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1 Introduction

In generalizing the results of Demidovic [5] on the existence of a limiting regime,
Ezeilo [7] considered the system of equations of the form

Ẋ = f(t,X) + g(t,X) (1.1)

where f(t,X) satisfies either

||f(t, 0)|| ≤ m <∞ for all t ∈ IR

or ∫ ∞
−∞
||f(t, 0)||pdt <∞, 1 ≤ p < 2,

while g(t,X) satisfies Lipschitz condition, with g(t, 0) ≡ 0.

Precisely, the following theorem was proved:

Theorem 1 [7], Suppose that

i) there exists a positive definite n× n matrix A such that the eigenvalues of
{D +DT}, where D = A ∂f

∂X , are all negative,

ii) f(t, 0) satisfies either

||f(t, 0)|| ≤ m <∞ for all t,

or ∫ ∞
−∞
||f(t, 0)||pdt <∞, 1 ≤ p < 2.

iii) g(t, 0) ≡ 0 and

||g(t,X)− g(t, Y )|| ≤ γ(t)||X − Y ||

for all X, Y, t with γ(t) satisfying∫ ∞
−∞

γq(t)dt <∞, 1 ≤ q ≤ 2.

Then, there exists a unique solution X∗(t) of (1.1) such that

||X∗(t)|| ≤ m, for t ∈ IR, (1.2)

and every other solution X(t) of (1.1) converges to X∗(t) as t→ +∞.
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Also, the following was proved [7]

Theorem 2 Suppose conditions (i) and (iii) of Theorem 1 hold, and if in ad-
dition the following conditions hold

I) if f(t,X) and g(t,X) are uniformly almost periodic in t for ||X|| ≤ m, then
the unique solution X∗(t) of (1.1) is uniformly almost periodic (u.a.p) in
t;

II) if f(t,X) and g(t,X) are both periodic functions of t, for ||X|| ≤ m and
have the same period ω, then X∗(t) is periodic in t, with a least period ω.

Definition 1 We shall say that a solution X∗(t) of (1.1) is a limiting regime
in the sense of Demidovic, if there exists a constant m, 0 < m < ∞ such that
||X∗(t)|| ≤ m, −∞ < t <∞.

It is known that Ezeilo in [6, 7, 8, 10] applied the ideas of these theorems
to second order and third order nonlinear equations. Also, Afuwape [2] applied
these theorems to a fourth order non-linear differential equation. We also note
that Afuwape [1], Afuwape and Omeike [3, 4] and Tejumola [13, 14] studied
the convergence of some third order nonlinear differential equations. Other
considerations pre 1974 are also recorded in [12]. The existence of limiting
regime in the sense of Demidovic has only been addressed by few.

Our objective in this paper is to prove the existence of a limiting regime in
the sense of Demidovic by applying theorems 1 and 2 to third order non-linear
differential equations of the form

...
x +aẍ+ g(ẋ) + h(x) = p(t, x, ẋ, ẍ). (1.3)

Our method shall be in the use of a complete Lyapunov function. This equation
is more general than that considered by Ezeilo in [10] and unlike in [14] , we
use a complete Lyapunov function in our proofs. We also give an example to
illustrate the results.

We shall assume that p(t, x, ẋ, ẍ) is separable in the form q(t) + r(t, x, ẋ, ẍ).

We shall write (1.3) in the equivalent system form

ẋ = y

ẏ = z +Q (1.4)

ż = −az − g(y)− h(x) + r(t, x, y, z +Q)− aQ
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with Q(t) =
∫ t

0 q(s)ds, and g(y), h(x) continuous in their respective arguments.

We shall also assume that the incrementary ratio Hξ(η) = h(η+ξ)−h(ξ)
η , (η 6= 0),

of h(x) lies in a closed sub-interval [∆0, kab] of the Routh-Hurwitz interval
(0, ab), for some constant b > 0, such that g(y)/y > b, for all y 6= 0, and
g(0) ≡ 0, where k < 1, (this will be determined later).

2 The Main Results

Throughout this paper, we shall denote by Dj, (j = 0, 1, 2, 3, · · · ) a positive
constant.

