ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

SDE-MATH: A Software Package for the Implementation of Strong High-order Numerical Methods for Ito SDEs with Multidimensional Non-commutative Noise Based on Multiple Fourier-Legendre Series

Author(s):

Mikhail Dmitrievich Kuznetsov

Saint-Petersburg Electrotechnical University,
ul. Professora Popova, 5, 197376, Saint-Petersburg, Russia,
Faculty of Computer Technologies and Informatics,
Department of Information Systems,
Master student

Dmitriy Feliksovich Kuznetsov

Peter the Great Saint-Petersburg Polytechnic University,
Polytechnicheskaya ul., 29, 195251, Saint-Petersburg, Russia,
Institute of Applied Mathematics and Mechanics,
Department of Higher Mathematics,
Doctor of physico-mathematical sciences, Professor

sde_kuznetsov@inbox.ru

Abstract:

The article is devoted to the implementation of strong numerical methods with convergence orders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for Ito stochastic differential equations with multidimensional non-commutative noise based on multiple Fourier-Legendre series and unified Taylor-Ito and Taylor-Stratonovich expansions. Algorithms for the implementation of these methods are constructed and a package of programs in the Python programming language is presented. An important part of this software package concerning the mean-square approximation of iterated Ito and Stratonovich stochastic integrals of multiplicities 1 to 6 with respect to components of the multidimensional Wiener process is based on the method of generalized multiple Fourier series. More precisely, we used multiple Fourier-Legendre series converging in the sense of norm in Hilbert space for the mean-square approximation of iterated Ito and Stratonovich stochastic integrals.

Keywords

References:

