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Abstract

The paper is devoted to the study of a 3rd order discrete dynamical system

modelling the dynamics of supply and demand. It was proved that there is a
stable balans for small parameter values . The complex bifurcation were inves-
tigated and parameter values for which periodical orbits and chaotic regimes

exist were obtained.

1 Mathematical model

Demand and supply dynamics will be modeled by a discrete dynamical system.
In modelling we will assume that the following requiremnts are satisfied:

1) the supply increases when the demand exceeds the supply or the price of
the commodity tends to increase; the supply decreases when the supply exceeds

the demand or the price of the commodity tends to decrease;

2) the price of the commodity increases when the demand exceeds the supply
and decreases when the demand is less than the supply;
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3) the demand decreases when the purchasing expense exceeds the expense

intended; the demand increases when the expense intended is greater than the
actual cost of the commodity.

Let the variable x signify the volume of the commodity proposed, the vari-
able y signify the price of a commodity unit, and the variable z signify the

volume of the commodity demand. Then min(x, z) specifies the volume of
the commodity sold (realized) and ymin(x, z) determines the true cost of the

commodity purchase. Let H denote the planned expenditure for commodity
purchase. In what follows we denote by n = 1, 2, . . . a discrete time which

stands for the number of a time interval corresponding to the realization of de-
mand, supply and sale of the commodity. For an n-time interval we denote by
xn, yn and zn respectively the volume of the supply, the price, and the volume

of the demand associated with this time interval.

Let us consider the function

f(x, z) =
z − x

z + x
.

Clearly f is a zero-degree homogeneous function, i.e. f(tx, tz) = t0f(x, z). It is
not difficult to see that the function f(x, z) takes the values in the range from

-1 to +1 since the variables x, y, z are postive. In addition, f(x, z) < 0 when
z < x and f(x, z) > 0 when z > x. The function exp(az−x

z+x), where a > 0, takes
the values in the range from e−a to ea. In addition, exp(af(x, z)) < 1, when

the supply exceeds the demand x > z and exp(af(x, z)) > 1 when the demand
exceeds the supply z > x.

The ratio yn/yn−1 governs a tendency for changing the price as one passes
from the n − 1-time interval of sale to the n-time interval of sale. Thus the

supply dynamics is given by the mapping

xn+1 = xn(
yn
yn−1

)r exp(a
zn − xn

zn + xn
),

where the factor exp(azn−xn

zn+xn

) is the coefficient of variation of the supply for
(n + 1)-time interval depending on the relationship between de of mand and

supply over the n-time interval. Notice that the mapping described above
determines the volume of the future supply and consequently the volume of

commodity production. The parameter a > 0 determines the adaptation of the
system to the variation of demand and supply. The indicator r determines the

rate of the supply dependency on the price variation. If the supply does not
depend on the price variation then r = 0.
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In the same manner one can specify the dependence of the price on demand

and supply with some coefficient of adaptation b and bearing in mind that
the price on the (n + 1)-time interval depends on supply and demand on the

same (n+1)-time interval. Hence, the price dynamics is given by the (implicit)
mapping

yn+1 = yn exp(b
zn+1 − xn+1

zn+1 + xn+1
),

where b > 0 is the coefficient of adaptation of the price to the variation of supply
and demand. It should be noted that the implicit character of the last mapping

(both the left and right sides depend on the n+1-time interval) produces certain
difficulties in the study of system dynamics.

The demand on the (n+1)-time interval depends on the difference between
the planned expenditure H and the real expenditure for commodity purchase

on the n-time interval. If the planned expenditureH is greater than the real one
then the demand increases; otherwise it decreases. Thus the demand dynamics

can be represented in the form

zn+1 = zn exp(c
H − ynmin(xn, zn)

H + ynmin(xn, zn)
),

where c > 0 is the coefficient of adaptation of the demand to the variation of

expenditure.

Thus we obtain the following system of difference equations

xn+1 = xn(
yn
yn−1

)r exp(a
zn − xn

zn + xn
), (1)

yn+1 = yn exp(b
zn+1 − xn+1

zn+1 + xn+1
), (2)

zn+1 = zn exp(c
H − ynmin(xn, zn)

H + ynmin(xn, zn)
). (3)

Since the second equation contains (n+ 1)-time interval in its both sides then
the system determines a discrete dynamical system in the implicit form. To

obtain difference equations in the explicit form one needs to substitute xn+1

zn+1 from the first and third equations to the second one. As a result we obtain

a standard discrete dynamical system.