We shall assume that the solutions of (1.3) are uniquely determined by their
initial conditions. Since, we can always replace q(t) by q(t) + r(t, 0, 0, 0), we
shall assume that r(t, 0, 0, 0) ≡ 0. Moreover, we shall assume that the function
r(t, x, y, z +Q) satisfies

|r(t, x2, y2, z2 +Q) − r(t, x1, y1, z1 +Q)|
≤ φ(t){|x2 − x1|+ |y2 − y1|+ |z2 − z1|}, (2.1)

for all t ∈ IR and x1, y1, z1, x2, y2, z2 ∈ IR, with φ(t) a continuous function
satisfying for 1 ≤ ν ≤ 2 ∫ ∞

−∞
φν(t)dt <∞. (2.2)

The main result of this paper on the existence of a limiting regime in the
sense of Demidovic is the following:

Theorem 3 Suppose that

(i) (a) h(0) = 0 and that the incrementary ratio

Hξ(η) =
h(ξ + η)− h(ξ)

η
∈ I0 ≡ [∆0, kab], (η 6= 0) (2.3)

a closed sub-interval of the Routh-Hurwitz interval (0, ab), with k < 1,
(b) g(0) = 0 and that

Gξ(η) =
g(η + ξ)− g(η)

ξ
∈ [b, b0], (ξ 6= 0); (2.4)
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(ii) for some D0 > 0,

|Q(t)| = |
∫ t

0

q(s)ds| ≤ D0; (2.5)

(iii) r(t, x, ẋ, ẍ) satisfies (2.1) with
∫∞
−∞ φ

ν(t)dt <∞, (1 ≤ ν ≤ 2).

Then, there exists a unique solution x∗(t) of (1.3) satisfying

[x∗(t)]2 + [ẋ∗(t)]2 + [ẍ∗(t)]2 ≤ D1,

for t ∈ IR. Moreover, every other solution x(t) of equation (1.3) converges to
x∗(t) as t→∞.

Our other result on the almost periodicity or periodicity of the limiting
regime x∗(t) is as follows:-

Theorem 4 Suppose that h(0) = 0 and that hypotheses (i) and (iii) of Theorem
3 hold. Suppose further that there exists a solution x(t) of equation (1.3) such
that

[x(t)]2 + [ẋ(t)]2 + [ẍ(t)]2 ≤ D1.

Then

(I) if Q(t) is almost periodic and r(t, x, ẋ, ẍ) is almost periodic in t, for [x(t)]2+
[ẋ(t)]2 + [ẍ(t)]2 ≤ D1, then x∗(t) is almost periodic in t.

(II) if Q(t) and r(t, x, ẋ, ẍ) are periodic in t, with period τ, for [x(t)]2 +[ẋ(t)]2 +
[ẍ(t)]2 ≤ D1, then x∗(t) is periodic in t, with period τ.

Remark 1 If in equation (1.3) g(ẋ) = bẋ, then the earlier results of Ezeilo in
[10] will be obtained from Theorems 3 and 4.

3 Some Preliminary results

Let (x, y, z) be any solution of system (1.4). Our main tool, in the use of
Theorems 1 and 2, for the proofs of the results is the following function, defined
by

2V (x, y, z) = β(1−β)b2x2 +b(β +αa−1)y2 + αa−1z2+(z+ay +b(1−β)x)2, (3.1)

where α, β are constant parameters such that 0 < β < 1, and 0 < α < a−1
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Clearly V (x, y, z) is positive definite and satisfies

D2(x
2 + y2 + z2) ≤ V (x, y, z) ≤ D3(x

2 + y2 + z2) (3.2)

where

D2 =
1

2
min{β(1− β)b2; b(β + αa−1);αa−1}

and

D3 =
1

2
min{β(1−β)(1+a+b); b(β+αa−1)+a[1+b(1−β)+a]; 1+αa−1 +a+b(1−β)}.