  1. Ito, K. On stochastic differential equations. Memoirs Amer. Math. Soc. , 4 (1951), 1-51
  2. Kloeden, P. E., Platen, E. Numerical solution of stochastic differential equations. Berlin, Springer-Verlag Publ., 1992. 632 p
  3. Kloeden, P. E., Platen, E., Schurz, H. Numerical solution of SDE through computer experiments. Berlin, Springer-Verlag Publ., 1994. 292 p
  4. Arato, M. Linear stochastic systems with constant coefficients. A statistical approach. Berlin, Heidelberg, N. Y., Springer-Verlag Publ., 1982. 289 p
  5. Shiryaev, A. N. Essentials of stochastic finance: facts, models, theory. World Scientic Publishing Co United States, 1999. 852 pp
  6. Karatzas, I., Shreve, S. Methods of mathematical finance. New York, Springer-Verlag Publ., 1998. 415 p
  7. Platen, E., Bruti-Liberati, N. Numerical solution of stochastic differential equations with jumps in finance. Berlin, Heidelberg, Springer-Verlag Publ., 2010. 868 p
  8. Han, X., Kloeden, P. E., Random ordinary differential equations and their numerical solution. Singapore , Springer Publ., 2017. 250 p
  9. Allen, E. Modeling with Ito stochastic differential equations. Dordrecht, Springer, 2007. 230 p
  10. Merton, R. C. Continuous-time finance. Oxford, Blackwell Publ., 1992. 754 p
  11. Heston, S. L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies. 6, 2 (1993), 327-343
  12. Cox, J. C., Ingersoll, J. E., Ross, S. A. A Theory of the term structure of interest rates. Econometrica. 53 (1985), 385-408
  13. Kimura, M., Ohta, T. Theoretical aspects of population genetics. Boston, Princeton Univ. Press, 1971. 232 p
  14. Iacus, S. M. Simulation and inference for stochastic differential equations. With R examples. New-York, Springer-Verlag Publ., 2008, 285 p
  15. Ricciardi, L. M. Diffusion processes and related topics in biology. Lecture notes in biomathematics. New-York, Springer, 1977. 202 p
  16. Stratonovich, R. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike [Selected problems of fluctuations theory in radio engineering]. Moscow, Sovetskoe Radio Publ., 1961. 556 p
  17. Liptser, R. Sh., Shirjaev, A. N. Statistika sluchainyh processov: nelineinaya filtracia i smezhnye voprosy. [Statistics of Stochastic Processes: Nonlinear Filtering and Related Problems. Moscow, Nauka Publ., 1974. 696 p
  18. Nasyrov, F. S. Lokal'nye vremena, simmetrichnyje integraly i stochasticheskiy analiz [Local times, symmetric integrals and stochastic analysis]. Moscow, Fizmatlit Publ., 2011. 212 p
  19. Kagirova, G. R., Nasyrov, F. S. On an optimal filtration problem for one-dimensional diffusion processes. Siberian Adv. Math. 28, 3 (2018), 155-165
  20. Chugai, K. N., Kosachev, I. M., Rybakov, K. A. Approximate filtering methods in continuous-time stochastic systems. Smart Innovation, Systems and Technologies, vol. 173, Eds. Jain L. C., Favorskaya M. N., Nikitin I. S., Reviznikov D. L. Springer Publ., 2020, pp. 351-371. DOI: https://doi.org/10.1007/978-981-15-2600-8_24
  21. Averina, T. A., Rybakov, K. A. Using maximum cross section method for filtering jump-diffusion random processes. Russ. J. Numer. Anal. Math. Modelling. 35, 2 (2020), 55-67. DOI: http://doi.org/10.1515/rnam-2020-0005
  22. Kloeden, P. E., Platen, E., Schurz, H., Sorensen, M. On effects of discretization on estimators of drift parameters for diffusion processes. J. Appl. Probab. , 33 (1996), 1061-1076
  23. Clark J. M. C., Cameron R. J. The maximum rate of convergence of discrete approximations for stochastic differential equations. Stochastic Differential Systems Filtering and Control. Lecture Notes in Control and Information Sciences, vol 25. Ed. Grigelionis B. Berlin, Heidelberg, Springer Publ., 1980. 162-171
  24. Kulchitskiy, O. Yu., Kuznetsov, D. F. The unified Taylor-Ito expansion. J. Math. Sci. (N. Y. ). 99, 2 (2000), 1130-1140. DOI: http://doi.org/10.1007/BF02673635
  25. Kuznetsov, D. F. New representations of the Taylor-Stratonovich expansion. J. Math. Sci. (N. Y. ). 118, 6 (2003), 5586-5596. DOI: http://doi.org/10.1023/A:1026138522239
  26. Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 4, A. 1-A. 606. Available at: http://diffjournal.spbu.ru/EN/numbers/2020.4/article.1.8.html
  27. Milstein G. N. Chislennoye integrirovaniye stokhasticheskih differencial’nyh uravnenii [Numerical integration of stochastic differential equations], Sverdlovsk, Ural. Univ. Publ. 225 p
  28. Kloeden, P. E., Platen, E., Wright, I. W. The approximation of multiple stochastic integrals. Stoch. Anal. Appl. 10, 4 (1992), 431-441
  29. Averina, T. A., Prigarin, S. M. Calculation of stochastic integrals of Wiener processes. Preprint 1048. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences., 1995, 15 pp. (In Russ. )
  30. Prigarin, S. M., Belov, S. M. One application of series expansions of Wiener process. Preprint 1107. Novosibirsk, Inst. of Comp. Math. Math. Geophys. of Siberian Branch of the Russian Academy of Sciences, 1998, 16 p. (In Russ. )
  31. Wiktorsson, M. Joint characteristic function and simultaneous simulation of iterated Ito integrals for multiple independent Brownian motions. Ann. Appl. Prob. 11, 2 (2001), 470-487
