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Abstract. The mathematical model of sector capital distribution dynamics
over efficiency levels with the depreciation is proposed. The qualitative analysis
of the model is presented. The globally stable set (attractor) is constructed.
The equilibria of the proposed dynamical model are determined, in the case of
two efficiency levels the global stability of one of them is proved. It is shown
that the global stability of the equilibrium means that the depreciation process
causes excess production. It is proved that in the case of three efficiency levels
there exists a unique equilibrium. In the case without the capital migrating
from the second level to the first one the global stability of the equilibrium is
proved.
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1 Introduction

The Austrian economist J. Schumpeter proposed the theory of endogenous eco-
nomic development [1] based on two interacting processes: innovations (the
creation of new technologies) and imitations (their borrowing). This theory is
actively developed currently (for example, see [4, 5, 6, 11], etc.).
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The mathematical model of the Schumpeterian dynamics with depreciation,
under the action of which the firms transfer to the lower efficiency level, was
proposed by V. M. Polterovich and G. M. Henkin [13]. Their evolution equation
describing the dynamics of the firms distribution over efficiency levels is as
follows

Ḟi =
dFi
dt

= −(α+β(1−Fi(t)))(Fi(t)−Fi−1(t))+µ((Fi+1(t)−Fi(t)), i = 1, 2, . . .

under the boundary and initial conditions

F0(t) ≡ 0,0 < Fi−1(0) < Fi(0) < 1 if 1 < i < N,Fi(0) = 1, if i > N,

where, Fi(t) is the share of firms corresponding to the levels which numbers are
less or equal to i at the moment of time t, N is the initial number of levels for
t = 0. Note that the addend −α(Fi − Fi−1) describes the innovation process,
the addend −β(1 − Fi)(Fi − Fi−1) — the imitation process and the addend
µ((Fi+1(t) − Fi(t)) — the depreciation process. Here, α > 0 is the innovation
rate, β > 0 is the imitation rate, µ > 0 is the depreciation rate. The numerical
analysis of this model was conducted in [14]. However, the qualitative analysis
of the models with depreciation was not presented in the investigations and
this problem was formulated in [14]. Note that in [13] for the model without
the depreciation (µ = 0) the wave process, generated by the above system of
ordinary differential equations, were studied.

A. A. Shananin and G. M. Henkin described the mathematical model of
the firm capacity dynamics in their article [12]. Let Mi(t) be the integrated
firm capacity at the i-th level, λi is the profit per capacity unit at the i-th level,
ϕi(t) is the share of the investments of the firms at the i-th level for the creation
of the capacities at the next i + 1-th level, 0 6 ϕi(t) 6 1. Then the capacity
dynamics equation is as follows

Ṁi = (1− ϕi)λiMi + ϕi−1λi−1Mi−1, i = 1, 2, . . . (1)

under the boundary and initial conditions

M0(t) ≡ 0,Mi(0) > 0,
N∑
i=1

Mi(0) > 0,Mi(0) = 0, if i > N,

where N is the initial number of levels. Here, ϕi = α + β(1 − Fi(T )), α > 0,

β > 0 are constants, Fi(t) =

i∑
k=0

Mk

∞∑
k=0

Mk

. In [10] it is shown that Mi(t) → ∞ as
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t → ∞. It means the unbounded growth of the capacities, which is incorrect
from the economic perspective.

The authors, developing the described models, propose the model of the
capital distribution dynamics over efficiency levels with depreciation taking into
account the boundedness of the economic growth. It is modeled via the intro-
ducing of the notion of the economic niche volume which is analogous to the
ecological niche volume. The economic niche volume is a limit integrated cap-
ital value, for which the growth rate is so low that there is no capital growth.
Thus, in this paper the partial solution of the problem formulated in [14] is
proposed under the boundedness of the economic growth condition.

2 The model with the depreciation

Consider the economic system (for example, sector) in which the firms are or-
dered by efficiency levels. Let i be the number of efficiency level, i ∈ {1, . . . , N}.
Assume that the greater i corresponds to the higher level. Consider the follow-
ing system of differential equations

Ċ1 = 1−ϕ1

λ1
C1(V −

N∑
j=1

Cj) + µ2C2 = f1(C),

Ċi = 1−ϕi

λi
Ci(V −

N∑
j=1

Cj) + ϕi−1Ci−1 − µiCi + µi+1Ci+1 = fi(C), i = 2, . . . , N − 1,

ĊN = 1−ϕN

λN
CN(V −

N∑
j=1

Cj) + ϕN−1CN−1 − µNCN = fN(C),

(2)
where, Ci is the integrated capital of all firms at the i-th level (one firm can
have the capital at different levels), C = (C1, . . . , CN), V is the economic niche
volume, ϕi is the share of capital of the firms at the i-th level intended to the
developing of the production at the next, i+1-th, level, λi is the unit prime cost
at the i-th level (i.e. the unit goods production cost per unit time), i = 1, .., N ,
µi is the share of the capital migrating to the lower level due to the depreciation
process, i = 2, .., N . Here, V > 0, 0 < ϕi < 1, 0 < µi < 1, λi > 0 are constants.
Denote ai = 1−ϕi

λi
> 0.