Furthermore, the derivative of V (t) = V (x(t), y(t), z(t)) with respect to t
for all solutions (x(t), y(t), z(t)) of (1.4) gives

dV

dt
|(1.4) = −b(1− β)xh(x)− [ayg(y)− ab(1− β)y2]

−αz2 + [b2(1− β)xy − ayh(x)− b(1− β)xg(y)]

+[b(1 + αa−1)yz − (1 + αa−1)zh(x)− (1 + αa−1)zg(y)]

+[(1 + αa−1)z + ay + b(1− β)x]r(t, x, y, z +Q) (3.3)

+[b(β + αa−1)y − αz]Q(t)

This we can rewrite as

dV

dt
|(1.4) = −U1 + UR + UQ (3.4)

where, with some re-arrangements

U1 = U11 + U12 + U13 + U14 + U15 (3.5)

with

U11 = γ1b(1− β)H0x
2 + η1a(G0 − b(1− β))y2 + ξ1αz

2

U12 = γ2b(1− β)H0x
2 + (1 + αa−1)H0xz + ξ2αz

2

U13 = γ3b(1− β)H0x
2 + aH0xy + η1a(G0 − b(1− β))y2

U14 = γ1b(1− β)H0x
2 + b(1− β)(G0 − b)xy + η3a(G0 − b(1− β))y2

U15 = η4a(G0 − b(1− β))y2 + (1 + αa−1)(G0 − b)yz + ξ3αz
2

UQ = [b(β + αa−1)y − αz]Q(t)

UR = [(1 + αa−1)z + ay + b(1− β)x]r(t, x, y, z +Q)
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for γj > 0; ηj > 0; (j = 1, 2, 3, 4), ξi > 0; (i = 1, 2, 3) and

γ1 + γ2 + γ3 + γ4 = 1; η1 + η2 + η3 + η4 = 1; and ξ1 + ξ2 + ξ3 = 1,

and H0 = h(x)
x , for x 6= 0, G0 = g(y)

y for y 6= 0 and as h(0) = 0 and g(0) = 0 by
hypotheses of the Theorem.

Lemma 3.1 Subject to a conveniently chosen value of k in (2.3), we have for
all (x, y, z) ∈ R

U1j ≥ 0; (j = 2, 3, 4, 5).

Proof We note that for any two numbers u, v and for some K > 0, we always
have

uv = (Ku+
1

2K
v)2 −K2u2 − 1

4K2
v2.

On a re-arrangement of U12 we obtain

U12 ≥ γ2b(1− β)H0x
2 − (1 + αa−1)H0(K

2
1x

2 +
1

4K2
1

z2) + ξ2αz
2

= H0{γ2b(1− β)−K2
1(1 + αa−1)}x2 + {ξ2α−

1

4K2
1

(1 + αa−1)H0}z2

≥ 0.

whenever

K2
1 ≤

γ2b(1− β)

1 + αa−1
; and H0 ≤

4ξ2αγ2b(1− β)

(1 + αa−1)2
. (3.6)

Also, a re-arrangement of U13 gives

U13 ≥ γ3b(1− β)H0x
2 − aH0(K

2
2x

2 +
1

4K2
2

y2) + η2a(G0 − b(1− β))y2

= H0{γ3b(1− β)− aK2
2}x2 + a{η2(G0 − b(1− β))− 1

4K2
2

H0}y2

≥ H0{γ3b(1− β)− aK2
2}x2 + a{βη2b−

1

4K2
2

H0}y2

≥ 0

whenever

K2
2 ≤

γ3b(1− β)

a
and H0 ≤

4η2γ3b
2β(1− β)

a
. (3.7)
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Combining all the inequalities in (3.6) and (3.7), we have that for all (x, y, z)
in IR, U12 ≥ 0 and U13 ≥ 0, if H0 ≤ kab with

k =

{
4ξ2αγ2(1− β)

a(1 + αa−1)2
;
4η2γ3bβ(1− β)

a2

}
< 1. (3.8)

Similarly, a rearrangement of U14 gives

U14 ≥ γ4b(1−β)H0x
2− b(1− β)(G0−b)(K2

3x
2 +

1

4K2
3

y2) +η3a(G0 −b(1−β))y2

= b(1−β){γ4H0−K2
3(G0−b)}x2 +{η3a(G0−b(1−β))− b

4K2
3

(1−β)(G0−b)}y2

≥ b(1−β){γ4∆0H0 −K2
3(b0 − b)}x2 + {η3abβ −

b

4K2
3

(1−β)(b0 − b)}y2

≥ 0

whenever

b(1− β)(b0 − b)
4abη3β

≤ K2
3 ≤

γ4∆0

b0 − b
. (3.9)

