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Abstract. We discuss the recent progress on studying volume contraction for
linear cocycles generated by delay equations obtained by the authors. On the ba-
sis, we use adapted metrics constructed explicitly or via the Frequency Theorem.
In contrast to many existing results, this approach allows to provide effective es-
timates in terms of the system parameters (including delays). We illustrate the
exposed general results by means of the nonautonomous and classical Nicholson
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robust conditions for the global stability are obtained.
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1 Introduction

Estimating dimensions of global attractors is one of basic problems in dissipa-
tive dynamics. Although the initial interest in the problem was concerned with
finite-dimensional reduction (see S. Zelik [45]), further developments revealed a
natural generalization of the Bendixson criterion and its applications to the prob-
lem of global stability (see R. Smith [41]; M.Y. Li and J.S. Muldowney [34, 35];
G.A. Leonov and V.A. Boichenko [33]). From this perspective, the problem of
effective computation or estimation of dimensions is of high interest. In this di-
rection, the main approach is concerned with the study of volume contraction and
the related dimensional-like characteristic called the Lyapunov dimension. In [1],
it is shown that the Lyapunov dimension theoretically admits exact computation
via adapted metrics on exterior products. Although many authors use standard
metrics to provide effective estimates (mainly in the case of ODEs and parabolic
equations; see R. Temam [44]), sharper estimates or even exact computations re-
quire considerations of adapted metrics (see N.V. Kuznetsov and V. Reitmann
[25]). This is also the case for some problems in which standard metrics are not
appropriate.

This work is a survey devoted to the problem of providing effective dimension
estimates for delay equations. On the geometric level, the problem is concerned
with studying volume contraction for linear cocycles generated by linearized delay
equations. It was clearly posed in the work of the first author [6] based on the
analysis of preceding results.

Among them, it should be highlighted the pioneering work of J. Mallet-Paret
[40] which utilizes compactness of the cocycle mappings to establish finiteness of
dimensions. This method does not provide any way to obtain effective estimates.
Starting from [40], most of the works interested in delay equations and dimension
estimates follow similar approaches therefore making only qualitative conclusions
on the finiteness of dimensions. This is reflected in the classical monographs
(for example, J.K. Hale [20]) as well as in relatively recent ones (see A.N. Car-
valho, J.A. Langa and J.C. Robinson [13]; I.D. Chueshov [17]). Moreover, even
recent works, for example of W. Hu and T. Caraballo [22], proceed to develop
this approach. In [22], the resulting estimates are called explicit, but they are not
effective because of appealing to objects associated with exponential dichotomies
of non-self-adjoint linear problems which cannot be computed or analyzed effec-
tively. In addition, the utilization of exponential dichotomies for the problem of
dimension estimates is artificial and therefore it results in estimates with wrong
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asymptotics.
It is well-known that one of general ways to provide effective dimension esti-

mates is concerned with the Liouville trace formula and resulting from it upper
estimates such as the Douady-Oesterlé or Constantin-Foias-Temam estimate (see
N.V. Kuznetsov V. Reitmann [25]; R. Temam [44]; S. Zelik [45]). To the best of
our knowledge, the first attempt to apply this approach for delay equations was
done by J.W-H. So and J. Wu in [43]. However, the authors did not succeed to de-
rive from it effective estimates. In particular, at the end of the introduction they
wrote: “The verification of the hypotheses in Theorem 3.10 for reaction-diffusion
systems with delays is a non-trivial task and will be reported in a future paper.”
Since then, none of such declared results appeared.

A reason for such a failure is explained in [6] by means of a simpler example.
Namely, to derive from the Liouville formula some uniform upper estimates, one
has to compute or estimate the so-called trace numbers. For the computation,
one applies the symmetrization procedure which sometimes allows to describe the
trace numbers via eigenvalues of self-adjoint operators obtained via the additive
symmetrization∗ (see [1]). In [6], for particular delay operators, it is shown that
the trace numbers computed in the standard metric are irrelevant (in particular,
they do not depend on the delay). Moreover, for general delay operators, the sym-
metrization procedure itself requires additional justification and the false proof
(and the false general statement) of Theorem 7 in [6] only confirms this.