In what follows the next conditions are assumed to be fulfilled

µi+1

ai
< V,

ϕi−1

ai
< V.

It means that the contribution of the production at each level is much greater
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than the depreciation from the next level i + 1 and the investments from the
previous level i− 1, which corresponds the healthy economy.

Denote by C(t, t0, C
0) the solution of (2) for which C(t, t0, C

0) = C0. If t0 =
0 the solution will be denoted as C(t, C0). Denote by r(C0) the positive half-
trajectory r(C0) = {C(t, C0) : t > 0}. If t0 > 0, then r(t0, C

0) = {C(t, C0) :
t > t0}.

Proposition 1 The set RN
+ = {(C1, . . . , CN) ∈ RN : Ci > 0, i = 1, . . . , N} is

invariant.

Proof

From (2) we obtain Ċi > 0 if Ci = 0. It means that the positive half-
trajectories do not leave RN

+ through the boundary hyperplanes Ci = 0, there-
fore, RN

+ is invariant.

Proposition 2 Any positive half-trajectory r(C0), C0 ∈ RN
+ enters the set W =

{(C1, . . . , CN) : V 6
N∑
j=1

Cj 6 V + ∆V }, where ∆V =
N−1∑
j=1

ϕj

aj
and do not leave

it.

Remark The Proposition 2 implies that W is a global attractor.

Proof

Consider the hyperplanes π(R) : C1 + . . . + CN = R, where R > 0 with
the normal vector n = (1, . . . , 1). Denote by (f, n) the inner product of f =
(f1, . . . , fN) and n. Then, if R ∈ (0, V ] we obtain

(f, n) = (a1C1 + . . .+ aNCN)(V −R) +
N−1∑
j=1

ϕjCj > 0.

If R > V + ∆V , then

(f, n) 6 (a1C1 + . . .+ aNCN)(−∆V ) +
N−1∑
j=1

ϕjCj

= (a2C2+. . .+aNCN)(−ϕ1

a1
)+. . .+(a1C1+. . .+aN−2CN−2+aNCN)(−ϕN−1

aN−1
) < 0.

Thus, all positive half-trajectories enter the set W and do not leave it.
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3 Two efficiency levels

Consider the model with two efficiency levels{
Ċ1 = 1−ϕ

λ1
C1(V − C1 − C2) + µC2 = f1(C1, C2),

Ċ2 = 1−α
λ2
C2(V − C1 − C2) + ϕC1 − µC2 = f2(C1, C2).

(3)

Now let us investigate the stability of the equilibrium C∗ = (C∗1 , C
∗
2) of

the system (3): C∗1 = (2a1a2V+A)µ
2a1a2µ+a1A

, C∗2 = (2a1a2V+A)µ
2a1a2µ+a1A

A
2a2µ

, where A = −a1µ +√
a2

1µ
2 + 4a1a2ϕµ.

Definition 1 The equilibrium C∗ of the system Ċ = f(C) is globally stable in
Rn

+ \ {O} if C(t, C0)→ C∗, as t→∞, for every C0 ∈ Rn
+ \ {O}.

Theorem 1 The equilibrium C∗ = (C∗1 , C
∗
2) of the system (3) is globally stable

in R2
+ \ {O}.

Proof

Consider the isoclines of (3)

Ċ1 = 0 : C2(C1) =
a1C1(V − C1)

a1C1 − µ
, (4)

Ċ2 = 0 : C1(C2) =
a2C2(V − C2 − µ

a2
)

a2C2 − ϕ
. (5)

The isocline Ċ1 = 0 has the asymptote C1 = µ
a1
< V , the isocline Ċ2 = 0

has the asymptote C2 = ϕ
a2
< V , herewith, C2(C1)→ +∞ as C1(C2)→ µ

a1
and

C1 → +∞ as C2 → ϕ
a2

. Rewrite (4),(5) as follows

Ċ1 = 0 : C1 = C̃1(C2) =
(V − C2) +

√
(V − C2)

2 + 4µC2

a1

2
,

Ċ2 = 0 : C2 = C̃2(C1) =
V − µ− C1 +

√
(V − µ− C1)

2 + 4ϕC1

a2

2
.

