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Abstract. In this paper, we investigate by means of second method of Lya-
punov, sufficient conditions that guarantee uniform-asymptotic stability of the
trivial solution and ultimate boundedness of all solutions to a certain second
order differential equation. We construct a complete Lyapunov function in or-
der to discuss the qualitative properties mentioned earlier. The boundedness
result in this paper is new and also complement some boundedness results in
literature obtained by using an incomplete Lyapunov function together with a
signum function. Finally, we demonstrate the correctness of our results with two
numerical examples and graphical representation of the trajectories of solutions
to the examples using Maple software.
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1 Introduction

Our concern in this paper is to investigate sufficient conditions for the stability
and boundedness of solutions to the second order differential equation of the
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form:

Ẋ = H(Y ),

Ẏ = −F (X, Y )Y −G(X) + P (t,X, Y ), (1)

where X, Y : R+ → Rn, G,H : Rn → Rn, P : R+×Rn×Rn → Rn, F is an n×n
continuous symmetric positive definite matrix function depending on the argu-
ments displayed explicitly, R = (−∞,∞) represents the real line, R+ = [0,∞),
Rn represent the real n-dimensional Euclidean space equipped with the usual
norm ‖ ·‖ and the dots which appear in (1) indicate differentiation with respect
to the independent variable t. The conditions for the existence and uniqueness
of solutions of (1) with any predetermined initial conditions will be assumed
(see, Rao [16]). We shall denote the scalar product 〈X, Y 〉 of any vectors X, Y in
Rn with respective components (x1, x2, . . . , xn) and (y1, y2, . . . , yn) by

∑n
i=1 xiyi.

Particularly, 〈X,X〉 = ‖X‖2.

A. M. Lyapunov (1892) in his Ph.D. Thesis titled ” The general problems of
the stability of motion”, studied sufficient conditions for the stability of solu-
tions of non-linear system of differential equations by two distinct methods: the
first(or indirect) and second(or direct) methods of Lyapunov (Lyapunov [12]).
Since these two methods were introduced, the second method has gained wider
acceptance and has been employed in all the listed papers in our reference to
study qualitative behaviour of solutions of differential equations(see, [1]-[23]).
This method (i.e. the second method) enables us to determine the qualitative
properties of solutions of differential equations without necessarily finding the
solutions themselves.

However, to use the second method of Lyapunov, one needs to construct
a positive definite function, whose derivative with respect to variable t along
the solution path of the equation being considered is negative semi-definite.
This positive definite function is called Lyapunov function. Unfortunately, the
method is not without any difficulty or challenge. One major challenge of the
method has to do with, how to construct a suitable Lyapunov function espe-
cially for non-linear differential equations.

In [19], Tejumola gave necessary conditions for the boundedness of solutions
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to the following scalar differential equations:

ẋ = h(y),

ẏ = −f(x, y)y − g(x) + p(t, x, y). (2)

We note that system (2) is the scalar form of system (1). Later Omeike et.
al. [14] with the aid of an incomplete Lyapunov function supplemented with
signum function, extended the boundedness results obtained by Tejumola[19]
to the corresponding n-dimensional system of equations given in (1).

Very recent, Adeyanju([2],[3]) examined some conditions for the stability of
the zero solution, boundedness and uniform-ultimate boundedness of solutions
of the second order non-linear differential equation:

Ẍ + F (X, Ẋ)Ẋ +G(X) = P (t,X, Ẋ), (3)

where X : R+ → Rn, G : Rn → Rn, P : R+ × Rn × Rn → Rn and F is an
n× n continuous symmetric positive definite matrix function that depends on
the arguments displayed explicitly. The boundedness property of solutions to
(3) has also been studied by Omeike et. al.[15].

Motivated by the works of Tejumola [19] and Omeike et.al. [14], we will with
the aid of a complete Lyapunov function, examine conditions that ensure the
boundedness of solutions of (1) with less restricted assumptions. Furthermore,
we will also prove a theorem on the stability of the trivial solution to the system
(1) which was not discussed in [14] or elsewhere to the best of our knowledge
in literature.