In [1], the general symmetrization problem is stated and its investigation is
illustrated by means of a fairly general class of delay operators. In particular, it
is shown that the resolution of the problem significantly depends on the choice of
a metric from the considered class. Moreover, the study allowed to obtain for the
first time effective dimension estimates for global attractors in the Mackey-Glass
equations and the periodically forced Suarez-Schopf delayed oscillator [5] and the
estimates are numerically justified to be asymptotically sharp as the delay tends
to infinity. In Section 3, we will discuss some of these results in more details.

As to [43], the authors exclude discrete delays from consideration due to their
inability to construct semigroups in Hilbert spaces (this problem was resolved in
[6]) and consider only distributed delays. Note that such delays may cause the
presence of a continuous spectrum in the additive symmetrization and how to

∗For parabolic equations, the symmetrization procedure is trivial and it is usually used implicitly. In the
case of reaction-diffusion systems, upper estimates for the trace numbers in standard metrics lead to relevant
asymptotics of dimensions [44]. To provide sharper estimates or to study other parabolic equations such as the
2D Navier-Stokes equations, one has to develop additional techniques, for example, the theory of Lieb-Thirring
inequalities (see V.V. Chepyzhov and A.A. Ilyin [14]).
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deal with this is still an open problem (see [1]).
Another approach to provide effective dimension estimates for delay equations

is developed by the first author in [2]. It is based on applications of the recently
obtained version of the Frequency Theorem [4] (see also [8]) to study m-fold
compound cocycles acting on exterior powers of the Hilbert space. For this,
it is required to study their infinitesimal generators along with structural and
regularity properties of the associated linear inhomogeneous problems and most of
the study [2] is devoted to this. As a result, we obtain frequency conditions for the
exponential stability ofm-fold compound cocycles. Geometrically, such conditions
imply the existence of a constant adapted metric (on the exterior power) which
allows to establish the exponential stability.

In [3], the authors developed an approximation scheme to verify some of the
arising (in the above study) frequency inequalities for the case of scalar equations†.
For m = 2, such conditions (called the Frequency Criterion) are expected to
imply global stability in the system due to the generalized Bendixson criterion of
M.Y. Li and J.S. Muldowney [35] and robustness of the Frequency Criterion. We
will discuss this in Section 4 and illustrate the criterion by means of the classical
Nicholson blowflies model in Section 6.

Among preceding works it should be also mentioned the study of J. Mallet-
Paret and R.D. Nussbaum [38] concerned with cocycles on injective tensor prod-
ucts generated by a class of scalar delay equations arising after linearization of
scalar nonlinear equations with monotone feedback. Such nonlinear equations
are known to satisfy the Poincaré-Bendixson trichotomy (see J. Mallet-Paret and
G.R. Sell [39]). In [38], it is established a comparison principle which allows to
compare the Floquet multipliers over periodic orbits and stationary points (con-
sidered as periodic with the same period). In [6], this principle is combined with
the Ergodic Variational Principle (see [1]) to derive effective dimension estimates‡.
However, systems of equations or scalar equations without monotone feedback go
beyond this context.

Moreover, effective dimension estimates for delay equations can be obtained
in the case of small delays by studying vector fields in Rn. This is possible due
to the existence of inertial manifolds for such equations (see [4]). In [15, 16],
C. Chicone obtained a power series expansion of the vector field on the inertial
manifold in terms of the small delay. This series can be used to symmetrize the
vector field and provide effective dimension estimates.

†The general scheme works for systems of equations.
‡In [5] it is shown that the Frequency Criterion may improve these estimates.
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There are results on fractal dimensions of forced almost periodic oscillations
obtained by the first author [10] and the authors joint with V. Reitmann [11]
for almost periodic ODEs which are interesting to generalize for delay equations.
Here a problem arises due to the fact that quadratic functionals constructed by
the Frequency Theorem [4] may be not coercive.

