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Abstract. We present in this paper the problem of convergence behavior
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the correctness of the proposed approach which improves earlier results on delay
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1 Introduction

This paper considers the problem of convergence of solutions of third-order
nonlinear delay differential equation

x′′′ + ax′′ + bx′ + h(x(t− r(t))) = p(t, x, x′, x′′) (1)

where a, b are positive constants and functions h, p are continuous in their re-
spective arguments. Also, 0 ≤ r(t) ≤ γ, r′(t) ≤ β, 0 < β < 1, β and γ are some
positive constants, γ will be determined later.
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Several authors have investigated the qualitative and other properties of solu-
tions of various forms of equation (1) in [17] where the Lyapunov second method
was used. In cases where a, b are nonlinear or continuous, several results have
been obtained on the more general form of (1) in one way or another involving
the use of generalized Routh-Hurwitz conditions on the nonlinear terms and
h in some form or the other, see [3 - 9] and [12], [13], [14], [16], [19], [20].
The Routh-Hurwitz conditions on h when specialized to equation (1) and its

various forms, usually take the form h′(x) and h(x)
x , x 6= 0 to lie in an open

Routh-Hurwitz interval (0, ab). Almost all the results mentioned above hold
good for h not depending on the deviating arguments or delay being zero, but
there are some results [1], [2], [10], [11], [15], [18], [21], [22] who investigated
the qualitative behavior of solutions on stability, uniform boundedness and so
on except of course the convergence of solutions where h actually depend on
some deviating arguments. Analysis of the convergence behaviour of solutions
for nonlinear delay differential equations is quite complicated. The difficulties
of the convergence of solutions of nonlinear delay system increases depending
on the assumptions made on h and the requirement for a complete Lyapunov
function.(See also [6]).
Our motivation come from the above mentioned papers. To the best of our
knowledge in the relevant literature, till now, the convergence of solutions of
(1) and its various forms has not been discussed. We established sufficient con-
ditions for the convergence (when p 6= 0) of solutions of (1) which extend and
improves some well known results in the literature. Results obtained are not
only new but also for the development of more general formulations.

Definition 1 Any two solutions x1(t), x2(t) of (1) are said to converge if

x1(t)− x2(t)→ 0, x′1(t)− x′2(t)→ 0, x′′1(t)− x′′2(t)→ 0 as t→∞.

If the relations above are true of each other(arbitrary) pair of solutions of (1),
we shall describe this saying that all solutions of (1) converge.

Now, we will state the stability criteria for the general non-autonomous
delay differential system. We consider:

ẋ = f(t, x), xt = x(t+ θ) − r ≤ θ ≤ 0, t ≥ 0, (2)

where f : I× CH −→ Rn is a continuous mapping,

f(t, 0) = 0, CH := {φ ∈ (C[−r, 0],Rn) : ‖φ‖ ≤ H}
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and for H1 ≤ H, there exists L(H1) > 0, with

|f(φ)| ≤ L(H1) when ‖φ‖ ≤ H1.

Definition 2 ([2],[19]) An element ψ ∈ C is in the ω-limit set of φ, say,
Ω(φ), if x(t, 0, φ) is defined on [0,∞) and there is a sequence {tn}, tn →∞ as
n→∞, with ‖xtn(φ)− ψ‖ → 0 as n→∞ where

xtn(φ) = x(tn + θ, 0, φ) for − r ≤ θ ≤ 0.

Definition 3 ([2],[19]) A set Q ∈ CH is an invariant set if for any φ ∈ Q,
the solution of (2), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 1 ([2],[19]) An element φ ∈ CH is such that the solution xt(φ) of (2)
with xo(φ) = φ is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then
Ω(φ) is a non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Lemma 2 ([2],[19]) Let V (t, φ) : I × CH −→ R be a continuous functional
satisfying a local Lipschitz condition. V (t, φ) = 0, and such that:

(i) W1|φ(0)| ≤ V (t, φ) ≤ W2‖φ‖ where W1(r), W2(r) are wedges

(ii) V̇(2)(t, φ) ≤ 0 for φ ≤ CH .

Then the zero solution of (2) is uniformly stable. If we define Z = {φ ∈ CH :
V(2)(t, φ) = 0}, then the zero solution of (2) is asymptotically stable provided
that the largest invariant set in Z is Q = {0}.