2 Theoretical results

First we consider the case where the supply does not depend on the price
variation, i.e. r = 0. It is not difficult to see that the system (1,2,3) has a curve
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filled by the balanced states (fixed points), with the balanced states given by

the following equalities

x = z

H = ymin(x, z).
(4)

The study of the balanced states is complicated by the fact that the function

min(x, z) is not smooth at the balanced states x = z. Let us show that for
every balanced state there exists a surface which passes through it and consists

of full system orbits, i.e. an invariant surface of the system.

To this end consider the function

U(x, y, z) =
xb

ya
exp(ab

z − x

z + x
).

Proposition 1. The function U(x, y, z) is constant on each orbit of the

system (1,2,3).

Proof. From the second equation of the system it follows that

yn+1 exp(−b
zn+1 − xn+1

zn+1 + xn+1
) = yn.

Raising both sides of last equality to the power a, we obtain

yan+1 exp(−ab
zn+1 − xn+1

zn+1 + xn+1
) = yan.

Similarly, raising both sides of equation (1) to the power b, we obtain

xb
n+1 = xb

n exp(ab
zn − xn

zn + xn
).

The last equality divided by the previous one yields

xb
n+1

yan+1

exp(ab
zn+1 − xn+1

zn+1 + xn+1
) =

xb
n

yan
exp(ab

zn − xn

zn + xn
). (5)

By virtue of definition of the function U(x, y, z), (5) can be written in the form

U(xn+1, yn+1, zn+1) = U(xn, yn, zn).

This means that the value of the function U(x, y, z) does not vary at one iter-
ation and thus does not vary on the full orbit. Consequently, the level surface

U(x, y, z) = const is invariant for the system (1,2,3). This ends the proof.
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It is not difficult to see that each level surface intersects the balanced curve

at just one point. In fact, it follows from the balanced equations (4) and the
equality U(x, y, z) = h that

H = xy, h =
xb

ya
.

The coordinates of a fixed point on the level surface U(x, y, z) = h are thus seen
to be uniquely determined. By this means the system (1,2,3) has a foliation
with invariant layers and each layer contains exactly one balanced state. It can

be shown also that the foliation {U(x, y, z) = h} has a transverse intersection
with the balanced curve (4).

The existence of the function U(x, y, z) with properties stated previously
allows to reduce the 3-dimensional system (1,2,3) into a 2-dimensional system

by eliminating the variable y. In fact, for the level surface U(x, y, z) = h we
have the equality

xb

ya
exp(ab

z − x

z + x
) = h,

from which it follows that

y = (1/h)1/axb/a exp(b
z − x

z + x
).

Substitution of this presentation of y to the equation (3) yields the equation

zn+1 = zn exp(c
H − ( 1h)

1/a(xn)
b/a exp(bzn−xn

zn+xn

)min(xn, zn)

H + ( 1h)
1/a(xn)b/a exp(b

zn−xn

zn+xn

)min(xn, zn)
), (6)

which is independent of the price y.

Proposition 2. For every H > 0 and h > 0 the system (1) and (6) are

equivalent to the following system

xn+1 = xn exp(a
zn − xn

zn + xn
), (7)

zn+1 = zn exp(c
1− (xn)

b/a exp(bzn−xn

zn+xn

)min(xn, zn)

1 + (xn)b/a exp(b
zn−xn

zn+xn

)min(xn, zn)
). (8)

Proof. The equation (6) can be written in the form

zn+1 = zn exp(c
1− 1

H
( 1
h
)1/a(xn)

b/a exp(bzn−xn

zn+xn

)min(xn, zn)

1 + 1
H ( 1h)

1/a(xn)b/a exp(b
zn−xn

zn+xn

)min(xn, zn)
) (9)
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In the system (1) and (9) let us perform the following change of variables

(x, z)→ (tx, tz),

where t is a constant determined later. This change of variables does not affect

the equation (1). As for the equation (9), it takes the form

zn+1 = zn exp(c
1− 1

H
( 1
h
)1/at(a+b)/a(xn)

b/a exp(bzn−xn

zn+xn

)min(xn, zn)

1 + 1
H ( 1h)

1/at(a+b)/a(xn)b/a exp(b
zn−xn

zn+xn

)min(xn, zn)
).

Choose t > 0 such that
1

H
(
1

h
)1/at(a+b)/a = 1.

It is not difficult to see that such a t exists and is unique. At t given above we

obtain the required system. This ends the proof.

Notice that the change of variables in the proof of Poposition 2 is substan-
tially choosing the unit of measurement of demand and supply. Clearly, the
system (7,8) has the fixed point (1,1) which is the unique balanced state of the

economic model.