This paper is organized as follows. In Section 2, we discuss well-posedness
and linearization for a class of nonautonomous nonlinear delay equations in Rn

posed in a proper Hilbert space H. In Section 3, we consider effective dimen-
sion estimates via additive symmetrization of delay operators. In Section 4, we
state a frequency criterion guaranteeing volume contraction for m-fold compound
cocycles and expose a numerical scheme for its verification in the case m = 2.
In Section 5, we obtain effective dimension estimates for global attractors in the
nonautonomous Nicholson blowflies model. In Section 6, we apply the Frequency
Criterion to provide robust conditions for the global stability in the classical
Nicholson blowflies model and compare the result with other methods.

2 Well-posedness and linearization of delay equations in
Hilbert spaces

In this section, we are going to discuss the well-posedness and linearization of the
following nonautonomous nonlinear delay equations over a semiflow (Q, ϑ) on a
complete metric space Q. Over a given q ∈ Q, the system is described by

ẋ(t) = Ãxt + B̃F (ϑt(q), Cxt) + W̃ (ϑt(q)), (2.1)

where τ > 0 is a fixed value (delay), x(·) : [−τ, T ] → Rn for some T > 0 and
xt(θ) := x(t + θ) for θ ∈ [−τ, 0] denotes the τ -history segment of x(·) at t ∈
[0, T ]; Ã : C([−τ, 0];Rn) → Rn and C : C([−τ, 0];Rn) → Rr2 are bounded linear
operators; B̃ is an n× r1-matrix; W̃ : Q → Rn is a bounded continuous function
and F : Q× Rr2 → Rr1 is a C1-differentiable in the second argument continuous
mapping such that for some Λ > 0 we have

|F (q, y1)− F (q, y2)|U ≤ Λ|y1 − y2|M for any q ∈ Q and y1, y2 ∈ M, (2.2)

where U = Rr1 and M = Rr2 are endowed with some (not necessarily standard
Euclidean) inner products (this will be used in Section 4).

We need to consider (2.1) as an evolutionary equation in the Hilbert space H =
Rn × L2(−τ, 0;Rn). In this space, there is an unbounded operator A associated
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with Ã from (2.1) as

(x, ϕ)
A7→

(
Ãϕ,

d

dθ
ϕ

)
, (2.3)

where (x, ϕ) belongs to the domain D(A) of A given by

D(A) := {(x, ϕ) ∈ H | ϕ(·) ∈ W 1,2(−τ, 0;Rn) and ϕ(0) = x}, (2.4)

and d
dθ denotes the derivative in the Sobolev space W 1,2(−τ, 0;Rn).
We embed the space E = C([−τ, 0];Rn) into H via the mapping ϕ 7→ (ϕ(0), ϕ)

for ϕ ∈ E. It will be convenient to identify the elements of E and their images in
H under the embedding and keep the same notations for the induced operators.
For example, we put C(x, ϕ) := Cϕ for (x, ϕ) ∈ E for the operator induced by C
from (2.1).

With B̃ from (2.1) we associate a bounded linear operator B : U → H given
by Bη := (B̃η, 0) for η ∈ U. Moreover, let W : Q → H be associated with W̃

from (2.1) as W (q) := (W̃ (q), 0) for q ∈ Q. From this we can treat (2.1) as an
abstract nonautonomous evolution equation in H over the semiflow (Q, ϑ) which
is described by§

v̇(t) = Av(t) +BF (ϑt(q), Cv(t)) +W (ϑt(q)). (2.5)

Note that A is the generator of a C0-semigroup G in H. By Theorem 1
in [6], for any v0 ∈ H and T > 0 there exists a unique generalized solution
v(·) = v(·; q, v0) = (x(·), ϕ(·)) which is a continuous H-valued function on [0, T ]
satisfying v(0) = v0, ϕ(t) = xt in L2(−τ, 0;Rn) and

v(t) = G(t)v0 +

∫ t

0

G(t− s) [BF (ϑs(q), Cxs) +W (ϑs(q))] ds (2.6)

for any t ∈ [0, T ]. For understanding (2.6), it is important to note that we may
interpret the function [0, T ] ∋ s 7→ Cxs ∈ M for x(·) ∈ L2(−τ, T ;Rn) as a well-
defined element of L2(0, T ;M) (see [2, 4, 6]). From the variation of constants
formula (2.6), one can show that the mappings

ψt(q, v0) := v(t; q, v0) for t ≥ 0, q ∈ Q and v0 ∈ H (2.7)

determine a nonlinear cocycle ψ in H over the semiflow (Q, ϑ) (see [1, 2, 3] for
precise definitions).

