration. We select points on the original domain of the function Z
-1

C1C2C3. 
 

Fig. 9 shows the trajectories. The start point is marked by a square symbol and the end point is marked by a 

diamond symbol. Fig. 9(a) shows a point on the circle with radius = 1 that converges to another point and Fig. 
9(b) shows a fast convergent point inside the circle with radius = 1. All the points on an original convergent 

domain will be mapped to a set of points which are subjected to the precision of computer platform. Periodic 

solutions corresponding to iteration steps are observed. 
 

 
         (a) Trace of a point on the circle           (b) Trace of a point inside circle 

 
Figure 9 Traces of points generated by a given number of iteration (a) point on a circle with radius = 1 (b) point 

inside a circle with radius = 1. The trace starts from the point marked by square symbol and stops at the point 

marked by diamond symbol. 

 
 

4. Symmetry Broken and Chaos 
 

From geometrical perspective, we have observed that both original and mapped domains are symmetrical to the 
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real axis. This symmetry can be influenced by the parameters which can transform a stable domain (Herman 

ring with stable Fatou and Julia sets) to a chaotic domain (disconnected Fatou and Julia sets). A chaotic domain 

shows random patterns of Fatou sets after consecutive iterations and eventually Fatou sets disappear, namely, 
the domain will become a Julia set or connected Julia sets only, and Herman rings do not exist anymore.  

However, the proper selections of the parameters can prevent stable domains from evolving to chaotic ones. 

 

4.1 Symmetry Broken in Original and Mapped Domains 
 

Fig. 10 shows four original domains, including Fatou and Julia sets, of the function Z
-1

C1C2C3 with different 
values of parameter {a}. Fig. 10(a) is with a = 0.01, Fig. 10(b) is with a = 0.1, Fig. 10(c) is with a = 0.2, and 

10(d) is with a = 1.  

 

As the value of the parameter {a} increases, the Julia sets in the Herman rings become asymmetric to the 
imaginary axis. When a = 1, the original domain becomes chaotic, namely, disconnected and randomized Fatou 

and Julia sets. 

 
 

 
           (a) a = 0.01        (b) a = 0.1 

 
              (c) a = 0.2        (d) a = 1 

 

Figure 10 The original domains with different values of parameter {a}.  
(a) a = 0.01 (b) a = 0.1 (c) a = 0.2 and (d) a = 1 

 

For the mapped domain as shown in Fig. 7 we can divide the original domain with radius = 1 of the function  

Z
-1

C1C2C3 into two regions: one region includes all point with (x
2 

+y
2

)
1/2 

< 1 and the other includes the points on 

the perimeter of the region, namely, (x
2 

+y
2

)
1/2 

= 1. Figure 11 shows mapped domain obtained from the original 

domain defined by (x
2 

+y
2

)
1/2 

≦ 0.99 that form a set of points which are symmetrical to the real axis. As the 

iteration number increases to a threshold value of computer accuracy, we observe that a set of periodic points 
are still symmetrical to the real axis (as shown in Fig. 11(a) through 11(c) with different iteration numbers). 

This set includes the solutions of the extended Blaschke equations.   

 

The set of points mapped from the original domain (x
2 

+y
2

)
1/2 

= 1 does not have  real-axis symmetry. The set of 
points converges to two groups of points (as shown in Fig. 11 (d) through 11(f)). Fig. 11(d) shows all points that 

are still on the circle wit radius = 1. Fig. 10(e) shows random distribution. Fig. 11(f) shows two convergent 
points A and B which are not symmetrical to the real axis. The symmetry broken on the original domains occurs 

gradually, while the symmetry broken on the mapped domains occurs abruptly. 

 

4.2 Chaos and Compensation 
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We have illustrated in the section 4.1 (Fig. 10) that when the value of the parameter {a} increases, the original 

domains become asymmetric to the imaginary axis. We further define this parameter as follows: 
 

a = k ( cosθ + i*sinθ )         (5) 

 
Here k is a constant value. Now we can rotate the original domain on the angle θ. Fig. 12 shows that when the 

bulbs extending from the central portion of the fractal pattern (i.e., Julia sets) have a phase lag against the 

central portion, the rotation creates symmetry broken as soon as the angle θ does not equal to zero. When the 

rotation angle θ increases, bulbs are moving almost to the central regions of two consecutive fractal branches of 
the central portion. The central portion begins to form ramifications and it is the divergent region (Julia sets) 

that grows. As the number of  iterations increases, a spiral pattern forms  connecting bulbs back to the original 

branches. This connection will prevent the divergent regions from further growing and the fractal pattern will 
sustain as the iteration increases. When the rotation angle θ increases further, the bulbs are  connected to the 

ramifications through spiral patterns (Fig. 12(d) and 12 (e)),  the divergence regions  grow continuously and 

eventually the original domain becomes chaotic. 