3 Price dependence on the supply

Let us consider the system (1,2,3) provided that in the first equation the pa-
rameter r > 0, i.e. the supply depends on the price. In this case the supply

increases provided the price in the previous period has rised and decreases oth-
erwise. It is clear that the parameter r > 0 controls the extent to which the

supply depends on the price.

Proposition 3. The system (1,2,3) is equivalent to the following system

xn+1 = xn exp((a+ rb)
zn − xn

zn + xn
), (10)

yn+1 = yn exp(b
zn+1 − xn+1

zn+1 + xn+1
), (11)

zn+1 = zn exp(c
H − ynmin(xn, zn)

H + ynmin(xn, zn)
). (12)

Proof. The equation (1) contains the factor

(
yn
yn−1

)r.
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Using the second equation for the n-time interval

yn = yn−1 exp(b
zn − xn

zn + xn
),

we can represent this factor in the form

(
yn
yn−1

)r = exp(rb
zn − xn

zn + xn
).

Substituting the last equality in the first equation we obtain the equality

xn+1 = xn exp((a+ rb)
zn − xn

zn + xn
),

which proves the proposition.

From Proposition 3 it follows that the price dependence of the supply re-
duces to the system free from such a dependence provided that the parameter

a is replaced by a+ br. Thus one needs to study only systems where the supply
does not depend on the price.

Figure 1: Steady balanced state for a = 1, b = 0.5, c = 1.

4 Numerical results

This section is devoted to the numerical study of system dynamics in relation
to the adaptation parameters a, b, and c. In the section we use algorithms and
computer softwares described in monographs [4] and [5]. First of all, notice

that for small values of a, b c the system (7,8) has the steady balanced state
(1,1), see. Fig. 1. As the values of parameters a, b c increase the balanced

state (1,1) fails its stability and at the same time the stable 3-periodic orbit
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Figure 2: Unsteady balanced state O and 3-periodic stable orbit P for a = 2.5, b = 1.5, c = 2.3.
Steady balanced state O, unstable manifold W u(H) of the 3-periodic hyperbolic orbit H , and
3-periodic stable orbit P for a = 2.5, b = 2, c = 2.5.

Figure 3: Unsteady balanced state O, stable 2-periodic orbit Q, unstable manifold W u(H)
3-periodic hyperbolic orbit H and 3-periodic stable orbit P for a = 3.2, b = 2.5, c = 2.5

arises. For example, for a = 2.5, b = 1.5, and c = 2.3 (see the left Fig. 2) the

balanced state (1,1) is unstable, while the 3-periodic stable orbit P is generated
by iterations of the point (1.7305, 1.8706). Moreover, the 3-periodic regime P
attracts every orbit except for the balanced state. This means that from the

practical point of view, starting from any initial state with time we will observe
only the 3-periodic regime P . A similar dynamics holds for a = 2.5, b = 1.5,

and c = 2.5.

As the parameter b increases the following bifurcations occur: from the bal-

anced state O the hyperbolic 3-periodic orbit H is split out, while the balanced
state becomes stable, see the right Fig. 2. The global attractorA is formed from

the closure of the unstable manifold W u(H) of the hyperbolic orbit H. In this
case the limit dynamic regime is either the stable balanced state O or the stable
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Figure 4: Unstable balanced state O, stable 2-periodic orbit Q, and 3-periodic stable chaotic
attractor P for a = 3.2, b = 2.5, c = 2.8

3-periodic regime P depending on the choice of the initial data (x0, z0). From
the theoretical point of view, there is a possibility to approach the hyperbolic

orbit H by choosing an initial point on its stable manifold W s(H), however, it
is not feasible to realize such a choice. For a = 2.5, b = 2, c = 2.5 the hyperbolic

orbit H is generated by iterations of the point (1.3741, 1.1532). In the course
of a futher increase of parameters new bifurcations arise. For a = 3.2, b = 2.5,
and c = 2.5 the balanced state O(1, 1) loses stability and nearby the 2-periodic

stable orbit Q of the point (1.2813, 1.0172) occurs , see Fig. 3. There exists the
invariant curve A0 = {Q1 ← O → Q2} between the point O and the orbit Q by

which orbits move from the balanced state O to the stable 2-periodic orbit Q.
The curve A0 is an attractor. There is also the 3-periodic hyperbolic orbit H

of the point (3.9442, 2.2020), whose unstable manifold W u(H) is wound on the
attractor A0 by one end and tends to the stable 3-periodic orbit P of the point

(3.8322, 3.3089) by the other. The closure of the unstable manifold W u(H)
yields the global attractor A in the iterior of which the attractor A0 lies, see.
Fig. 3.