2 Preliminary Results

The following established algebraic results are required to prove our main re-
sults.

lemma 1 ([10],[20]). Let A be a real n×n symmetric positive definite matrix.
Then for X ∈ Rn

δa‖X‖2 ≤ 〈AX,X〉 ≤ ∆a‖X‖2,

where δa and ∆a are, respectively, the least and greatest eigenvalues of the ma-
trix A.
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lemma 2 ([9],[20]). Let G(0) = 0 = H(0) and assume that the matrices
A, Jg(X) and Jh(Y ) are symmetric and positive definite such that A commutes
pairwise with each of Jg(X) and Jh(Y ) for all X, Y ∈ Rn. Then,

〈G(X), AX〉 =

∫ 1

0

XTAJg(σX)Xdσ,

〈H(Y ), AY 〉 =

∫ 1

0

Y TAJh(σY )Y dσ,

where Jg(X) and Jh(Y ) are respectively the Jacobian matrices ∂gi
∂xj

and ∂hi
∂yj

of

G(X) and H(Y ) (j = 1, 2, ..., n).

lemma 3 [9]. Let G(0) = 0 and assume that Jg(X) is symmetric for all
arbitrary X ∈ Rn. Then

d

dt

∫ 1

0

〈G(σX), X〉dσ = 〈G(X), Ẋ〉.

Lemma 4 [11]. Suppose f(0) = 0. Let V be a continuous functional de-
fined on CH = C with V (0) = 0 and let u(s) be a function, non-negative and
continuous for 0 ≤ s < ∞, u(s) → ∞ as s → ∞ with u(0) = 0. If for
all ϕ ∈ C, u(|φ(0)|) ≤ V (ϕ), V (ϕ) ≥ 0, V̇ (ϕ) ≤ 0, then the zero solution of
ẋ = f(xt)(t ≥ 0), is stable.

If we define Z = {ϕ ∈ CH : V̇ (ϕ) = 0}, then the zero solution of ẋ =
f(xt)(t ≥ 0), is asymptotically stable, provided that the largest invariant set in
Z is Q = {0}.

3 Main Results

First, we introduce some basic assumptions to be used in proving our results.

Basic Assumptions:

Suppose that ∆f , ∆g, ∆h, δf , δg, δh are some positive constants and let all the
basic assumptions imposed on functions F (X, Y ), G(X), and H(Y ) hold such
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that G(0) = 0 and H(0) = 0. In addition, let the following assumptions hold
for all X, Y ∈ Rn:

(i) the matrices Jg(X), Jh(Y ) and F (X, Y ) are symmetric and positive definite
such that their eigenvalues satisfy:

δg ≤ λi(Jg(X)) ≤ ∆g,

δh ≤ λi(Jh(Y )) ≤ ∆h,

δf ≤ λi(F (X, Y )) ≤ ∆f ,

(i = 1, 2, ..., n),

(ii) there exists a function a(t) ∈ C1[0,∞) such that 0 < a0 < a(t) < a1, −β ≤
a′(t) ≤ 0, where

β > max

{
a1∆h,

a1∆h

δhδf

}
.

Now to the main results of the paper.

Theorem 1 Suppose all the assumptions listed under the basic assumptions
hold. Then the trivial solution of (1) is uniformly stable and uniformly-
asymptotically stable when P (t,X, Y ) ≡ 0.

Proof
To prove this theorem, we depend on the continuously-differentiable scalar func-
tion V = V (t,X, Y ) define as

V = a(t)〈X,X〉+ β

∫ 1

0

〈G(σX), X〉dσ + β

∫ 1

0

〈H(σY ), Y 〉dσ, (4)

where a(t) and β are as defined under the basic assumptions.

Obviously, the Lyapunov function defined in (4) becomes zero when X = 0
and Y = 0. On applying Lemma 1, Lemma 2 and assumptions listed in (i) of
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basic assumptions to (4), we have for some positive constants D0 and D1

V =a(t)〈X,X〉+ β

∫ 1

0

〈G(σX), X〉dσ + β

∫ 1

0

〈H(σY ), Y 〉dσ

=a(t)〈X,X〉+ β

∫ 1

0

∫ 1

0

〈JG(σ1σ2X)X,X〉σ1dσ1dσ2

+β

∫ 1

0

∫ 1

0

〈JH(σ1σ2Y )Y, Y 〉σ1dσ1dσ2

≥a0 ‖ X ‖2 +
1

2
βδg ‖ X ‖2 +

1

2
βδh ‖ Y ‖2

≥D0(‖X‖2 + ‖Y ‖2),

where, D0 = 1
2 min{2a0 + βδg, βδh}.

