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1 Introduction

In generalizing the results of Demidovic [5] on the existence of a limiting regime,
Ezeilo [7] considered the system of equations of the form

X = f(t,X)+g(t X) (1.1)
where f(t, X) satisfies either

|f(t,0)]] <m< oo for all t€IR

or
/ 1f(60)Pdt < 00, 1<p<2,

while g(¢, X) satisfies Lipschitz condition, with g(¢,0) = 0.

Precisely, the following theorem was proved:

Theorem 1 [7], Suppose that

i) there exists a positive definite n x n matrix A such that the eigenvalues of
{D+ DT}, where D = Ag—)j;, are all negative,
ii) f(t,0) satisfies either
170 < m < oo for all t,

or
/ L (t.0)Pdt < 00, 1<p<2,

iii) g(t,0) =0 and
lg(t, X) = g(t, Y)[| <~ X = Y]]

for all X, Yt with ~(t) satisfying

/ YI(t)dt < oo, 1<qg<2.

Then, there exists a unique solution X*(t) of (1.1) such that
|1 X*()|| <m,  for te€ IR, (1.2)

and every other solution X (t) of (1.1) converges to X*(t) as t — +o0.
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Also, the following was proved [7]

Theorem 2 Suppose conditions (i) and (iii) of Theorem 1 hold, and if in ad-
dition the following conditions hold

1) if f(t, X) and g(t, X) are uniformly almost periodic int for || X|| < m, then
the unique solution X*(t) of (1.1) is uniformly almost periodic (u.a.p) in
t;

II) if f(t,X) and g(t, X) are both periodic functions of t, for || X|| < m and
have the same period w, then X*(t) is periodic in t, with a least period w.

Definition 1 We shall say that a solution X*(t) of (1.1) is a limiting regime
in the sense of Demaidovic, if there exists a constant m, 0 < m < oo such that
| X*(t)]] <m, —oo<t<o0.

It is known that Ezeilo in [6, 7, 8, 10] applied the ideas of these theorems
to second order and third order nonlinear equations. Also, Afuwape [2] applied
these theorems to a fourth order non-linear differential equation. We also note
that Afuwape [1], Afuwape and Omeike [3, 4] and Tejumola [13, 14] studied
the convergence of some third order nonlinear differential equations. Other
considerations pre 1974 are also recorded in [12]. The existence of limiting
regime in the sense of Demidovic has only been addressed by few.

Our objective in this paper is to prove the existence of a limiting regime in
the sense of Demidovic by applying theorems 1 and 2 to third order non-linear
differential equations of the form

T +ai + g(&) + h(z) = p(t, x, 2, T). (1.3)

Our method shall be in the use of a complete Lyapunov function. This equation
is more general than that considered by Ezeilo in [10] and unlike in  [14] , we
use a complete Lyapunov function in our proofs. We also give an example to
illustrate the results.

We shall assume that p(t, x, 2, Z) is separable in the form ¢(t) + (¢, z, &, &).

We shall write (1.3) in the equivalent system form

T =y
i o= —az—g(y) — h(@) +r(t.a,y.2 + Q) — aQ
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with Q(t) = f(f q(s)ds, and g(y), h(x) continuous in their respective arguments.

We shall also assume that the incrementary ratio He(n) = W, (n #0),
of h(x) lies in a closed sub-interval [Ag, kab] of the Routh-Hurwitz interval
(0,ab), for some constant b > 0, such that g(y)/y > b, for all y # 0, and
g(0) = 0, where k < 1, (this will be determined later).

2 The Main Results

Throughout this paper, we shall denote by D;, (7 =0,1,2,3,---) a positive
constant.