§From what has been said, we have that (2.5) is an abstract form of the transfer equation ∂
∂tϕ(t, θ) =

∂
∂θϕ(t, θ), where t > 0 and θ ∈ (−τ, 0), and (2.1) describes a nonlinear nonlocal boundary condition of Neumann
type at θ = 0.
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One can relate the generalized solutions to the classical solutions in E =
C([−τ, 0];Rn) as follows. Remind that E is identified with its image in H under
the embedding ϕ 7→ (ϕ(0), ϕ) for ϕ ∈ E. By Theorem 1 in [6], the restriction of ψ
to E is the cocycle in E generated by classical solutions (see J.K. Hale [20]). More
precisely, we have ψt(q, v0) = (x(0), xt) for t ≥ 0, where x(·) : [−τ,+∞) → Rn is
continuous and C1-differentiable on [0,∞) function satisfying (2.1) for t ≥ 0 and
x(θ) = ϕ0(θ) for θ ∈ [−τ, 0], where v0 = (ϕ(0), ϕ0). Moreover, ψτ(q,H) ⊂ E and
for any T ≥ τ there exists a constant LT > 0 such that the smoothing estimate

∥ψt(q, v1)− ψt(q, v2)∥E ≤ LT |v1 − v2|H for t ∈ [τ, T ] (2.8)

is valid for any v1, v2 ∈ H and q ∈ Q.
With such ψ, we can associate a skew-product semiflow π in Q×H as

πt(q, v) = (ϑt(q), ψt(q, v)) for t ≥ 0, q ∈ Q and v ∈ H. (2.9)

From the smoothing property we have that any strictly invariant subset P ⊂
Q×H of π, i.e. such that πt(P) = P for any t ≥ 0, must satisfy P ⊂ Q× E.

We may linearize (2.5) in the fiber q ∈ Q along the trajectory of v0 ∈ E (for
simplicity), as

ξ̇(t) = Aξ(t) +BF ′(ϑt(q), Cψt(q, v0))Cξ(t), (2.10)

where F ′(q, y) is the derivative of F (q, y) w.r.t. y.
Similarly to the above considerations, we have that for any ℘ = (q, v0) ∈ Q×E

and ξ0 ∈ H there exists a unique generalized solution ξ(t) = ξ(t; q, v0, ξ0) of (2.10)
with ξ(0) = ξ0 and the mappings

Ξt(℘, ξ0) := ξ(t; q, v0, ξ0) for t ≥ 0, ℘ = (q, v0) ∈ Q× E and ξ0 ∈ H (2.11)

determine a uniformly continuous linear cocycle (in the terminology of [1, 2]) Ξ in
H over the skew-product semiflow (Q×E, π). Analogously to (2.8), the cocycle is
smoothing in the sense that Ξτ(℘,H) ⊂ E and for any T ≥ τ there is a constant
LT > 0 such that

∥Ξt(℘, ξ)∥E ≤ LT |ξ|H for any t ∈ [τ, T ], ℘ ∈ Q× E and ξ ∈ H. (2.12)

Analogously to Theorem 2 in [6], one can deduce from (2.6) that for any
q ∈ Q, v0 ∈ E, T > 0 and any bounded subset B of H we have

lim
h→0

|ψt(q, v0 + hξ)− ψt(q, v0)− hΞt(℘, ξ)|H
h

= 0, (2.13)
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where ℘ = (q, v0) and the limit is uniform in t ∈ [0, T ] and ξ ∈ B. In other
words, Ξt(℘, ·) is the Fréchet differential of ψt(q, ·) : H → H at v0 ∈ E, which
continuously depends on ℘ = (q, v0) ∈ Q× E.