  32. Ryden, T., Wiktorsson, M. On the simulation of iterated Ito integrals. Stoch. Proc. and their Appl. , 91, 1 (2001), 151-168
  33. Gaines, J. G., Lyons, T. J. Random generation of stochastic area integrals. SIAM J. Appl. Math. 54 (1994), 1132-1146
  34. Milstein, G. N., Tretyakov, M. V. Stochastic numerics for mathematical physics. Berlin, Springer-Verlag Publ., 2004. 616 p
  35. Allen, E. Approximation of triple stochastic integrals through region subdivision. Commun. Appl. Analysis (Special Tribute Issue to Professor V. Lakshmikantham), 17 (2013), 355-366
  36. Rybakov, K. A. Applying spectral form of mathematical description for representation of iterated stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 4, 1-31 (In Russ. ) Available at: https://diffjournal.spbu.ru/EN/numbers/2019.4/article.1.1.html
  37. Tang, X., Xiao, A. Asymptotically optimal approximation of some stochastic integrals and its applications to the strong second-order methods. Adv. Comp. Math. 45 (2019), 813-846
  38. Zahri, M. Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution. J. of Taibah Univ. for Science. 8, 2 (2014), 186-198
  39. Li, C. W., Liu, X. Q. Approximation of multiple stochastic integrals and its application to stochastic differential equations. Nonlinear Anal. Theor. Meth. Appl. 30, 2 (1997), 697-708
  40. Rybakov, K. Application of Walsh series to represent iterated Stratonovich stochastic integrals. IOP Conference Series: Materials science and engineering. 2020, vol. 927, id 012080. DOI: http://doi.org/10.1088/1757-899X/927/1/012080
  41. Rybakov, K. A. Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. of Computer and SystemsSci. Int. 59, 3 (2020), 322-337. DOI: http://doi.org/10.1134/S1064230720030156
  42. Kuznetsov, D. F. Chislennoye integrirovanie stokhasticheskih differencial'nyh uravnenii. 2. [Numerical integration of stochastic differential equations. 2]. St. -Petersburg, Polytechnic Univ. Publ., 2006. 764 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-227
  43. Kuznetsov, D. F. [A method of expansion and approximation of repeated stochastic Stratonovich integrals based on multiple Fourier series on full orthonormal systems]. Differencialnie Uravnenia i Protsesy Upravlenia, 1997, no. 1, 18-77 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/1997.1/article.1.2.html
  44. Kuznetsov, D. F. Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations. Comp. Math. Math. Phys. , 59, 8 (2019), 1236-1250. DOI: http://doi.org/10.1134/S0965542519080116
  45. Kuznetsov, D. F. Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 3, 18-62. Available at: http://diffjournal.spbu.ru/EN/numbers/2019.3/article.1.2.html
  46. Kuznetsov, D. F. Application of multiple Fourier-Legendre series to strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear stochastic partial differential equations. Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 3, 129-162. Available at: https://diffjournal.spbu.ru/RU/numbers/2020.3/article.1.6.html
  47. Jentzen, A. and Rö ckner, M. A Milstein scheme for SPDEs. Foundations Comp. Math. 15, 2 (2015), 313-362
  48. Becker, S., Jentzen, A. and Kloeden, P. E. An exponential Wagner-Platen type scheme for SPDEs. SIAM J. Numer. Anal. 54, 4 (2016), 2389-2426
  49. Mishura, Y. S. and Shevchenko, G. M. Approximation schemes for stochastic differential equations in a Hilbert space. Theor. Prob. Appl. 51, 3 (2007), 442-458
  50. Bao, J., Reisinger, C., Renz, P., Stockinger, W. First order convergence of Milstein schemes for McKean equations and interacting particle systems. arXiv:2004. 03325v1 [math. PR], 2020, 27 pp. Available at: https://arxiv.org/abs/2004.03325
  51. Son, L. N., Tuan, A. H., Dung, T. N., Yin, G. Milstein-type procedures for numerical solutions of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 55, 2 (2017), 953-979
  52. Sun, Y., Yang, J., Zhao, W. Ito-Taylor schemes for solving mean-field stochastic differential equations. Numer. Math. Theor. Meth. Appl. 10, 4 (2017), 798-828
  53. Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. , 43, 3 (2001), 525-546
  54. Cyganowski, S., Grune, L., Kloeden, P. E. Maple for stochastic differential equations. Theory and numerics of differential equations, Eds. Blowey, J. F., Coleman, J. P., Craig, A. W. Universitext. Berlin, Heidelberg , Springer Publ., 2001, pp. 127-177
  55. Higham, D. J., Kloeden, P. E. MAPLE and MATLAB for stochastic differential equations in finance. Programming languages and systems in computational economics and finance. Advances in computational economics, vol 18, Ed. Nielsen, S. S. Boston, MA, Springer Publ., 2002, pp. 233-269
  56. Cyganowski, S., Grune, L., Kloeden P. E. MAPLE for jump-diffusion stochastic differential equations in finance. Programming languages and systems in computational economics and finance. Advances in computational economics, vol. 18, Ed. Nielsen, S. S. Boston, MA, Springer Publ., 2002, pp. 441-460
  57. Gilsing, H., Shardlow, T. SDELab: A package for solving stochastic differential equations in MATLAB. J. Comp. Appl. Math. , 2, 205 (2007), 1002-1018