We shall assume that the solutions of (1.3) are uniquely determined by their
initial conditions. Since, we can always replace ¢(t) by ¢(t) + r(¢,0,0,0), we
shall assume that r(¢,0,0,0) = 0. Moreover, we shall assume that the function
r(t,x,y, z + Q) satisfies

r(t, 22, Y2, 22 + Q) — 7(t, w191, 21 + Q)]
< o) {lze — 1| + [y — | + |2 — 21|}, (2.1)

for all ¢ € IR and x1,y1, 21, T2, Y9, 22 € IR, with ¢(¢) a continuous function
satisfying for 1 < v <2

/ T ()t < oo (2.2)

The main result of this paper on the existence of a limiting regime in the
sense of Demidovic is the following:

Theorem 3 Suppose that

(1) (a) h(0) = 0 and that the incrementary ratio

— h( + 77; —e) € Iy = [Ay, kab], (n+#0) (2.3)

a closed sub-interval of the Routh-Hurwitz interval (0, ab), with k < 1,
(b) g(0) =0 and that

He(n)

Ge(n) = 21 *2 —90) ¢ b, (€ £ 0): (2.4)
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(11) for some Dy > 0,
()| = \/ s)ds| < Dy; (2.5)

(iti) r(t,x, 4, %) satisfies (2.1) with [°°_¢"(t)dt < oo, (1 <v <2).
Then, there exists a unique solution x*(t) of (1.3) satisfying
2" (O + [ () + [#° (1)) < D,

for t € IR. Moreover, every other solution xz(t) of equation (1.3) converges to
r*(t) as t — oc.

Our other result on the almost periodicity or periodicity of the limiting
regime z*(¢) is as follows:-

Theorem 4 Suppose that h(0) = 0 and that hypotheses (i) and (iii) of Theorem

3 hold. Suppose further that there exists a solution x(t) of equation (1.3) such
that

[z(t))” + [2(0)) + [#(1)]* < Dy
Then

(1) if Q(t) is almost periodic and r(t, z, &, %) is almost periodic in t, for [x(t)]*+
[2(4)]? + [#(t)]? < Dy, then x*(t) is almost periodic in t.

(I1) if Q(t) and r(t,z, %, %) are periodic in t, with period T, for [z (t)]*>+[2(t)]* +
[£(t)]2 < Dy, then x*(t) is periodic in t, with period T.

Remark 1 If in equation (1.3) g(&) = bk, then the earlier results of Ezeilo in
[10] will be obtained from Theorems 3 and 4.

3 Some Preliminary results

Let (x,y,z) be any solution of system (1.4). Our main tool, in the use of

Theorems 1 and 2, for the proofs of the results is the following function, defined
by

2V (2,y,2) = B(1=B)b"2” +b(B +aa )y + aa” 2" +(z+ay +b(1 = B)z)*, (3.1)

where o, 3 are constant parameters such that 0 < < 1,and 0 < o < a~!
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Clearly V' (z,y, z) is positive definite and satisfies

Dy(2® +y* 4 22) < V(z,y,2) < D3(2® +y* + 22) (3.2)
where 1
Dy = 5 min{5(1 — 5)62; b(6 + oca_l); oza_l}
and
D3 = %mm{ﬁ(lj@)(lmqtb); b(B+aa™ ) 4a[l4b(1 — BH-al; 1 +aa Ha+b(1—3)}.

Furthermore, the derivative of V(t) = V(z(t),y(t), 2(t)) with respect to t
for all solutions (x(t), y(t), z(t)) of (1.4) gives

C;_Z wy = —b(1— B)zh(z) — [ayg(y) — ab(1 — B)y?]

—az? + [bP(1 = By — ayh(z) — b(1 — B)zg(y)]

+[b(1 4+ aa Hyz — (1 +aa M)zh(z) — (1 + aa ) zg(y)]

+[(1 4+ aa™ )z +ay +b(1 — Balr(t,z,y, 2z + Q) (3.3)
+H[b(B + aa™t)y — a2]Q(t)