Let λ1(Ξ) ≥ λ2(Ξ) ≥ . . . be the uniform Lyapunov exponents of Ξ (see [1]).
Suppose there exists m ≥ 0 such that

∑m
k=1 λk(Ξ) ≥ 0 (for m = 0 the sum is

zero) and
∑m+1

k=1 λk(Ξ) < 0. Then the Lyapunov dimension¶ of Ξ is defined by
the Kaplan-Yorke formula

dimL Ξ := m+

∑m
k=1 λk(Ξ)

|λm+1(Ξ)|
. (2.14)

If there is no such m, we put dimL Ξ := ∞. Moreover, for λm+1(Ξ) = −∞ we
have dimL Ξ := m.

Let P be a strictly invariant w.r.t. π compact subset, i.e. πt(P) = P for any
t ≥ 0. From (2.13) one may relate the Lyapunov dimension of Ξ and the Hausdorff
or fractal dimensions of the fibers Pq := P ∩ ({q} × E) (see [14, 25, 44, 45]).
Namely, an appropriate extension of the main result from [14] (which is shown for
the autonomous case, i.e. for Q being a one-point set) would give the estimate

dimFPq ≤ dimL Ξ for any q ∈ Q (2.15)

for the fractal dimension dimFPq of Pq. Note that due to the smoothing estimate
(2.8), the Hausdorff and fractal dimensions of Pq in the metrics of H and E
coincide.

3 Effective dimension estimates via additive symmetriza-
tion of delay operators

Let us rewrite (2.10) as ξ̇(t) = A(πt(℘))ξ(t), where A(℘) = A + BF ′(q, Cv0)C
for ℘ = (q, v0) ∈ Q × E. It is clear that A(℘) has the same form as A and, in
particular, it is naturally defined on the same domain D(A) being the generator
of a C0-semigroup.

In [1], it is shown that the operator (A∗(℘)+A(℘))/2, where the adjoint A∗(℘)
of A(℘) is computed in appropriate metrics in H, may admit a densely-defined self-
adjoint extension (called an additive symmetrization of A(℘)) being a bounded‖.
operator in H. Under additional conditions (see below), it is also established that

¶More precisely, the global or uniform Lyapunov dimension.
‖Thus an additive symmetrization of A(℘) is unique in this case.

https://doi.org/10.21638/11701/spbu35.2024.103 Electronic Journal: http://diffjournal.spbu.ru/ 29



Differential Equations and Control Processes, N. 1, 2024

the additive symmetrization is proper in terms of [1]. This allows to characterize
trace numbers of A(℘) via eigenvalues of the additive symmetrization. From this,
the Liouville trace formula can be applied to derive effective dimension estimates.
We are going to describe this result.

As a model for A(℘), let us consider an operator L̃ : C([−τ, 0];Rn) → Rn and
the corresponding to it operator L as in (2.3), i.e.

(x, ϕ)
L7→

(
L̃ϕ,

d

dθ
ϕ

)
, (3.1)

where (x, ϕ) ∈ D(L) = {(x, ϕ) ∈ H | ϕ(·) ∈ W 1,2(−τ, 0;Rn) and ϕ(0) = x}.
We suppose that L̃ is given by

L̃ϕ = L0ϕ(0) + L−τϕ(−τ) +
J∑

j=1

L−τjϕ(−τj) (3.2)

for any ϕ ∈ C([−τ, 0];Rn). Here L0, L−τ and L−τj are n × n-matrices with
τj ∈ (0, τ) for j ∈ {1, . . . , J} being distinct values.

It is convenient to put τ0 := 0 and τJ+1 := τ . Let ρ(·) be a positive function
on [−τ, 0] such that∗∗ ρ(·) ∈ C1([−τj+1,−τj];R) for any j ∈ {0, . . . , J} and
infθ∈[−τ,0] ρ(θ) > 0. With such ρ, by fixing an inner product ⟨·, ·⟩Rn in Rn, we
endow H with the inner product

⟨(x, ϕ), (y, ψ)⟩ρ := ⟨x, y⟩Rn +

∫ 0

−τ

ρ(θ)⟨ϕ(θ), ψ(θ)⟩Rndθ, (3.3)

where (x, ϕ), (y, ψ) ∈ H.
It is important that ρ(·) may have discontinuities at −τj with j ∈ {1, . . . , J}.