Lemma 3 ([19]) Let V (t, φ) : R × CH −→ R be continuous and locally Lips-
chitz in φ. If

(i) W (|x(t)|) ≤ V (t, xt) ≤ W1(|x(t)|)+W2

( ∫ t
t−r(t)W3(|x(s)|)ds

)
and

(ii) V̇(2) ≤ −W3((|x(s)|) +M ,

for some M > 0, where W (r), Wi(i = 1, 2, 3) are wedges, then the solutions of
(2) are uniformly bounded and uniformly ultimately bounded for bound B.
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Now, we write the equation (1) as the following equivalent system:

x′ = y,

y′ = z,

z′ = −az − by − h(x) +

∫ t

t−r(t)
h′(x(s))y(s)ds+ p(t, x, y, z), (3)

where h′(x) is continuous for all x, y. It is also assumed that the function h(x)
satisfy a Lipschitz condition in x.

2 Statement of result

Theorem 1 Let a, b, L, γ,∆1 and δo be positive constants, h(0) = 0 and suppose
that

(i) the incremental ratio for h satisfies

δo ≤
h(x1)− h(x2)

x1 − x2
≤ kab, x1 6= x2 with k < 1;

(ii) |h′(x)| ≤ L

(iii) γ satisfies

γ < min

{
δo
L

;
b(1 + a)(1− β)

L[(1 + a) + b+ (1 + a) + (2
a + 1)]

;
1

L(2
a + 1)

}
and

(iv) p(t, x, y, z) satisfies

|p(t, x, y, z)| ≤ φ(t){|x1 − x2|+ |y1 − y2|+ |z1 − z2|},

holds for for t, x1, y1, z1, x2, y2 and z2.
Then, there exists a constant δ1 such that any two solutions x1(t), x2(t) of (1)
necessarily converge if ∫ t

0

φα(s)ds ≤ δ1t

for some α in the range 1 ≤ α ≤ 2 and the solutions of (1) satisfying

[x2 + ẋ2 + ẍ2] ≤ ∆1.
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3 The function V

Our main tool in the proof of the Theorem 1 will be the following scalar function
defined as

2V (xt, yt, zt) =
1

2
b2(x1 − x2)

2 +

(
a+

1

2
b+

2b

a
+ a2

)
(y1 − y2)

2 +

(
2

a
+ 1

)
(z1 − z2)

2

+ ab(x1 − x2)(y1 − y2) + 2(a+ 1)(y1 − y2)(z1 − z2)

+ b(x1 − x2)(z1 − z2) + λ

∫ 0

−r(t)

∫ t

t+s

[(y1 − y2)(θ)]
2dθds, (4)

where λ positive constant which will be determined later.

The following result is immediate from (4).

Lemma 4 Suppose conditions of Theorem 1 hold, then there exists positive
constants δ2, δ3 such that

δ2

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
≤ V (xt, yt, zt) ≤

δ3

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
(5)

Proof: (4) can be arranged as

2V (xt, yt, zt) =
1

4
b2(x1 − x2)

2 +

(
1

2
b+

2b

a

)
(y1 − y2)

2 +
1

a
(z1 − z2)

2

+ a[(y1 − y2) + a−1(z1 − z2)]
2 + [(z1 − z2) + a(y1 − y2) +

1

2
b(x1 − x2)]

2

+ λ

∫ 0

−r(t)

∫ t

t+s

[(y1 − y2)(θ)]
2dθds.

It follows that

2V (xt, yt, zt) ≥
1

4
b2(x1 − x2)

2 +

(
1

2
b+

2b

a

)
(y1 − y2)

2 + a[(y1 − y2) + a−1(z1 − z2)]
2,

since a > 0, b > 0 by Theorem 1 and the integral λ
∫ 0

−r(t)
∫ t
t+s[(y1− y2)(θ)]

2dθds
is non-negative.
So that

2V (xt, yt, zt) ≥ ξ1

(
(x1 − x2)

2 + (y1 − y2)
2

)
+ a[(y1 − y2) + a−1(z1 − z2)]

2,
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where ξ1 = min

{
1
4b

2, (1
2b+ 2b

a )

}
.