This we can rewrite as
dV

where, with some re-arrangements

Ui = Ug+Up+Us+Upn+Uss (3.5)
with

Un = mb(l — B)Hox® + ma(Gy — b(1 — B))y* + &az?
(1— 6)H09:2 +(1+ oza_l)HOa:z + &az?
Uiz = v3b(1 — 8)Hox* + aHoxy + ma(Go — b(1 — B))y?
U = bl — B)Hoz? + b(1 — B)(Go — b)zy + nza(Go — b(1 — B))y?
Us = maa(Go—b(1 — B))y* + (14 aa ) (Gy — b)yz + &az?
Up = [b(B+aa )y —az]Q(t)
Up = [(1+aa z+ay+b(1—B)zlrt,z,y, 2+ Q)
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for v >0; 7, >0;(j=1,2,3,4), & >0; (i=1,2,3) and
Nntrtrtu=L m+nt+tpt+n=1 and H+H+G=1,

and Hy = ()forx;éOG )fory#()andash()—Oandg(O):0by
hypotheses of the Theorem.

Lemma 3.1 Subject to a conveniently chosen value of k in (2.3), we have for
all (z,y,2) € R

Proof We note that for any two numbers u, v and for some K > 0, we always
have
Ly

1
uv—(Kquﬁv) — K*? Q—MU.

On a re-arrangement of U;o we obtain

Uy > 7b(1 — B)Hoz? — (1 + aa ) Hy(Kia? + 2%) + &az®

4K2
= Ho{vb(1 - B) — K*(1 +aa ") }z? + {&0 — L(1 + aa N Hy} 22

4K2
> 0.
whenever
wb(l - B) 4&2020(1 — B)
K?< =222 2. d Hy < 3.6
Ps 14+ aa !’ o 0= (14 aa=1)? (3.6)

Also, a re-arrangement of U3 gives

Uiz > v3b(1 — B)Hox* — aHo(Kjz* + 4K292) + mpa(Go — b(1 — B))y”
9
= Ho{vsb(1 — ) — aK3}a* + a{na(Go — b(1 — B)) — 4K2H0}y
1
> Ho{vsb(1 — B) — aK3}a* + a{Bmb — 4K2H0}3J
> 0
whenever
—_ 2 J—
g2 <=0 g g, < 2t B0 =B (3.7)
a a
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Combining all the inequalities in (3.6) and (3.7), we have that for all (x,y, 2)
in IR, U12 Z 0 and U13 Z O, if H() S kab with

e {4620472(1 — B) 4mxy3bB(1 — 5)} -1 (3.8)

a(l+ aa=1)2’ a?

Similarly, a rearrangement of Uy4 gives

Us > 7ab(1=8) Hoaw®— b(1— B)(Go—b) (K32’ +Ly2) +nza(Go —b(1 =B))y”

1K
= DL IS3 Gt} +Hma(Gob(1) — (1) (Grb)}
> b1 =)oy — K3 = )} + {nsab (1 =)0y — D)}
> 0
whenever
LI < g 22 3.9

Finally, a re-arrangement of U5 gives

Uis > ma(Go —b(1 = B))y” — (14 aa™")(Go — 0)(Kiy’ + —=2") + faz’

= {ma(Go —b(1 - B)) — Ki(1 + aa™")(Go — b)}y’
&0 — —— (14 aa~1)(Gp — b)} 22

4K?2
1
> {nuabB — K; (14 aa ') (b — b)}y* + {&a — m(l +aa 1) (by — b)}2?
4
> 0
whenever
(1+ aa 1) (by — b) nyabpf

< K:<

40453 (1 + Oéa_l)(bo — b)

Lemma 3.2 For all values of (z,y,2) € R there exists a Dy > 0 such that

U = ’ylb(l — B)H()ZCQ -+ ma(Gg — b(l — ﬁ))yQ + 510422
> Dy(a* +y* + 27
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whenever  Hy < kab, with k satisfying (3.8).

Proof: Choose Dy = min{y1b(1 — 8)Ag, mabp, {1at.

Lemma 3.3 For all values of (z,y,z) € R
Ug < Ds(Jal + Iyl + 21 and U < Dgllal + Iyl + 2Dlr(t, 2.y, 2 + Q)

Proof: Choose D5 = max{b(3 + aa™1),aa"t2}Dy
and
D¢ = max{(1+ aa™1),a,b(1 —3)}.