Let ∆j(ρ) := ρ(−τj+0)−ρ(−τj−0) be the jump of ρ at −τj. Then, by Theorem
5.2 in [1], A(℘) admits an additive symmetrization if and only if ∆j(ρ) ̸= 0 for
any j ∈ {1, . . . , J}. Moreover, to admit a proper additive symmetrization we
must satisfy ∆j(ρ) > 0 for any j ∈ {1, . . . , J}.

A useful example of ρ satisfying the above properties is

ρ(θ) := eκjθ, if θ ∈ (−τj+1,−τj] and j ∈ {0, . . . , J} (3.4)

with κ0 < κ1 < . . . < κJ .
Now consider a closed positively invariant w.r.t. π (from (2.9)) subset P ⊂

Q× E. Let V : P → R be a bounded scalar function which satisfies
∗∗This means that ρ(·) ∈ C1((−τj+1,−τj);R) and it can be naturally extended to [−τj+1,−τj ] so it becomes

C1-differentiable on the closed interval.
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(V1) For any T > 0, the mapping [0, T ] ∋ t 7→ V (ϑt(q)) ∈ R is absolutely
continuous;

(V2) For each ℘ ∈ P , there exists the right derivative of V along the trajectory
of ℘, i.e.

V̇ (℘) := lim
t→0+

V (πt(℘))− V (℘)

t
. (3.5)

With the aid of ρ as in (3.4) and V as above the following theorem is estab-
lished in [1] (see Theorem 5.4 therein).

Theorem 1. In the above context, suppose that for any ℘ ∈ P the operators
A(℘) have the form as L from (3.1) and (3.2) with the corresponding (n × n)-
matrices L0 = L0(℘), L−τ = L−τ(℘) and L−τj = L−τj(℘) for j ∈ {1, . . . , J}. Let
κ0 < κ1 < . . . < κJ be given and let λ1(℘) ≥ . . . ≥ λn(℘) be the eigenvalues
(counting multiplicities) of the symmetric matrix (here T denotes the transpose
of a matrix†† and In is the (n× n)-identity matrix)

L0(℘) + LT
0 (℘) + eκJτL−τ(℘)L

T
−τ(℘) +

J∑
j=1

L−τj(℘)L
T
−τj

(℘)

e−κj−1τj − e−κjτj
+ In. (3.6)

Let 0 ≤ K(℘) ≤ n be the largest number k such that λk(℘) ≥ −κ0. For m ≥ 1
consider the value

α+(m) := sup
℘∈P

V̇ (℘) +
1

2

min{m,K(℘)}∑
k=1

λk(℘)−
κ0

2
·max{0,m−K(℘)}

 . (3.7)

Then the cocycle Ξ given by (2.11) over the semiflow (P , π) satisfies

λ1(Ξ) + . . .+ λm(Ξ) ≤ α+(m). (3.8)

Here the presence of a Lyapunov-like function V (·) in (3.7) is a development
of the Leonov method (see N.V. Kuznetsov [27]; N.V. Kuznetsov et al. [26];
G.A. Leonov and V.A. Boichenko [33]). On the geometric level, it is concerned
with variations of a constant metric in H in its conformal class via the Lyapunov
function. This method led to exact formulas of the Lyapunov dimension for
the Hénon and Lorenz-like systems (see G.A. Leonov [29, 32]; G.A. Leonov et
al. [28]; G.A. Leonov and T. Mokaev [30]; G.A. Leonov, T.A. Alexeeva and
N.V. Kuznetsov [31]). In [37], M. Louzeiro et al. developed an algorithm for

††More generally, one may take the adjoints w.r.t. any fixed inner product in Rn.
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optimization in such a conformal class in the case H = Rn and V having a
particular structure.

From (3.6) with V ≡ 0 it is clear that if we take κ0 > 0, then α+(m)
is negative for all sufficiently large m provided that the eigenvalues λk(℘) are
bounded from above on P (for example, when P is compact).