Similarly, we have

V =a(t)〈X,X〉+ β

∫ 1

0

∫ 1

0

〈JG(σ1σ2X)X,X〉σ1dσ1dσ2

+β

∫ 1

0

∫ 1

0

〈JH(σ1σ2Y )Y, Y 〉σ1dσ1dσ2

≤a1 ‖ X ‖2 +
1

2
β∆g ‖ X ‖2 +

1

2
β∆h ‖ Y ‖2

≤D1(‖X‖2 + ‖Y ‖2),

where, D1 = 1
2 min{2a1 + β∆g, β∆h}.

Hence,
D0(‖X‖2 + ‖Y ‖2) ≤ V ≤ D1(‖X‖2 + ‖Y ‖2). (5)

Thus, the function V defined by (4) satisfies

V (X, Y )→∞ as ‖X‖2 + ‖Y ‖2 →∞. (6)

Inequalities (5) and (6) show that the scalar function V is non-negative for all
X, Y ∈ Rn and V = 0 if and only if X = 0 and Y = 0.

Next, we show that the derivative V̇ of the function V in (4) exists, and that
there are finite constants D2, D3 such that

V̇ ≤ −D2 < 0 if ‖X‖2 + ‖Y ‖2 ≥ D2
3. (7)
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Using Lemma 3, we obtain the time derivative of the scalar function defined in
(4) along the system (1) as

V̇ = a′(t)〈X,X〉+ 2a(t)〈X,H(Y )〉+ β〈H(Y ),−F (X, Y )Y 〉. (8)

By Schwartz’s inequality and (i) of Theorem 1, we have

2|〈X,H(Y )〉| ≤ ∆h{‖ X ‖2 + ‖ Y ‖2}.

Again, we apply Lemma 1, Lemma 2 and the above inequality in (8) to obtain

V̇ ≤ −(β − a1∆h) ‖ X ‖2 −(βδhδf − a1∆h) ‖ Y ‖2 . (9)

From the definition of β, it is possible to get a positive constant D4, such that

V̇ ≤ −D4{‖ X ‖2 + ‖ Y ‖2} < 0,whenever ‖ X ‖2 + ‖ Y ‖2> D2
3, (10)

where D4 = min{β − a1∆h, βδhδf − a1∆h}.
The two inequalities (5) and (10) guarantee uniform stability of the trivial so-
lution of (1).

To prove the asymptotic stability of the trivial solution, we consider a set defines
by

S ≡ {(X, Y ) : V̇ (X, Y ) = 0}.
Applying the famous LaSalle’s invariance principle to this set, we note that
(X, Y ) ∈ S implies that X = Y = 0. This shows that the largest invariant
set contained in S is (0, 0). Hence, we conclude by Lemma 4 that the trivial
solution of (1) is uniformly-asymptotically stable when P (t,X, Y ) ≡ 0. This
completes the proof of the theorem.

Theorem 2 Further to the assumptions of Theorem 1, let P (t,X, Y ) in (1)
satisfies

(iii)
‖ P (t,X, Y ) ‖≤ γ ‖ Y ‖,

uniformly in t ≥ 0 and 0 < γ <
δhδf
∆h
. Then there exists a finite constant K

whose magnitude depends only on the constants ∆f , ∆g, ∆h, δf , δg, δh such
that every solution (X(t), Y (t)) of (1) ultimately satisfies

‖X(t)‖ ≤ K, ‖Y (t)‖ ≤ K. (11)
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proof
The prove of this theorem still rests on the Lyapunov function defined in (4).
In the proof of Theorem 1, we have demonstrated that the Lyaounov function
satisfies (5) which is also correct when P (t,X, Y ) 6= 0. However, the derivative
of V when P (t,X, Y ) 6= 0 is

V̇ = a′(t)〈X,X〉+a(t)〈X,H(Y )〉+β〈H(Y ),−F (X, Y )Y 〉+β〈H(Y ), P (t,X, Y )〉.