Lemma 3.4

% ay < —(Dr = Dsp()V (1) + DV (t). (3.10)

Proof: This follows by combining Lemmas 3.1, 3.2 and 3.3, and using condi-
tion (2.1) on equation (3.3), where D; = D4/ D3, Ds = D¢/ Dy and Dy = D5/ Ds.

In line with Ezeilo [7], it suffices to prove the following lemma:

Lemma 3.5 Assume that the conditions (i), (ii), (iii) and (iv) of Theorem 1
hold. Then, for arbitrary ty, there exist positive constants ki, ks depending on
a,q,h and q,r such that fort > ty,

Vi(z(t),y(t), 2(t) < kiV(x(to), y(to), 2(to)) + k2 (3.11)

Moreover there are finite constants 1y and ky, also dependent only on a, g, h and
q,r, such that if
V(z(to), y(to), 2(to)) < ko, then

V(z(to+ 7). y(to + 7). 2(to + 7)) < ko (3.12)
for every T with 19 < 7 < 0.

Proof: If we set u(t) = V(£)2 = V(x(t),y(t), z(t))"?, we have from (3.10)
that

%{u(t) exp{L(t)}} < %Dg exp{L(t)} (3.13)

where L(t) = 3[Dqst — Dg |3 (t)dt].
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On integration from ¢y to tg + s, s > 0, we have

1 tot+s
u(ty + s) exp{L(to + s)} <u(to) exp{L(to)}+§D9/ exp{ L(t)}dt.(3.14)
to
Now, if we define
1 0.}
Du = expf3Ds [ o)t <
we can have on some arrangements of terms that
U(t() + 8) S Dlou(to) exp{—%Dw} + DH, (315)
where Dy is a positive number depending on D7, Dg and D;j.
Now, if Digu(ty) < Dy1, we have that
u(to+s) < 2Dy, for s>0. (3.16)

That is
V(to+s) < {2D11}%, provided that s> 0.

Also, if Dygu(ty) > Di1, we have from (3.15) that
”U,(to + S) < 2D10u(t0), for s> 0.
That is
V(to+s) < {2D1g}*V(ty), provided that s> 0.

Hence in all situations, we have
V(to+s) < {2D1g}*V (to) + {2D11}?, provided that s > 0.
which is equivalent to (3.11) with k; = {2D1}* and ky = {2D1;}%

To complete the proof of the lemma, we have to show that for some number
7o (to be chosen later),
Vto+7) < ko
for every 79 < 7 < 0o and kg such that V(ty) < k.
Define Dy = ko = (2D11)%.
First, if V(t)) > Dis, we have that Dy < ju(ty).
Thus from (3.15), we have

1 1
u(t() + S) < u(to)Dlo eXp{—§D7S} + §U(to)
< wu(ty) provided s > (log2Dyg)/Dx. (3.17)
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That is
Vi(to+s) < V(to)

whenever V (ty) > Dys. Now, if V(tg) < Dia, we have that u(tg) < D3%,. Thus
from (3.15) we have
1 1 1
u(to+s) < Dig exp{—§D7s}Df2 + D,
1 2
< 2D, provided s > (log ngo)/D7. (3.18)
That is
V(to+ s) < 2D1o, provided s > (log2Dy)/Ds.

Thus on choosing ky = 2D15 and 79 > (log 2D19)/ D7 we complete the proof
of the lemma.

Combining all these, Lemma 3.5 is proved.

To complete the proof of Theorem 3 we need to prove that any two solutions
of (1.4) converges.