Finally, a re-arrangement of U15 gives

U15 ≥ η4a(G0 − b(1− β))y2 − (1 + αa−1)(G0 − b)(K2
4y

2 +
1

4K2
4

z2) + ξαz2

= {η4a(G0 − b(1− β))−K2
4(1 + αa−1)(G0 − b)}y2

+{ξ3α−
1

4K2
4

(1 + αa−1)(G0 − b)}z2

≥ {η4abβ −K2
4(1 + αa−1)(b0 − b)}y2 + {ξ3α−

1

4K2
4

(1 + αa−1)(b0 − b)}z2

≥ 0

whenever
(1 + αa−1)(b0 − b)

4αξ3
≤ K2

4 ≤
η4abβ

(1 + αa−1)(b0 − b)

Lemma 3.2 For all values of (x, y, z) ∈ R there exists a D4 > 0 such that

U11 = γ1b(1− β)H0x
2 + η1a(G0 − b(1− β))y2 + ξ1αz

2

≥ D4(x
2 + y2 + z2)
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whenever H0 ≤ kab, with k satisfying (3.8).

Proof: Choose D4 = min{γ1b(1− β)∆0, η1abβ, ξ1α}.

Lemma 3.3 For all values of (x, y, z) ∈ R

UQ ≤ D5(|x|+ |y|+ |z|); and UR ≤ D6(|x|+ |y|+ |z|)|r(t, x, y, z +Q)|

Proof: Choose D5 = max{b(β + αa−1), αa−1z}D0

and
D6 = max{(1 + αa−1), a, b(1− β)}.

Lemma 3.4

dV

dt
|(1.4) ≤ −(D7 −D8φ(t))V (t) +D9V

1/2(t). (3.10)

Proof: This follows by combining Lemmas 3.1, 3.2 and 3.3, and using condi-
tion (2.1) on equation (3.3), where D7 = D4/D3, D8 = D6/D2 and D9 = D5/D2.

In line with Ezeilo [7], it suffices to prove the following lemma:

Lemma 3.5 Assume that the conditions (i), (ii), (iii) and (iv) of Theorem 1
hold. Then, for arbitrary t0, there exist positive constants k1, k2 depending on
a, g, h and q, r such that for t ≥ t0,

V (x(t), y(t), z(t)) ≤ k1V (x(t0), y(t0), z(t0)) + k2 (3.11)

Moreover there are finite constants τ0 and k0, also dependent only on a, g, h and
q, r, such that if
V (x(t0), y(t0), z(t0)) ≤ k0, then

V (x(t0 + τ), y(t0 + τ), z(t0 + τ)) ≤ k0 (3.12)

for every τ with τ0 ≤ τ <∞.

Proof: If we set u(t) = V (t)1/2 = V (x(t), y(t), z(t))1/2, we have from (3.10)
that

d

dt
{u(t) exp{L(t)}} ≤ 1

2
D9 exp{L(t)} (3.13)

where L(t) = 1
2 [D7t−D8

∫ t
0 φ(t)dt].
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On integration from t0 to t0 + s, s ≥ 0, we have

u(t0 + s) exp{L(t0 + s)} ≤u(t0) exp{L(t0)}+
1

2
D9

∫ t0+s

t0

exp{L(t)}dt.(3.14)

Now, if we define

D10 = exp{1
2
D8

∫ ∞
−∞

φ(t)dt} <∞

we can have on some arrangements of terms that

u(t0 + s) ≤ D10u(t0) exp{−1
2D7s}+D11, (3.15)

where D11 is a positive number depending on D7, D9 and D10.

Now, if D10u(t0) ≤ D11, we have that

u(t0 + s) ≤ 2D11, for s ≥ 0. (3.16)

That is
V (t0 + s) ≤ {2D11}2, provided that s ≥ 0.

Also, if D10u(t0) > D11, we have from (3.15) that

u(t0 + s) < 2D10u(t0), for s ≥ 0.

That is
V (t0 + s) < {2D10}2V (t0), provided that s ≥ 0.

Hence in all situations, we have

V (t0 + s) ≤ {2D10}2V (t0) + {2D11}2, provided that s ≥ 0.

which is equivalent to (3.11) with k1 = {2D10}2 and k2 = {2D11}2.