Thus, it is evident from the terms contained in the above inequality that exists
a constant δ2 > 0 small enough such that

V (xt, yt, zt) ≥ δ2

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
.

To prove the right side of inequality (5), by the assumptions of Theorem 1 and
using the fact that

2|x1 − x2||y1 − y2| ≤ (x1 − x2)
2 + (y1 − y2)

2

yields from 2V , term by term

|(x1 − x2)(y1 − y2)| ≤ |x1 − x2||y1 − y2| ≤ (x1 − x2)
2 + (y1 − y2)

2

|(y1 − y2)(z1 − z2)| ≤ |y1 − y2||z1 − z2| ≤ (y1 − y2)
2 + (z1 − z2)

2

|(x1 − x2)(z1 − z2)| ≤ |x1 − x2||z1 − z2| ≤ (x1 − x2)
2 + (z1 − z2)

2

and

λ

∫ 0

−r(t)

∫ t

t+s

[(y1 − y2)(θ)]
2dθds =

1

2
λr2(t)(y1 − y2)

2

≤ 1

2
λγ2(y1 − y2)

2.

2V (xt, yt, zt) ≤
1

2
b2(x1 − x2)

2 +

(
a+

1

2
b+

2b

a
+ a2

)
(y1 − y2)

2 +

(
2

a
+ 1

)
(z1 − z2)

2

+
1

2
ab(x1 − x2)

2 +
1

2
ab(y1 − y2)

2 + (a+ 1)(y1 − y2)
2 + (a+ 1)(z1 − z2)

2

+
1

2
b(x1 − x2)

2 +
1

2
b(z1 − z2)

2 +
1

2
λγ2(y1 − y2)

2.

=

(
1

2
b2 + (a+ 1) +

1

2
b

)
(x1 − x2)

2

+

(
a+

1

2
b+

2b

a
+ a2 +

1

2
ab+ (a+ 1) +

1

2
λγ2

)
(y1 − y2)

2

+

(
(
2

a
+ 1) + (a+ 1) +

1

2
b

)
(z1 − z2)

2.

≤ ξ2

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
,
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where ξ2 = max

{
(1

2b
2+(a+1)+ 1

2b), (a+ 1
2b+

2b
a +a2+ 1

2ab+(a+1)+ 1
2λγ

2), ((2
a+

1) + (a+ 1) + 1
2b)

}
.

If we choose a positive constant δ3, then we have

V (xt, yt, zt) ≤ δ3

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

)
.

Thus, (5) of Lemma 4 is established where δ2, δ3 are finite constants.

Consider the function

W (t) = V

(
(x1(t)− x2(t), y1(t)− y2(t), z1(t)− z2(t)

)
,

where V is the function defined in (4). Then, by (5) we have positive constants
δ4 and δ5 such that

δ4S(t) ≤ W (t) ≤ δ5S(t) (6)

and

S(t) =

{
|x1(t)− x2(t)|2 + |y1(t)− y2(t)|2 + |z1(t)− z2(t)|2

}
.

The time derivative of (4) along the system (3) defined as

dV (xt, yt, zt)

dt
=
∂V

∂x

dxt
dt

+
∂V

∂y

dyt
dt

+
∂V

∂z

dzt
dt
,

hence we prove the following result.

Lemma 5 Let the hypotheses (i)-(iv) of Theorem 1 hold. Then, there exists
positive constants δ6, δ7 such that

dW (t)

dt
≤ −δ6S(t) + δ7S

1
2 (t)|θ|,

where θ = p(t, x1, y1, z1)− p(t, x2, y2, z2).

Proof: Thus, from (4) and (3), we have

dW (t)

dt
= −U1 + U2 + U3,
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where

U1 =
1

2
b(x1 − x2)(h(x1)− h(x2)) + (a+ 1)(y1 − y2)(h(x1)− h(x2))

+
b

2
(1 + a)(y1 − y2)

2 +

(
2

a
+ 1

)
(z1 − z2)(h(x1)− h(x2)),

U2 =

[
1

2
b(x1 − x2) + (a+ 1)(y1 − y2)

+

(
2

a
+ 1

)
(z1 − z2)

] ∫ t

t−r(t)
h′(x1 − x2)(s), (y1 − y2)(s)ds

+ λr(t)(y1 − y2)
2 − λ

∫ t

t−r(t)
(y1 − y2)

2(s)ds+ λr′(t)

∫ t

t−r(t)
(y1 − y2)

2(s)ds

and

U3 =

(
b(x1 − x2) + (a+ 1)(y1 − y2) +

(
2

a
+ 1

)
(z1 − z2)

)
|θ|.