That is

Lemma 3.6 Suppose that conditions (i) and (iii) of Theorem 3 hold. Suppose
further that that there exist positive constants ks and kg whose magnitudes de-
pend on a, g,q and r, then if (x1,y1, 21), (x1, Y1, 21) are any two solutions of (1.4)
then

S(ts) < ksS(t1) exp{—ke(ts — t1)} (3.19)
where
S(t) = {[wa(t) — 21(1)]* + [y2(t) — 91 ()] + [22(1) — 21(1)]*}
Proof Considering the function W (¢) defined as
W(t) = V(za(t) — 21(t), y2(t) — y1(t), 22(t) — 21(1)) (3.20)

where V' is defined as in (3.1), then, we easily have by (3.2) that there exists
positive constants Di3, D14 such that

DiS(t) < W(t) < DuS(t). (3.21)

Also in view of , it suffices to prove that

W(t2) S W(tl) exp{—D13(t2 — tl) + D14/ 2 gby(T)dT}, ( for tg Z tl).
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We note that by the earlier calculations on V (), we can easily have

dW
E‘IA = —Wh(t) + Wa(t)

where W;(t) satisfies
Wi(t) > D15S(t)

and W (t) satisfies
Wi (t) < D16S2(1)]0)

where

0=r(t,xy,y1,21+ Q) —r(t,x2,y2, 20 + Q) (3.22)
Thus,

dW 1

T < —Di5¢(1))S(t) + D1S2(t)[0(2)]. (3.23)

Let v be any constant in the range 1 < v < 2. Set 2 = 2—v, sothat 0 < 2u < 1.
We rewrite (3.22) in the form
dw

et Di5p(t))S(t) < DigS"W™,

where
W* = (|6] — DysD; S7)S5G 1)
Considering the two cases
(i) |0] < DysD7;S? and
(i) |0 > Di5D;gS2
separately, we find that in either case, there exists some constant D;7 such that
W* < Di7|0]2=#) | Thus,we can rewrite inequality (3.23) as

d
d—VtV (.4 + D158 < DygSr?t=m gl

where  Dig > 2D16D17. This immediately gives

aw

% (1.4) + (Dlg - Dgogby(t))W S 0 (324)

by (3.21), with D19 and Dy as some positive constants. On integrating (3.24)
from t; to ty , (t3 > t1), we obtain

W(ts) < W(ty) exp{—Duo(ts — 11) + Day /t " (e,
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to
Again, using (3.21), and since / ¢’ (1T)dT < 00, we obtain (3.19). This com-
ty

pletes the proof of lemma 3.6.
Proof of Theorem 2.1

Having dealt with the proofs of lemmas 3.1-3.6, the proof of Theorem 2.1
then follows exactly as in the proof of [7, Theorem 1|, with the obvious changes
as required.

Proof of Theorem 2.2

The method is as in [7] but with certain modifications due to the presence
of the perturbation r(t,x,y, z + )) which is uniformly almost periodic (u.a.p)
in t.
Consider the function

V() =V(z(t+71)—at),yt+7)—yt), z(t +71) — 2(t)) (3.25)

where V' is the function defined in (3.1) with x,y, z replaced by z(t + 7) —
x(t),y(t +7) —y(t) and z(t + 7) — z(t), respectively. Then, we easily have by
(3.2) that there exists positive constants dy > 0,dy > 0 such that

diS(t) < W(t) < dyS(t) (3.26)

where

S(t) =[xt +7) — =@ + [yt +7) —y @O + [2(t +7) — 2(O)]"}.

Following the approach of the proof of lemma 3.6, we have that

Grlay < —ds{la(t +7) —2(OP + [y(t +7) —y(@OP + [2(t + 7) — 2()]*}

tdu{|e(t+7) = 2O+ ly(t+ 7) = y(O)[+ [2(t +7) —=2(1)[ }0] om
3.27
with =r(t+71,2(t+7),y(t+7),zt+7)+Q(t+71)) —r(t,x,y, 2+ Q(t)) and
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ds, dy are some finite positive constants. Now, rewrite (3.27) thus