In [1], Theorem 1 is applied to provide effective dimension estimates for global
attractors in the Mackey-Glass equations and periodically forced Suarez-Schopf
delayed oscillator (see [5]). Both models are known to be chaotic for certain pa-
rameters and this is the first time when effective dimension estimates for chaotic
attractors arising in delay equations were obtained. Moreover, the resulting esti-
mates are asymptotically sharp as the delay tends to infinity that is justified by
numerical computations of eigenvalues at equilibria. In Section 5, we will apply
Theorem 1 to the nonautonomous Nicholson blowflies model.

It is worth mentioning that the estimate (3.8) depends on the spatio-temporal
change of variables x(t) 7→ x(κt) and ϕ(t, θ) 7→ ϕ(κt, κθ) for some κ > 0. Al-
though the uniform Lyapunov exponents also depend on the change (they scale
by κ), the Lyapunov dimension does not that is clear from (2.14). In applications,
this means that we may consider a series of estimates for the Lyapunov dimension
derived from Theorem 1 which depend on κ and then minimize it over κ > 0 to
get a better result (see Corollary 3 and below for an example).

4 Frequency criterion for the global stability

In this section, we will describe another approach to obtain dimension estimates
for invariant sets arising in delay equations. It is developed by the first author
in [2] and concerned with applications of the recent version of the Frequency
Theorem [4] to study m-fold extensions Ξm (called compound cocycles) of the
linearization cocycle Ξ (given by (2.11)) to the exterior power H∧m of the Hilbert
space H. In particular, these results allow to obtain frequency conditions for the
exponential stability of compound cocycles. As it is shown in [3] by means of the
Suarez-Schopf delayed oscillator and Mackey-Glass equations, at least in the case
m = 2 (related to the generalized Bendixson criterion and global stability; see
below), this approach improves results which can be obtained by Theorem 1 as
well as with the aid of some other existing methods in the field. In Section 6, we
will compare our approach with a series of works on the global stability of the
classical Nicholson blowflies model.
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On the infinitesimal level, the m-fold compound cocycle is given by a per-
turbation of the m-fold additive compound A[∧m] of A and one of possible fre-
quency conditions can be described in terms of the transfer operator W (p) :=
−C∧

m(A
[∧m] − pI)−1B∧

m as‡‡ (here ν0 > 0 and Λ as in (2.2))

sup
ω∈R

∥W (−ν0 + iω)∥(U∧
m)C→(M∧

m)C < Λ−1. (4.1)

Here C∧
m : E∧

m → M∧
m and B∧

m : U∧
m → H∧m are some operators associated with

the measurement operator C and the control operator B from (2.10) respectively;
M∧

m and U∧
m are Hilbert spaces associated with the spaces M and U from (2.2)

respectively; and E∧
m is a Banach space such that we have the continuous embed-

dings
D(A[∧m]) ⊂ E∧

m ⊂ H∧m. (4.2)

We refer to [2] or [3] for precise definitions.
In the case (4.1) is satisfied for m = 2 and ν0 > 0 such that −ν0 > s(A[∧2]),

where s(A[∧2]) is the spectral bound of A[∧2], we obtain

λ1(Ξ) + λ2(Ξ) ≤ −ν0 and, consequently, dimL Ξ < 2. (4.3)

For autonomous systems (2.1) (i.e. when Q is a one-point set) admitting a global
attractor, this condition allows to apply the generalized Bendixson criterion of
M.Y. Li and J.S. Muldowney [35] to exclude the existence of closed invariant
contours on the global attractor. Moreover, since (4.3) is robust in the sense that
it is preserved under small perturbations of the cocycle (see [1]), it is expected
that the system must be globally stable, i.e. any trajectory must tend to the
set of equilibria. In finite dimensions, one utilizes the C1-Closing Lemma of
C.C. Pugh (see [34, 41]) to obtain this. To the best of our knowledge, there are
still no variants of the lemma available in infinite dimensions and, in particular,
for delay equations. As an intermediate solution, for some delay equations one
may construct inertial manifolds (see [4, 6, 7, 9]) and apply the finite-dimensional
version of the Closing Lemma. However, we hope that our investigations will
stimulate developments of the problem in infinite dimensions.