The interior of the set R2
+ \ {O} is divided isoclines into 4 domains Di as

follows (fig. 1).
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• D1 = {(C1, C2) : C1 < C̃1, C2 < C̃2}, in which, f1 > 0, f2 > 0;

• D2 = {(C1, C2) : C1 > C̃1, C2 < C̃2}, in which, f1 < 0, f2 > 0;

• D3 = {(C1, C2) : C1 > C̃1, C2 > C̃2}, in which, f1 < 0, f2 < 0;

• D4 = {(C1, C2) : C1 < C̃1, C2 > C̃2}, in which, f1 > 0, f2 < 0.

Figure 1: Nested sets E(d, r).

To prove the global stability of the equilibrium C∗ = (C∗1 , C
∗
2) we construct

the family of nested sets {E(d, r), d > 0, r > 0} containing C∗, diameters of
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which tend to 0 as d, r → 0, such that all positive half-trajectories enter and
do not leave each of these sets. Consider the family of sets (fig. 1):

E(d, r) = {(C1, C2) : C∗1 − d 6 C1 6 C∗1 + d,

C∗1 + C∗2 − r 6 C1 + C2 6 C∗1 + C∗2 + r}.

Obviously, E(d1, r1) ⊂ E(d2, r2) if d2 < d1, r2 < r1 and (C∗1 , C
∗
2) ∈ E(d, r) for

any d > 0 , r > 0. The boundary ∂E(d, r) consists of the segments of the
straight lines li, where

• in D1: l1 : C1 + C2 − C∗1 − C∗2 + d = 0 with normal vector n1 = (1, 1),

• in D2: l2 : C1 − C∗1 + r = 0 with normal vector n2 = (1, 0),

• in D4: l4 : C1 − C∗1 − r = 0 with normal vector n4 = (−1, 0),

• in D3: l4 and l3 : C1+C2−C∗1−C∗2−d = 0 with normal vectors n4 = (−1, 0)
and n3 = (−1,−1) respectively.

The inner product of the vector f = (f1, f2) and the normal vector ni to each
straight line li is

• in D1: (f, n1) = f1 + f2 > 0,

• in D2: (f, n2) = f1 > 0,

• in D4: (f, n4) = −f1 > 0,

• in D3: (f, n3) = −f1 − f2 > 0, (f, n4) = −f1 > 0.

So, inner product (f, ni), i = 1, . . . , 4 is positive for all points belonging to
∂E(d, r). Hence, the positive half-trajectories intersect ∂E(d, r) from outside
to inside. Therefore, all positive half-trajectories enter each E(d, r) and do not
leave it. Taking into account that d, r may be arbitrary small, we obtain the
result: C(t, C0)→ P = (C∗1 , C

∗
2) as t→∞.

Since µ
a1

< V , ϕ1

a2
< V , then, obviously, C∗i < V, i = 1, 2. Denote by

d(µ) = C∗1 + C∗2 − V . Then,

d(µ) =
(2a1a2V + A)µ

2a1a2µ+ a1A

2a2µ+ A

2a2µ
− V =

−a1µ+
√
a2

1µ
2 + 4a1a2ϕµ

2a1a2
> 0. (6)

Therefore, C∗1 + C∗2 > V , which can be interpreted as follows: the depreciation
causes the excess production. Moreover, now we show that the excess pro-
duction increases by the increasing of the depreciation. Differentiate (6) with
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respect to µ

d′(µ) = − 1

2a2

a1µ+ a2ϕ

a2

√
a2

1µ
2 + 4a1a2ϕµ

. (7)

Equating (7) to zero we obtain

2a1a2µ+ 2a2
2ϕ = a2a

2
1µ

2 + 4a1a2ϕµ.

After the squaring we have the quadratic polynomial of µ

3a2
1a

2
2µ

2 + 4a1a
3
2ϕµ+ 4a4

2ϕ
2. (8)

The discriminant of (8) is

D = 16a2
1a

6
2ϕ

2 − 48a2
1a

6
2ϕ

2 < 0,

and since 3a2
1a

2
2 > 0, then d′(µ) > 0. Therefore, d(µ) is increasing.

Now we show that C∗1 → 0, C∗2 → V as µ → 0, which means that there is
no excess production without the depreciation (µ = 0). Obviously,

A = −a1µ+
√
a2

1µ
2 + 4a1a2ϕµ→ 0 as µ→ 0. (9)

Let us study the behavior of the expressions A
µ and µ

A as µ→ 0.