To complete the proof of the lemma, we have to show that for some number
τ0 (to be chosen later),

V (t0 + τ) ≤ k0

for every τ0 ≤ τ <∞ and k0 such that V (t0) ≤ k0.

Define D12 = k2 = (2D11)
2.

First, if V (t0) ≥ D12, we have that D11 <
1
2u(t0).

Thus from (3.15), we have

u(t0 + s) < u(t0)D10 exp{−1

2
D7s}+

1

2
u(t0)

≤ u(t0) provided s ≥ (log 2D10)/D7. (3.17)
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That is
V (t0 + s) ≤ V (t0)

whenever V (t0) ≥ D12. Now, if V (t0) < D12, we have that u(t0) ≤ D2
12. Thus

from (3.15) we have

u(t0 + s) < D10 exp{−1

2
D7s}D

1
2
12 +D

1
2
12

≤ 2D
1
2
12 provided s ≥ (log

2

3
D10)/D7. (3.18)

That is
V (t0 + s) < 2D12, provided s ≥ (log 2D10)/D7.

Thus on choosing k0 = 2D12 and τ0 ≥ (log 2D10)/D7 we complete the proof
of the lemma.

Combining all these, Lemma 3.5 is proved.

To complete the proof of Theorem 3 we need to prove that any two solutions
of (1.4) converges.

That is

Lemma 3.6 Suppose that conditions (i) and (iii) of Theorem 3 hold. Suppose
further that that there exist positive constants k5 and k6 whose magnitudes de-
pend on a, g, q and r, then if (x1, y1, z1), (x1, y1, z1) are any two solutions of (1.4)
then

S(t2) ≤ k5S(t1) exp{−k6(t2 − t1)} (3.19)

where

S(t) = {[x2(t)− x1(t)]
2 + [y2(t)− y1(t)]

2 + [z2(t)− z1(t)]
2}.

Proof Considering the function W (t) defined as

W (t) = V (x2(t)− x1(t), y2(t)− y1(t), z2(t)− z1(t)) (3.20)

where V is defined as in (3.1), then, we easily have by (3.2) that there exists
positive constants D13, D14 such that

D13S(t) ≤ W (t) ≤ D14S(t). (3.21)

Also in view of , it suffices to prove that

W (t2) ≤ W (t1) exp{−D13(t2 − t1) +D14

∫ t2

t1

φν(τ)dτ}, ( for t2 ≥ t1).
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We note that by the earlier calculations on V (t), we can easily have

dW

dt
|1.4 = −W1(t) +W2(t)

where W1(t) satisfies
W1(t) ≥ D15S(t)

and W2(t) satisfies
W2(t) ≤ D16S

1
2 (t)|θ|

where
θ ≡ r(t, x1, y1, z1 +Q)− r(t, x2, y2, z2 +Q) (3.22)

Thus,
dW

dt
|(1.4) ≤ −D15φ(t))S(t) +D16S

1
2 (t)|θ(t)|. (3.23)

Let ν be any constant in the range 1 ≤ ν ≤ 2. Set 2µ = 2−ν, so that 0 ≤ 2µ ≤ 1.
We rewrite (3.22) in the form

dW

dt
|(1.4) +D15φ(t))S(t) ≤ D16S

µW ∗.

where
W ∗ = (|θ| −D15D

−1
16 S

1
2 )S( 1

2−µ).

Considering the two cases
(i) |θ| ≤ D15D

−1
16 S

1
2 and

(ii) |θ| > D15D
−1
16 S

1
2

separately, we find that in either case, there exists some constant D17 such that
W ∗ ≤ D17|θ|2(1−µ) . Thus,we can rewrite inequality (3.23) as

dW

dt
|(1.4) +D15S ≤ D18S

µφ2(1−µ)S(1−µ)

where D18 ≥ 2D16D17. This immediately gives

dW

dt
|(1.4) + (D19 −D20φ

ν(t))W ≤ 0 (3.24)

by (3.21), with D19 and D20 as some positive constants. On integrating (3.24)
from t1 to t2 , (t2 ≥ t1), we obtain

W (t2) ≤ W (t1) exp{−D19(t2 − t1) +D20

∫ t2

t1

φν(τ)dτ}.
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Again, using (3.21), and since

∫ t2

t1

φν(τ)dτ < ∞, we obtain (3.19). This com-

pletes the proof of lemma 3.6.