From the proof of Theorem 1 and (iii) of Theorem 2, we have

V̇ ≤− (β − a1∆h) ‖ X ‖2 −(βδhδf − a1∆h) ‖ Y ‖2 +β∆hγ ‖ Y ‖2

≤− (β − a1∆h) ‖ X ‖2 −
(
β(δhδf −∆hγ)− a1∆h

)
‖ Y ‖2

≤−D5{‖ X ‖2 + ‖ Y ‖2}, (12)

where D5 = min{β−a1∆h, β(δhδf−∆hγ)−a1∆h}. Then, there exists a positive
constant D6 such that

V̇ ≤ −1 provided ‖ X ‖2 + ‖ Y ‖2≥ D6. (13)

By following the Yoshizawa-type technique used in [[13], [23] ], it can be shown
from inequalities (5) and (12) that we can always find a positive constant D7

such that every solution (X(t), Y (t)) of (1) satisfies

‖ X ‖2 + ‖ Y ‖2≤ D7. (14)

On setting K =
√
D7 in (14), we obtain (11) with little simplification. This

completes the proof of the theorem.

4 Examples

The following examples are given as special cases of (1) when n = 2.

Example 1
Our first example is when P (t,X, Y ) ≡ 0. Suppose in (1) we have

Ẋ =

[
ẋ1

ẋ2

]
= H(Y ) =

[
3y1 + cos y1 − 1

3y2 + cos y2 − 1

]
, Y =

[
y1

y2

]
, G(X) =

[
5x1 + sinx1

5x2 + sinx2

]
,

F (X, Y ) =

[
2 + 1

x21 sin2 y1+1
1

1 2 + 1
x22 sin2 y2+1

]
and a(t) = 1 + exp−8.5t .
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We obtain the following Jacobian matrices Jh(Y ) and Jg(X) of H(Y ) and G(X)
respectively as,

Jh(Y ) =

[
3− sin y1 0

0 3− sin y2

]
, Jg(X) =

[
5 + cos x1 0

0 5 + cosx2

]
.

It is evident from the above that matrices F (X, Y ), Jh(Y ) and Jg(X) are sym-
metric and positive definite with the following as eigenvalues.

λ1(F (X, Y )) = 3 +
1

x2
1 sin2 y1 + 1

, λ2(F (X, Y )) = 1 +
1

x2
2 sin2 y2 + 1

,

λ1(Jh(Y )) = 3− sin y1, λ2(Jh(Y )) = 3− sin y2,

λ1(Jg(X)) = 5 + cosx1, λ2(Jg(X)) = 5 + cosx2.

Thus, with some elementary calculations, we obtain for i = 1, 2,

δf = 1 ≤ λi(F (X, Y )) ≤ 4 = ∆f

δh = 2 ≤ λi(Jh(Y )) ≤ 4 = ∆h,

δg = 4 ≤ λi(Jg(X)) ≤ 6 = ∆g.

Also, 0 < a0 = 1 < a(t) = 1 + exp−8.5t < a1 = 2 and −8.5 ≤ a′(t) =
−8.5 exp−8.5t ≤ 0. Thus,

β = 8.5 > max

{
a1∆h,

a1∆h

δhδf

}
= max {8, 4} = 8.

Hence, all the assumptions of Theorem 1 hold and, the trivial solution of this
example is uniform-asymptotically stable.

The next example is when P (t,X, Y ) 6= 0.

Example 2
Suppose in addition to Example 1, we have

P (t,X, Y ) =
1

4 + sin t

[ |y1|−1
1+x21
|y2|−1
1+x22

]
.

Hence,

‖ P (t,X, Y ) ‖=| 1

4 + sin t
| ‖

[ |y1|−1
1+x21
|y2|−1
1+x22

]
‖

≤ 1√
5
‖ Y ‖ .
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Therefore,

0 < γ =
1√
5
<
δhδf
∆h

=
1

2
.

Again, all the assumptions of Theorem 2 hold. Hence, solutions of equation in
Example 2 are uniform-ultimately bounded.

Graphically, with the aid of Maple software, we illustrate the stability and
boundedness of solutions to the Example 2 as shown below.

5 Conclusion

By constructing a new and complete Lyapunov function, we have been able to
prove some results on the uniform-asymptotic stability of the trivial solution
and uniform-ultimate boundedness of all solutions to certain systems of second
order differential equations studied in this paper. With these new results, we
have improved on some of the existing results in the literature.
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