A

µ
=
−a1µ+

√
a2

1µ
2 + 4a1a2ϕµ

µ
=

4a1a2ϕ√
a2

1µ
2 + 4a1a2ϕµ+ a1µ

→∞ as µ→ 0.

(10)

A

µ
=

µ

−a1µ+
√
a2

1µ
2 + 4a1a2ϕµ

=
µ(
√
a2

1µ
2 + 4a1a2ϕµ+ a1µ)

4a1a2ϕµ
(11)

=
A

4a1a2ϕ
→ 0 as µ→ 0.

From (9), (10), (11)

C∗1 =
2a1a2V + A

2a1a2 + a1
A
µ

→ 0 as µ→ 0, (12)

C∗2 =
2a1a2V + A

2a1a2 + a1
A
µ

A

2a2µ
=

2a1a2V + A

4a1a2
2
µ
A + 2a1a2

→ V as µ→ 0. (13)

Thus, the maximal excess production occures if µ = 1, and if µ = 0, there is
no excess production in the long run. Thus, large depreciation influences the
economy negatively by causing the excess production.
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4 Three efficiency levels

Now let us consider the model with three efficiency levels.
Ċ1 = 1−ϕ1

λ1
C1(V − C1 − C2 − C3) + µ2C2 = f1(C),

Ċ2 = 1−ϕ2

λ2
C2(V − C1 − C2 − C3) + ϕ1C1 − µ2C2 + µ3C3 = f2(C),

ĊN = 1−α
λ3
C3(V − C1 − C2 − C3) + ϕ2C2 − µ3C3 = f3(C).

(14)

Proposition 3 The system (14) has a unique equilibrium C∗ such that C∗i >
0, i = 1, 2, 3.

Proof Denote x = V − C1 − C2 − C3, y = C2

C1
> 0, z = C3

C1
> 0. Then the

system fi(C) = 0, i = 1, 2, 3 has the following form
a1x+ µ2y = 0,

a2xy − µ2y + µ3z + ϕ1 = 0,

a3xz − µ3z + ϕ2y = 0.

(15)

From (15) we obtain the following polynomial

H(y) =
a3µ2a2

a2
1

y3 +

(
a3µ3

a1
+
a2µ2

a1

)
y2 +

(
−a3ϕ1

a1
+ µ3 − ϕ2

)
y− ϕ1 = 0 (16)

From the Vieta’s formulas for the roots y∗i of (16){
y∗1 + y∗2 + y∗3 = −

(
a3µ3

a1
+ a2µ2

a1

)
< 0,

y∗1y
∗
2y
∗
3 = ϕ1 > 0.

It is possible if and only if the polynomial (16) has the unique real root y∗1 > 0
and the other roots, y∗2, y∗3, are either negative real or complex-conjugate.

Since in our framework y = C2

C1
must be positive real then there exists only

the root y∗1 > 0 of (16) is feasible. Therefore, the system (15) has a unique
solution, which means that the system (14) has a unique equilibrium C∗ such
that C∗i > 0, i = 1, 2, 3.

However, we can only prove the existence and the uniqueness of the equi-
librium C∗, but we cannot find this equilibrium in the explicit form in general.
Let us consider the case µ2 = 0. It means that the first efficiency level is so
inefficient or obsolete that the firms at the second level under the action of the
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depreciation process do not transfer to the first level. The system (14) in this
case takes the form

Ċ1 = 1−ϕ1

λ1
C1(V − C1 − C2 − C3) = f1(C),

Ċ2 = 1−ϕ2

λ2
C2(V − C1 − C2 − C3) + ϕ1C1 + µ3C3 = f2(C),

ĊN = 1−α
λ3
C3(V − C1 − C2 − C3) + ϕ2C2 − µ3C3 = f3(C).

(17)

The system (17) has the equilibria O = (0, 0, 0) and P = (0, C∗2 , C
∗
3), where

C∗2 = (2a2a3V+A)µ3

2a2a3µ3+a2A
, C∗3 = (2a2a3V+A)µ3

2a2a3µ3+a2A
A

2a3µ3
.

Theorem 2 The equilibrium C∗ = (0, C∗2 , C
∗
3) of the system (17) is globally

stable in R3
+ \ {O}.

Proof

According to Proposition 2 all positive half-trajectories enter the set W =

{(C1, . . . , CN) : V 6
N∑
j=1

Cj 6 V + ∆V }, where ∆V =
N−1∑
j=1

Cj
ϕj

aj
, and do not

leave it. Therefore, all positive half-trajectories are positively Lagrange stable.
Hence, the ω-limit set ΩC 6= ∅ for any positive half-trajectory r(C0) [2].