The structure of enclosed attractors briefly outlined above

((Q ⊂ A0)
⋃

P ) ⊂ A

generates a filtration [3] preserved under small perturbations of the system. The
structure of attractors described holds for a great deal of values of parameters a,
b, and c, however their topology can vary. The attractor A0 may be thought of

as originating from the stable 2-periodic orbit and, as a rule, is small-sized. The
attractor A is emerging from the unstable manifold of the 3-periodic hyperbolic
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Figure 5: Unstable balanced state and global chaotic attractor for a = 3.5, b = 2, and c = 3.5.

orbit. As the parameter c increases up to 2.8, instead of the stable periodic

orbit P the 3-periodic stable chaotic attrator A1 evolves, see. Fig. 4. The
attractor A1 results from the bifurcation of the stable 3-periodic orbit P .

Recall that the entropy E of a dynamical system is a measure of its ran-
domness. It is known that the entropy can be evaluated as a growth indicator

of an arc length under iterations [2]. Using this reasoning, we have obtained
that for the system on the attractor A1 the entropy E = 0.382.

As the parameters vary, all the attractors outlined merge into one attractor.
In order to describe attractors size we will use coordinates of their points most

distant from the balanced state (1,1). As for instance, for a = 3.5, b = 2, and
c = 3.5, the global chaotic attractor is very big in size, see. Fig. 5. Here, the

most distant point of the global (large) attractor is (54.9, 0.85). The estimate
of the entropy is E = 0.269.

For a = 3, b = 1.8 and c = 3.5 the balanced state (1,1) is unstable and there
exists 5-periodic stable orbit P generated by iterations of the point (1.8822,

1.1475). All orbits (except for the balanced state) tend to P and have a suffi-
ciently intricate structure.

The system dynamics is very sensitive to the variation of parameters. As for
instance, for a = 3, b = 1.78, c = 3.5 the system has the global (large) chaotic

attractor wherein the small attractor is located, see. Fig. 6. The estimate of
the entropy is E = 0.108. The balanced state is unstable. For a = 3, b = 2,
and c = 3.5 the chaotic attractor disappears. However, for a = 3, b = 2, and

c = 3.6 the nontrivial global chaotic attractor (wherein the small attractor lies)
appears again, see. Fig. 7. The estimate of the entropy on the small and large

attractors is E = 0.04 and E = 0.312, respectively.
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Figure 6: Small chaotic attractor for a = 3, b = 1.78, c = 3.5.

Figure 7: Unstable balanced state and small chaotic attractor for a = 3, b = 2, and c = 3.6.
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Figure 8: Medium-sized chaotic attractor A1 ⊂ A for a = 4, b = 2, and c = 3.

Figure 9: Unstable balanced state and small-sized attractor A0 ⊂ A1 ⊂ A for a = 4, b = 1.98,
and c = 3.

For a = 4, b = 2, and c = 3 the global chaotic attractor A becomes

large with the extreme point (28.4, 0.9). The attractor A contains the smaller
attractor A1 ⊂ A, see. Fig. 8 with the extreme point (3.5, 1.5). The estimate
of the entropy on the latter is E = 0.161. In the interior of this attractor there

is one more attractor A0, see. Fig. 9. It is located very close to the balanced
state (1,1) with the extreme point (1.07, 1.02). The estimate of the entropy

on the latter is E = 0.0008. One can see that the chaotic character of the last
attractor is minor and within the accuracy of the analysis.

Electronic Journal. http://www.math.spbu.ru/diffjournal 246



Differential Equations and Control Processes, N 3, 2013

References

[1] Lebedev V.V., Lebedev K.V. , Mathematical modeling nonstational ecom-

ical processes, Moscow, 2011, 336 p.(in Russian).

[2] Newhouse S. and Pignataro T. On the estimation of topological entropy,

Journal of Statistical Physics, 72, 1993, pp. 1331-1351.

[3] Nitecki Z., Shub M. Filtrations, decompositions, and explosions. Amer. J.

of Math. vol. 97, 1975, 1029-1047.

[4] Osipenko G.S., Ampilova N.B., Introduction to symbolic analysis of dy-

namical systems, St. Petersburg, 2005 (in Russian).

[5] Osipenko G. Dynamical systems, Graphs, and Algorithms, Lectures Notes
in Mathematics, vol. 1889, Springer-Verlag, Berlin and New York, 2007.

[6] G. S. Osipenko, T. N. Korzh, E. K. Ershov, Dynamics of price-level, na-
tional income and cost of money interaction, International Conference

”Modeling, control, and stability MCS-2012”, 10-14 Sept. 2012, Sevastopol,

Crimea, 158-159.

Electronic Journal. http://www.math.spbu.ru/diffjournal 247