Let

U1 = U11 + U12 + U13,

where

U11 = 1
4b(x1 − x2)

2

{
h(x1)−h(x2)

x1−x2

}
+ b

2(1 + a)(y1 − y2)
2 + 1

2(z1 − z2)
2.

By the hypotheses of Theorem 1, we have that

U11 ≥
1

4
bδo(x1 − x2)

2 +
b

2
(1 + a)(y1 − y2)

2 +
1

2
(z1 − z2)

2,

U12 = 1
8b(x1 − x2)

2

{
h(x1)−h(x2)

x1−x2

}
+ (1 + a)(y1 − y2)(h(x1)− h(x2)) + 1

2b(y1 − y2)
2

and

U13 =
1

8
b(x1 − x2)

2

{
h(x1)− h(x2)

x1 − x2

}
+

(
2

a
+ 1

)
(z1 − z2)(h(x1)− h(x2)) +

1

2
(z1 − z2)

2.
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Next, we give estimates for

(1 + a)(y1 − y2)(h(x1)− h(x2)) =

{
(1 + a)

1
2 (y1 − y2) + 2−1(1 + a)

1
2 (h(x1)− h(x2)

}2

− (1 + a)(y1 − y2)
2 − 1

4
(1 + a)(h(x1)− h(x2))

2

Thus,

U12 =

{
(1 + a)

1
2 (y1 − y2) + 2−1(1 + a)

1
2 (h(x1)− h(x2))

}2

+
1

8
b(x1 − x2)

2

{
h(x1)− h(x2)

x1 − x2

}
− 1

4
(1 + a)(h(x1)− h(x2))

2

+

(
1

2
b− (1 + a)

)
(y1 − y2)

2.

Since

1

8
b(x1 − x2)

2

{
h(x1)− h(x2)

x1 − x2

}
− 1

4
(1 + a)(h(x1)− h(x2))

2

=
1

4

h(x1)− h(x2)

x1 − x2

{
1

2
b− (1 + a)

h(x1)− h(x2)

x1 − x2

}
(x1 − x2)

2

and if

h(x1)− h(x2)

x1 − x2
≤ kab ≤ b

2(1 + a)
,

with

k = min

{
1

2a(1 + a)
;

1

2a(2a−1 + 1)

}
< 1,

then,

U12 ≥ 0.

Similarly,(
2

a
+ 1

)
(z1 − z2)(h(x1)− h(x2)) =

{(
2

a
+ 1

) 1
2

(z1 − z2)

+ 2−1

(
2

a
+ 1

) 1
2

(h(x1)− h(x2))

}2

−
(

2

a
+ 1

)
(z1 − z2)

2

− 1

4

(
2

a
+ 1

)
(h(x1)− h(x2))

2.
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Thus,

U13 =

{(
2

a
+ 1

) 1
2

(z1 − z2) + 2−1

(
2

a
+ 1

) 1
2

(h(x1)− h(x2))

}2

+
1

8
b(x1 − x2)

2

{
h(x1)− h(x2)

x1 − x2

}
− 1

4

(
2

a
+ 1

)
(h(x1)− h(x2))

2

+

(
1

2
−
(

2

a
+ 1

))
(z1 − z2)

2.

Since

1

8
b(x1 − x2)

2

{
h(x1)− h(x2)

x1 − x2

}
− 1

4

(
2

a
+ 1

)
(h(x1)− h(x2))

2

=
1

4

h(x1)− h(x2)

x1 − x2

{
1

2
−
(

2

a
+ 1

)
h(x1)− h(x2)

x1 − x2

}
(x1 − x2)

2

and if

h(x1)− h(x2)

x1 − x2
≤ kab ≤ b

2(2a−1 + 1)
,

with

k = min

{
1

2a(1 + a)
;

1

2a(2a−1 + 1)

}
< 1,

then,

U13 ≥ 0.