Proof of Theorem 2.1

Having dealt with the proofs of lemmas 3.1-3.6, the proof of Theorem 2.1
then follows exactly as in the proof of [7, Theorem 1], with the obvious changes
as required.

Proof of Theorem 2.2

The method is as in [7] but with certain modifications due to the presence
of the perturbation r(t, x, y, z + Q) which is uniformly almost periodic (u.a.p)
in t.
Consider the function

Ψ(t) = V (x(t+ τ)− x(t), y(t+ τ)− y(t), z(t+ τ)− z(t)) (3.25)

where V is the function defined in (3.1) with x, y, z replaced by x(t + τ) −
x(t), y(t + τ) − y(t) and z(t + τ) − z(t), respectively. Then, we easily have by
(3.2) that there exists positive constants d1 > 0, d2 > 0 such that

d1S(t) ≤ Ψ(t) ≤ d2S(t) (3.26)

where

S(t) = {[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2}.

Following the approach of the proof of lemma 3.6, we have that

dΨ
dt |(1.4) ≤ −d3{[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2}

+d4{|x(t+τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+τ)−z(t)|}|θ|
(3.27)

with θ = r(t+ τ, x(t+ τ), y(t+ τ), z(t+ τ) +Q(t+ r))− r(t, x, y, z +Q(t)) and
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d3, d4 are some finite positive constants. Now, rewrite (3.27) thus

dΨ
dt |(1.4) ≤ −d3{[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2}

+d4{|x(t+ τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+ τ)− z(t)|}|θ|
+{|x(t+ τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+ τ)− z(t)|}×
|r(t+ τ, x(t), y(t), z(t) +Q(t+ r))− r(t, x(t), y(t), z(t) +Q(t))|

(3.28)
Assume now that r is u.a.p in t. Then given arbitrary ε > 0, we can find τ > 0
such that

|r(t+ τ, x(t), y(t), z(t) +Q(t+ r))− r(t, x(t), y(t), z(t) +Q(t))| ≤ `ε2, (3.29)

where ` is a constant whose exact value will be chosen to advantage later. It
follows that

dΨ

dt
|(1.4) ≤ −d3S(t) + d5S

1
2 (t)|θ|+ d6S

1
2 (t)`ε2 (3.30)

where d5 = d4

√
3 and d6 =

√
3. Since (by Theorem 2.1)

{[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2}
1
2 ≤ ∆1, (3.31)

then
dΨ

dt
|(1.4) +−d3S(t) ≤ {d5S

1
2 (t)|θ| − d7S(t)}+ d6∆1`ε

2. (3.32)

Let ν be any constant such that 1 ≤ ν ≤ 2 and set µ = 1− 1
2ν, so that 0 ≤ µ ≤ 1.

Consider (3.32) in the form

dΨ

dt
|(1.4) + d7S ≤ d5S

µJ∗ + d6∆1`ε
2 (3.33)

where
J∗ = S

1
2−µ
(
‖θ‖ − d−1

5 d7S
1
2

)
.

Now, if ‖θ‖ ≤ d−1
5 d7S

1
2 , we obtain

J∗ ≤ 0;

on the other hand, if ‖θ‖ > d−1
5 d7S

1
2 , that is,

S < (d5d
−1
7 ‖θ‖)2, we obtain

J∗ < d‖θ‖2(1−µ),
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where d = (d5d
−1
7 )2µ−1.

Thus, (3.33) becomes,

dΨ

dt
|(1.4) + d7S ≤ dSφ2(1−µ) + d6∆1`ε

2.

Since from (2.1), θ satisfies ‖θ‖ ≤ φ(t)S
1
2 , we obtain

Ψ̇(t) +
(
d7 − dφ2(1−µ)(t)

)
S ≤ d6∆1`ε

2.

On using inequalities (3.26), we obtain

Ψ̇(t) + (d8 − dφν(t)) Ψ ≤ d6∆1`ε
2 (3.34)

for some constant d8 > 0. Following the approach in the proof of Lemma 3.6,
there is a d9, 0 < d9 <∞ defined by

d9 = exp

(
d10

∫ ∞
−∞

φν(t)dt

)
.