Dlay < —ds{[z@t+7) =@+ [yt +7) —y@®)* + [z(t + 7) — 2(t)]*}

+dafla(t +7) —x(t)| + [yt +7) —y@)] + |2(t + 7) — 2()[}|0]
Hlz@+7) 2@+ y(t +7) —y(@O)] + [zt +7) — 2(1) [}
r(t+7,2(t), y(t), 2(t) + Q(E + 7)) — (L, x(t),y(t), 2(t) + Q(t))]
(3.28)
Assume now that r is u.a.p in ¢t. Then given arbitrary ¢ > 0, we can find 7 > 0

such that

[r(t+7,2(),y(t), 2(t) + Qt + 1)) — r(t,2(t), y(t), 2(t) + Q1))| < ¢e*, (3.29)

where ¢ is a constant whose exact value will be chosen to advantage later. It
follows that

) < ~dsS(1) + dsSHOI6] + oS ()0 (3:30)
where ds = dy/3 and dg = /3. Since (by Theorem 2.1)
{[et+7) — 2P + [yt +7) —yOP + [2(t+7) — 20} < Ay, (3.31)

then
A}
—\14 + —d3S(t) < {dsS ()|0\—d7S(t)}+d6A1€e2. (3.32)

Let v be any constant such that 1 < v < 2 and set y = 1—%u, sothat 0 < pu < 1.
Consider (3.32) in the form

A
—lay +deS < ST+ dsA (e (3.33)

where

Jt = g (HHH - dgld7s%) .
Now, if ||6|| < d51d7S%, we obtain
J* <0;
on the other hand, if ||0]| > dgld7S%, that is,
S < (dsd;'|0]))?, we obtain
Tt < dlje)Pr,
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where d = (dsd; )% 1.
Thus, (3.33) becomes,

d¥
7104 + d7S < dS¢* M 4 dg A L€,

Since from (2.1), 0 satisfies ||0]] < ¢(¢)S?, we obtain
@@+(m—d&@W@DSg¢¢M&
On using inequalities (3.26), we obtain
U (t) + (dg — do” (1)) U < dgALe (3.34)

for some constant dg > 0. Following the approach in the proof of Lemma 3.6,
there is a dy, 0 < dy < oo defined by

dg = exp <d10 /OO qby(t)dt) .

Then, from (3.34), we have that
W(t) < doW(tg)e holt=t0) 4 ¢, €2 (3.35)

where dy; = dogdgD1/dyg. This result holds for arbitrary ¢y. In particular, on
letting tg — —oo in (3.35) and noting that W(ty) is finite, since (3.31) is true,
one obtains that

W (t) < ldyé

for arbitrary t. By (3.26) and by the definition of W (¢) this implies that
[t +7) —x@®) + [yt +7) —y@) + [2(t +7) — 2()]* < ldpe*dyt. (3.36)
Suppose now that at the stage (3.29) the constant ¢ had been
(= dydy!
the result (3.36) would then read
[t +7) =2z + [yt +7) =y + [2(t+7) =20 < & (3.37)
Since

V3{[a(t +7) —a() + [y(t + 1) —y(O) + [2(¢ + 7) = 2(1)*} < V3 < e,
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it follows that
lz(t+7)—x(t)|+ |yt +7)—y@)|+|z(t+7) — 2(t)| < e (3.38)

where 7 is chosen to satisfy (3.29) with ¢ = did;{. The set of all 7 satisfying
(3.29) is relatively dense, and hence (3.38) implies that (z(t),y(t), z(t)) is u.a.p.
This proves the first part of Theorem 2.2.

To prove the second part of the theorem, assume now that r(t, x,y, z + Q)
has the period w in t and fix the 7 in the definition of W(¢) equal to w. The
terms on the left hand side of (3.29) is identically zero, and so proceeding as
above we shall have, in place of (3.36) that

[2(t +w) — ()] + [y(t +w) =y + [2(t + w) — 2()] < 0.
Hence
[t +w) — (6 + [yt +w) —y(O)) + [2(t +w) — 2(8)]* = 0
and it is readily seen that
r(t+w)=x(t), yt+w) =y(t) and z(t+w) = 2(t)

which is the required result. This completes the proof of Theorem 2.2.
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