From (17), it is easily to understand, that in W : C1(t) → 0 as t → ∞
for any positive half-trajectory. Hence, C1 = 0 for any point belonging to ΩC ,
or ΩC ⊂ R2

+ = {(C1, C2, C3) ∈ R3
+ : C1 = 0}. Let us show that ΩC = P =

(0, C∗2 , C
∗
3) ∈ R3

+ for any positive half-trajectory r(t) ∈ R3
+ \ {O}. Assume, on

the contrary, that there exists a positive half-trajectory r∗(C0) for which there
exists an ω-limit point Q ∈ ΩC ⊂ R2

+ and Q 6= P .

Since R2
+ is the invariant set of (17), then (17) in R2

+ has the following form{
Ċ2 = 1−ϕ2

λ2
C2(V − C2 − C3) + µ3C3 = f2(C),

Ċ3 = 1−α
λ3
C3(V − C2 − C3) + ϕ2C2 − µ3C3 = f3(C),

(18)

Thus, we can assume that the system (17) has the form (18). One can see, that
the system (18) and the system (3) have the same form. Hence, all conclusions
obtained in the Section 3 are valid for the system (18). From the Theorem 1 the
equilibrium C∗ = (C∗2 , C

∗
3) ∈ R2

+ of this system is globally stable in R2
+ \ {O}.

Consider the positive half-trajectory r(tQ, Q). Consider a point A of the
intersection of the positive half-trajectory r(tQ, Q) with the boundary of the
set W . Let us show that this point exists. Consider in R2

+ the set W 2 = W ∩
{(C1, C2, C3) : C1 = 0} and the system Ċ = −f(C). Obviously, the boundary
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∂W 2 = ∂W ∩ {(C1, C2, C3) : C1 = 0} ⊂ R2
+ and in R2

+ boundaries of W and
W 2 coincide. The inner product (f, n) = (−a1C1 − a2C2)(−R) + ϕ1C1 > 0,
where n = (1, 1) is the normal of the straight line C1 + C2 = V + R,R > 0.
Therefore, this positive half-trajectory exits W 2 through ∂W 2 and there exists
the point A = ∂W 2 ∩ {r(tQ, Q)} = ∂W ∩ {r(tQ, Q)}. Denote by Q̃ the point
such that C(t̃, tQ, Q) = Q̃ (i.e. the time of movement along the positive half-
trajectory r(tQ, Q) from Q to Q̃ equals t̃). Let π(A), π(Q̃) be planes transversal
to the positive half-trajectory r(tQ, Q) at the points A, Q̃ respectively. From
the Theorem (17.4) [3] there exists a closed trajectory cylinder Z ⊂ R3

+ with the
trajectory r(tQ, Q) as its axis and UZ(A) ⊂ π(A), UZ(Q̃) ⊂ π(Q̃) as its bases.
Though UZ(A), UZ(Q̃) 6⊂ R3

+, but because of invariance of R2
+ the positive half-

trajectories, intersecting the sets U+
Z (A) = UZ(A) ∩ R3

+, U+
Z (Q̃) = UZ(Q̃) ∩

R3
+, belong to R3

+. By construction, Z ⊂ W . Since Q is ω-limit point for
r∗(C0), then this positive half-trajectory has to enter the cylinder Z ⊂ W

infinite number of times. The entrance to the cylinder Z occurs through U+
Z (A)

from R3 \W . Thus, the positive half-trajectory r∗(C0) has to leave W before
entering the cylinder Z. But the positive half-trajectories cannot leave W . We
have reached a contradiction. Thus, Q is not a ω-limit point of this positive
half-trajectory. Thus we have, ΩC = {C∗ = (0, C∗2 , C

∗
3)} for any trajectory

r(C0). Since any positive half-trajectory r(C0) is positively Lagrange stable
then, according to the Theorem (3.07) [2], ρ(C(t),ΩC) → 0 for t → ∞, where
ΩC = P , for any C(t). Thus, C∗ = (0, C∗2 , C

∗
3) is globally stable in R3

+ \ {O}.

Conclusions

In this article, the mathematical model of sector capital distribution dynamics
with the depreciation are proposed. The qualitative analysis of the model is
presented. The global attractor for the case of the arbitrary number of efficiency
levels is established. The equilibria of the constructed dynamical model are
determined in the case of two efficiency levels, their global stability is proved.
The global stability of the equilibrium C∗ = (C∗1 , C

∗
2) such that C∗1 + C∗2 > V

means that the depreciation process causes excess production. It is proved that
in the case of three efficiency levels there exists a unique equilibrium. In the
case without the capital transferring from the second level to the first level the
global stability of the equilibrium is proved.
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