Hence,

U1 ≥
1

4
bδo(x1 − x2)

2 +
b

2
(1 + a)(y1 − y2)

2 +
1

2
(z1 − z2)

2.

In U2, we give estimates for the following and using the fact that 2uv =
u2 + v2,

1

2
b(x1 − x2)

∫ t

t−r(t)
h′(x1 − x2)(s)(y1 − y2)(s)ds

≤ 1

4
Lbr(t)(x1 − x2)

2 +
1

2
bL

∫ t

t−r(t)
(y1 − y2)

2(s)ds,
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(1 + a)(y1 − y2)

∫ t

t−r(t)
h′(x1 − x2)(s)(y1 − y2)(s)ds

≤ 1

2
L(1 + a)r(t)(y1 − y2)

2 +
1

2
(1 + a)L

∫ t

t−r(t)
(y1 − y2)

2(s)ds,

and

(
2

a
+ 1)(z1 − z2)

∫ t

t−r(t)
h′(x1 − x2)(s)(y1 − y2)(s)ds

≤ 1

2
(
2

a
+ 1)r(t)(z1 − z2)

2 +
1

2
(
2

a
+ 1)L

∫ t

t−r(t)
(y1 − y2)

2(s)ds.

Thus,

U2 =
1

4
bLr(t)(x1 − x2)

2 +
1

2
((1 + a)L+ 2λ)r(t)(y1 − y2)

2

+
1

2
L

(
2

a
+ 1

)
r(t)(z1 − z2)

2

+

{
1

2
L(b+ (1 + a) +

(
2

a
+ 1

)
− λ(1− r′(t))

}
×
∫ t

t−r(t)
(y1 − y2)

2(s)ds.

Using r(t) and r′(t), we obtain

U2 =
1

4
bLγ(x1 − x2)

2 +
1

2
((1 + a)L+ 2λ)γ(y1 − y2)

2 +
1

2
L

(
2

a
+ 1

)
γ(z1 − z2)

2

+

{
1

2
L(b+ (1 + a) +

(
2

a
+ 1

)
− λ(1− β)

}
×
∫ t

t−r(t)
(y1 − y2)

2(s)ds.

If we choose,

λ =
L(b+ (1 + a) + (2

a + 1))

2(1− β)
,

U2 ≥
1

4
bLγ(x1 − x2)

2 +
1

2
L

(
(1 + a) +

L(b+ (1 + a) + (2
a + 1)

2(1− β)

)
γ(y1 − y2)

2

+
1

2
γL(

2

a
+ 1)(z1 − z2)

2

and

U3 ≥
{
b(x1 − x2) + (1 + a)(y1 − y2) +

(
2

a
+ 1

)
(z1 − z2)

}
|θ|.
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Combining all the estimates for U1, U2 and U3, we obtain

Ẇ (t) ≤ − 1

4
(bδo − γbL)(x1 − x2)

2

− 1

2

{
b(1 + a)− γL

(
(1 + a) + (b+ (1 + a) + (2

a + 1)

(1− β)

)}
(y1 − y2)

2

− 1

2

{
1− γL

(
2

a
+ 1

)}
(z1 − z2)

2

+

{
b(x1 − x2) + (1 + a)(y1 − y2) +

(
2

a
+ 1

)
(z1 − z2)

}
|θ|.

Choosing

γ < min

{
δo
L

;
b(1 + a)(1− β)

L

[
(1 + a) + b+ (1 + a) + (2

a + 1)

] ;
1

L(2
a + 1)

}
.

We have that

Ẇ (t) ≤ − δ8

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
)

+ δ9

(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
) 1

2 |θ|,

where δ8 and δ9 are finite positive constants.

Using (6), it follows that

dW (t)

dt
≤ −δ8S(t) + δ9S

1
2 |θ|. (7)

The conditions of Lemma 2 and Lemma 3 is immediate if provided γ satisfy
(iv) of Theorem 1.
This completes the proof of Lemma 5.

4 Proof of Theorem 1

Let α be any constant such that 1 ≤ α ≤ 2 and set υ = 1 − 1
2α, so that

0 ≤ υ ≤ 1
2 .