  58. Kuznetsov, D. F. Stokhasticheskie differencial’nye uravnenia: teoriya i practika chislennogo resheniya. S programmami dl’ja PC v sisteme MATLAB 7. 0. Izd. 3-e. [Stochastic Differential Equations: Theory and Practice of Numerical Solution. With MATLAB 7. 0 programs. 3rd Ed. ]. St. -Petersburg, Polytechnic Univ. Publ., 2009. 768 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-230
  59. Kiesewetter, S., Polkinghorne, R., Opanchuk, B., Drummond, P. D. xSPDE: Extensible software for stochastic equations. SoftwareX, 5 (2016), 12-15
  60. Gevorkyan, M. N., Velieva, T. R., Korolkova, A. V., Kulyabov, D. S., Sevastyanov, L. A. Stochastic Runge-Kutta software package for stochastic differential equations. Dependability engineering and complex systems. DepCoS-RELCOMEX 2016. Advances in intelligent systems and computing, vol. 470, Eds. Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. Cham, Springer Publ., 2016, pp. 169-179
  61. Kuznetsov, D. F. [Stochastic differential equations: theory and practice of numerical solution. With MATLAB programs. 6-th Ed. ]. Differencialnie Uravnenia i Protsesy Upravlenia, 2018, no. 4, A. 1-A. 1073 (In Russ. ) Available at: http://diffjournal.spbu.ru/EN/numbers/2018.4/article.2.1.html
  62. Kulchitskiy, O. Yu., Kuznetsov, D. F. Numerical simulation of stochastic systems of linear stationary differential equations. [In Russian]. Differencialnie Uravnenia i Protsesy Upravlenia, 1998, no. 1, 41-65. Available at: https://diffjournal.spbu.ru/EN/numbers/1998.1/article.1.2.html
  63. Gihman, I. I., Skorohod, A. V. Stokhasticheskie differencial’nye uravnenia i ih prilozhenia [Stochastic differential equations and its applications]. Kiev, Naukova Dumka Publ., 1982. 612 p
  64. Kuznetsov, D. F. On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1. 5 and 2. 0 orders of strong convergence. Automat. Remote Control, 79, 7 (2018), 1240-1254. DOI: http://doi.org/10.1134/S0005117918070056
  65. Kuznetsov, D. F. On Numerical modeling of the multidimentional dynamic systems under random perturbations with the 2. 5 order of strong convergence. Automat. Remote Control, 80, 5 (2019), 867-881. DOI: http://doi.org/10.1134/S0005117919050060
  66. Kuznetsov, D. F. Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor-Stratonovich expansion. Comp. Math. Math. Phys. 60, 3 (2020), 379-389. DOI: http://doi.org/10.1134/S0965542520030100
  67. Kuznetsov, D. F. Strong approximation of iterated Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Application to numerical solution of Ito SDEs and semilinear SPDEs. (In English). arXiv:2003. 14184 [math. PR]. 2020, 652 p. Available at: https://arxiv.org/abs/2003.14184
  68. Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: approximations, properties, formulas. St. -Petersburg, Polytechnic Univ. Publ., 2013. 382 p. DOI: http://doi.org/10.18720/SPBPU/2/s17-234
  69. Kuznetsov, D. F. Expansion of iterated Stratonovich stochastic integrals based on generalized multiple Fourier series. Ufa Math. J. , 11, 4 (2019), 49-77. DOI: http://doi.org/10.13108/2019-11-4-49
  70. Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. Comp. Math. Math. Phys. , 58, 7 (2018), 1058-1070. DOI: http://doi.org/10.1134/S0965542518070096
  71. Kuznetsov, D. F. Mean square approximation of solutions of stochastic differential equations using Legendre’s polynomials. J. Automat. Inform. Sciences (Begell House), 32, 12 (2000), 69-86. DOI: http://doi.org/10.1615/JAutomatInfScien.v32.i12.80
  72. Kuznetsov, D. F. Multiple Ito and Stratonovich stochastic integrals: Fourier-Legendre and trigonometric expansions, approximations, formulas. Differencialnie Uravnenia i Protsesy Upravlenia. 2017, no. 1, A. 1-A. 385. Available at: http://diffjournal.spbu.ru/EN/numbers/2017.1/article.2.1.html
  73. Kuznetsov, M. D., Kuznetsov, D. F. Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals of multiplicities 1 to 5 from the unified Taylor-Ito expansion based on multiple Fourier-Legendre series. (In English). arXiv:2010. 13564 [math. PR], 2020, 59 p. Available at: https://arxiv.org/abs/2010.13564
  74. Kuznetsov, M. D., Kuznetsov, D. F. Implementation of strong numerical methods of orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative noise based on the unified Taylor-Ito and Taylor-Stratonovich expansions and multiple Fourier-Legendre series. (In English). arXiv:2009. 14011 [math. PR], 2020, 188 p. Available at: https://arxiv.org/abs/2009.14011
  75. Kuznetsov, D. F., Kuznetsov, M. D. A software package for implementation of strong numerical methods of convergence orders 0. 5, 1. 0, 1. 5, 2. 0, 2. 5, and 3. 0 for Ito SDEs with non-commutative multi-dimensional noise. 19th Int. Conf. " Aviation and Cosmonautics" (AviaSpace-2020), Abstracts, Moscow, Pero Publ., 2020, 569-570
  76. Kuznetsov, D. F., Kuznetsov, M. D. Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series. Springer proceedings in mathematics & statistics. Recent developments in stochastic methods and applications. Eds. Shiryaev, A. N. Samouylov, K. E, Kozyrev, D. V., Springer Publ., 2021 (to appear)

Full text (pdf)