Then, from (3.34), we have that

Ψ(t) ≤ d9Ψ(t0)e
−d10(t−t0) + `d11ε

2 (3.35)

where d11 = d9d6D1/d10. This result holds for arbitrary t0. In particular, on
letting t0 → −∞ in (3.35) and noting that Ψ(t0) is finite, since (3.31) is true,
one obtains that

W (t) ≤ `d11ε
2

for arbitrary t. By (3.26) and by the definition of W (t) this implies that

[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2 ≤ `d11ε
2d−1

1 . (3.36)

Suppose now that at the stage (3.29) the constant ` had been

` = d1d
−1
11

the result (3.36) would then read

[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2 ≤ ε2. (3.37)

Since
√

3{[x(t+ τ)− x(t)]2 + [y(t+ τ)− y(t)]2 + [z(t+ τ)− z(t)]2} ≤
√

3ε2 ≤ ε,
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it follows that

|x(t+ τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+ τ)− z(t)| ≤ ε (3.38)

where τ is chosen to satisfy (3.29) with ` = d1d
−1
11 . The set of all τ satisfying

(3.29) is relatively dense, and hence (3.38) implies that (x(t), y(t), z(t)) is u.a.p.
This proves the first part of Theorem 2.2.

To prove the second part of the theorem, assume now that r(t, x, y, z +Q)
has the period ω in t and fix the τ in the definition of Ψ(t) equal to ω. The
terms on the left hand side of (3.29) is identically zero, and so proceeding as
above we shall have, in place of (3.36) that

[x(t+ w)− x(t)]2 + [y(t+ w)− y(t)]2 + [z(t+ w)− z(t)]2 ≤ 0.

Hence

[x(t+ w)− x(t)]2 + [y(t+ w)− y(t)]2 + [z(t+ w)− z(t)]2 = 0

and it is readily seen that

x(t+ w) = x(t), y(t+ w) = y(t) and z(t+ w) = z(t)

which is the required result. This completes the proof of Theorem 2.2.

References

[1] Afuwape, A. U. On the convergence of solutions of certain systems of nonlin-
ear third-order differential equations, SIMON STEVIN, A Quarterly Journal
of Pure and Applied Mathematics, Vol. 57, Number 4, (1983), 255-271.

[2] Afuwape, A. U. On the existence of a limiting regime in the sense of Demi-
dovic for a certain fourth-order nonlinear differential equation. J. Math.
Anal. Appl., 129, (2), (1988), 389-393.

[3] Afuwape, A.U. and Omeike, M.O. Further ultimate boundedness of solutions
of some system of third order nonlinear ordinary differential equations, Acta
Univ. Palacki.Olomuc., Fac. rer. nat., Mathematica 43(2004) 7-20.

[4] Afuwape, A.U. and Omeike, M.O. Convergence of solutions of certain system
of third order nonlinear ordinary differential equations, Ann. of Diff. Eqs.
21 : 4 (2005), 533-540.

Electronic Journal. http://www.math.spbu.ru/diffjournal, http://www.neva.ru/journal 54



Differential Equations and Control Processes, N 2, 2010

[5] Demidovic, B. P. On the existence of a limiting regime of a certain non-
liner system of ordinary differential equations. Amer. Math. Soc. Transl.,(18)
(1961),151-161.

[6] Ezeilo, J.O.C. Some results for the solutions of a certain system of differentila
equation. J. Math. Anal. Appl. 6, (1963), 389 - 393.

[7] Ezeilo, J.O.C. A generalization of a result of Demidovic on the existence of
limiting regime of a system of differential equations. Portugaliae Math. 25
(1965),65-82.

[8] Ezeilo J.O.C. On the convergence of solutions of certain systems of second
order differential equations, Ann. Math. Pura Appl. (IV) 72, (1966), 239-
252.

[9] Ezeilo J. O. C. n-Dimensional Extensions of Boundedness and Stability The-
orems for some Third Order Differential Equations, J. Math. Anal. Appl.
18, (1967), 395-416.

[10] Ezeilo J. O. C. New properties of the equation
...
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