 

 
(a) R ≦0.99 and Iteration = 10                    (b) R ≦0.99 and Iteration = 30 

   
         (c) R ≦ 0.99 and Iteration = 50    (d) R = 1 and Iteration = 40 
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              (e) R = 1 and Iteration = 50     (f) R = 1 and Iteration = 100 

 

Figure 11 (a), (b) and (c) are mapped domains with different iterations and symmetry to real axis, 11 (d), (e) and 
(f) are mapped domains with different iterations and no symmetry to real or imaginary axis. Point set A and B 

are convergent points 

 
The symmetry broken and chaos formation can be compensated due to domain rotation. The parameter 

{exp(gi(z))} plays the key role to offset the phase lag. Fig. 13 shows that when gi(z) is designated as a function 

of angle θ, the phase lag is corrected and the entire original domain in fractal patterns  rotates in 

synchronization. By doing so, the symmetry will be maintained and chaos will not occur. Fig. 13(a) shows a 
phase lag occurring among the central branches and corresponding bulbs as rotation angle is approaching to 80

ο 

for the function  

Z
-1

C1C2C3C4C5,, which has 4 branches on the central portion. Fig. 13(b) shows the bulbs connected with the 
ramification branches and chaos occurring at θ = 90

ο
. When θ = 100

ο
, the bulbs are connected to the neighboring 

branches and the domain becomes stable once again. With compensation, we can observe that stable domains 
maintain through different rotation angles as shown at Figure 13 (d) through 13(f). 

 

 
 

 
(a) Iteration = 50             (b) Iteration = 70     (c) Iteration = 80 

 
(d) Iteration = 100   (e) Iteration = 200     (f) Iteration = 1000 

 

Figure 12 Symmetry broken and Chaos formation induced by domain rotation. 12(a) through (f) shows the 

divergence of a stable domain  
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(a) θ = 80

ο
    (b) θ = 90

ο
         (c)  θ = 100

ο
 

 
        (d) θ = 45

ο
    (e) θ = 60

ο
          (f) θ = 240

ο
 

 
Figure 13 Phase compensation by parameter exp(gi(z)) for maintaining symmetrical and stable Herman ring. 

13(a) through (c) has no compensation and 13(d) through (f) is compensated. 

 
 

4.3 Fractals and Chaos related to Z
q
  

 

In the previous sections we selected q = -1 for the term z
q
. We can also examine the original domains when 

selecting other values. Fig. 14 shows that the original domain becomes chaotic after few iteration with  a = 0.01 

and q = -1.5 for the function Z
-1

C1C2C3C4. It also shows that extra branches form the central portion (i.e., Julia 
sets). On the other hand, we select q = -0.5 and a = 0.3 for the original domain (as shown at Fig. 15). In this 

case, only simple fractals, or Julia sets, are developed and the domains are rather insensitive to the number of 

parameter subset {a, iteration}. 

 
Figure 14 Original domain with q = -1.5, a = 0.01, and iteration = 11 
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                 (a) Iteration = 20     (b) Iteration = 1000 

 
Figure 15 Original domains with q = -0.5, a = 0.3 (a) iteration = 20 (b) iteration = 1000 

 

5. Degeneracy 
 

Under certain combinations of the values of the parameters, we have observed that a specific set of original 
domains show the fractal patterns of the constrained Herman-ring of other classes with different function 

degrees. We call these types of topological variations as degeneracy. 

 

5.1 Phase Degeneracy 

 

For the function of Z
-1

C1C2C3 we add an additional phase item to the formula (5), namely, a phase shift δi added 
to Ci term 

 

ai = k ( cos(θ+δi )+ i*sin(θ+δi ) )       (6) 
 

Fig. 16(a) shows the normal case and Fig. 16(b) the degenerate one. For each of six branches of the central 

portion (i.e., Julia sets), there are two bulbs extended toward the boundary of the Herman rings. This figure can 
be compared with the Herman ring of 8

th
 degree (Fig. 6(c)) which shows the  six-branch pattern from central 

portion that  extends to the corresponding 6 bulbs. 

 

 

Figure 16 Original domains of the function Z
-1

C1C2C3 (a) normal (b) degenerate 
 

 

5.2 Energy Degeneracy 

 
For the case in section 5.1, the original domain is at scale R ~ 10

2
. Fig. 17 shows a normal case with a = 0.01 

and a degenerate case with a = 0.99. The degenerate domains show the fractal patterns that are similar to the 

sets of the function Z
-1

C. This type of degeneracy is also observed in other high-degree Herman rings, namely, 
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when the value {a} is approaching to unity, the fractal patterns of high-degree Herman rings transform into  the 

structures  that are similar to the patterns of the function Z
-1

C ( Fig.2). 
 

 
  (a) a = 0.01      (b) a = 0.99 

Figure 17 Original domains of the function Z
-1

C1C2C3 (a) a = 0.01 (b) a = 0.99 

 
 

 

6. Conclusions 
 

(1) There are at most five layers of constrained Herman rings at different z scales with appropriate parameter 
set. Skip symmetry shows interesting scheme of the rational maps. 

 

(2) Symmetry broken occurs both  in original  and mapped domains. The symmetry broken of the mapped 
domains occurs abruptly at the boundary, while the symmetry broken of the original domains evolves gradually 

depending on the specific parameters. 

  
(3) There are several mechanisms inducing chaotic domains in conjunction with parameter space. The chaos 

induced by domain rotation with parameter {a} can be compensated by the adjusting other parameter 

{exp(gi(z))}.  

 
(4) The patterns of original domains of a specific degree can be transformed to the patterns of other degrees by 

manipulating parameter space. A case of degeneracy occurs when the parameter {a} approaches to unity. In this 

case the domain patterns of high-degree will degenerate to the patterns of the function Z
-1

C with degree = 2. 
 

The richness of these extended Blaschke functions and equations may be valuable to other fields of mathematics 
and physics. In the future we will continue the exploration of these interesting characteristics in the parameter 

space and the development their applications to related fields.  
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