Then, (7) becomes

dW (t)

dt
+ δ8S(t) ≤ δ9S

υW ∗ (8)
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and W ∗ = S( 1
2−υ)(|θ| − δ8δ

−1
8 S

1
2 (t)).

Considering these two cases:

(i) |θ| ≤ δ8δ
−1
9 S

1
2 and

(ii) |θ| > δ8δ
−1
9 S

1
2

separately, we can find that in either case, there exists some constants δ10 > 0
such that

W ∗ ≤ δ10|θ|2(1−υ).

By using (iv) of Theorem 1, inequality (8) becomes

dW (t)

dt
+ δ8S(t) ≤ δ11S

υφ(2(1−υ)S(1−υ)

where δ11 ≥ 2δ9δ10. On using (6) on W , it follows that

dW (t)

dt
+
(
δ12 − δ13

)
W (t) ≤ 0, (9)

where δ12 and δ13 are positive constants.
Integrating (9) from to to t, (t ≥ to), we get

W (t) ≤ W (to) exp
{
− δ12(t2 − t1) + δ13

∫ t

to

φα(s)ds
}
.

If ∫ t

to

φα(s)ds < δ1(t− to),

where δ1 = δ12δ
−1
13 . Then, the exponential index remains negative for all (t −

to) ≥ 0. As (t2 − t1)→∞, we have that

W (t) ≤ 0 for any t.

Again, by (6), we have that

S(t)→ 0.

Thus,

x1(t)− x2(t)→ 0, y1(t)− y2(t)→ 0, z1(t)− z2(t)→ 0 as t→∞
or in (1) as,

x1(t)− x2(t)→ 0, x′1(t)− x′2(t)→ 0, x′′1(t)− x′′2(t)→ 0 as t→∞.
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Example 4.1 Consider equation (1) in the form

x′′′ + 3x′′ + x′ + [x(t− r(t))]2 = e−t (10)

Comparing (1) with (10), it is obvious that a = 3, b = 1 and
h(x(t − r(t)) = [x(t − r(t))]2, where e−t is a bounded continuous function of t
only on [0,∞).
With the earlier notations, gives

k = min

{
1

24
;

3

10

}
< 1,

thus k = 1
24, we have that

δo ≤
h(x1)− h(x2)

x1 − x2
≤ 1

8
.

We choose δo = 2
25.

If we take r(t) = 1
45+t2 , then 0 ≤ 1

45+t2 ≤ γ and that r′(t) = −2t
45+t2 ≤ β, 0 < β < 1.

|h′(x)| = |2||x(t)||y(t)||1− r′(t)| ≤ 2, i.e L = 2.
If we choose β = 1

2, we must have that

γ < min

{
1

25
;

2

32
,
1

5

}
,

γ <
1

25

that is,

γ =
1

40
.

Hence, we can choose

r(t) =
1

100
.

Thus, all the conditions of Theorem 1 are satisfied and so for every solution of
(10) is such that

x1(t)− x2(t)→ 0, x′1(t)− x′2(t)→ 0, x′′1(t)− x′′2(t)→ 0 as t→∞.

The plot of x(t), x′(t), x′′(t) or equivalently x(t), y(t) and z(t) of equation (10)
which are the solutions characterizing the system (10) is shown in Fig. 1, Fig.
2 respectively above and Fig.3 below. It is very clear from Fig. 1, Fig. 2
and Fig. 3 that all conditions of Theorem 1 are satisfied along the graphs and
x(t), x′(t), x′′(t) of (10) converges to zero as t→∞.
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Figure 1: The plot of x(t), r(t)=0.01

Figure 2: The plot of x′(t), r(t)=0.01

Figure 3: The plot of x′′(t), r(t)=0.01
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Conclusion So, we can formulate the CONVERGENCE CRITERIA OF
NONLINEAR DELAY SYSTEM (1): the solutions of the third order nonlin-
ear system are convergent according to Lyapunov’s theory if the conditions of
Theorem 1 hold.

Analysis of nonlinear systems literary shows that Lyapunov’s theory in con-
vergence of solutions of nonlinear delay differential equations is rarely scarce.
The second Lyapunov’s method allows to predict the convergence of solutions
of nonlinear delay physical system.
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