Note that it is hard to verify (4.1) purely analytically since it requires to solve
a first-order PDE on the m-cube (−τ, 0)m with boundary conditions on some k-
faces (with k < m) adjacent to {0}m involving diagonal derivatives and delays.
Moreover, solutions to such PDEs are not usual smooth functions and have only
diagonal derivatives (see [2]).

‡‡For convenience, here we omitted mentioning complexifications of operators.
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In [3], we developed an approximation scheme to verify (4.1) in the case
of scalar equations and avoiding direct examinations of the arising PDEs. For
simplicity, we will describe it for m = 2, the system (2.10) with n = r1 = r2 = 1
and the operator C such that for some τ0 ∈ [0, τ ] we have Cϕ = ϕ(−τ0) for
ϕ ∈ C([−τ, 0];R). Thus we consider the scalar equation

ẋ(t) = Ãxt + B̃F ′(πt(℘))x(t− τ0), (4.4)

where B̃ and F ′(℘) can be identified with real numbers. As in (2.2), we suppose
that there exists Λ > 0 such that |F ′(℘)| ≤ Λ for all ℘ ∈ P .

LetA be the operator in H = R×L2(−τ, 0;R) associated with Ã from (4.4) via
(2.3). Let λ1(A) ≥ λ2 ≥ . . . be its eigenvalues arranged by nonincreasing of real
parts and according to their multiplicity. For example, if Ãϕ = aϕ(0) + bϕ(−τ)
for ϕ ∈ C([−τ, 0];R), then the eigenvalues are given by the solutions p ∈ C to

a+ be−τp − p = 0. (4.5)

By Theorem 3.3 from [2] (see also Proposition 2.1 in [3]), the spectral bound
s(A[∧2]) of A[∧2] is given by Reλ1(A) + Reλ2(A) (or −∞ if there are no 2 eigen-
values§§).

Let us describe an approximation scheme for verification of the frequency
inequality (4.1) in the case (4.4) and m = 2 (for simplicity). It can be easily
adapted for the general case r2 = dimM and C : C([−τ, 0];R) → M, although
the restrictions n = r1 = 1 are more significant and require many additional
constructions. In what follows, we use the trigonometric basis in L2(−τ, 0;C)
given by ϕk(θ) = τ−1/2eiτ

−12πkθ for θ ∈ [−τ, 0] and k ∈ Z.

(AS.1) Choose N > 0 and reals T > 0, Ω > 0 and ν0 > 0 such that −ν0 >
s(A[∧2]) (see below (4.5));

(AS.2) For the linear equation ẋ(t) = Ãxt compute the fundamental solution
x∞(·) on [−τ, T ] with x∞(θ) = 0 for θ ∈ [−τ, 0) and x∞(0) = −

√
2B̃,

and also for each k ∈ {−N, . . . , N} compute the classical solutions xk(·) on
[−τ, T ] with xk(θ) = ϕk(θ) for θ ∈ [−τ, 0];

(AS.3) For all p = −ν0 + iω with ω ∈ [−Ω,Ω] compute the following:

(AS.3.1) For each k ∈ {−N, . . . , N} and θ ∈ [−τ, 0] compute

M 1
k (θ) :=

∫ T

0

e−pt1

2

[
xk(t− τ0) · x∞(t+ θ)− xk(t+ θ) · x∞(t− τ0)

]
dt;

(4.6)
§§In the case of (4.5), this means b = 0.
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(AS.3.2) For all k, l ∈ {−N, . . . , N} compute

clk :=
√
2

∫ 0

−τ

M 1
k (θ)ϕ−l(θ)dθ; (4.7)

(AS.3.3) Compute the largest singular value αT,N(p) of the matrix WT,N(p) with
the entries clk over k, l ∈ {−N, . . . , N};

(AS.4) For all p = −ν0 + iω with ω ∈ [−Ω,Ω] verify the inequality αT,N(p) <
Λ−1.

Let us discuss the choice of the parameters T , N and Ω and their influence on
dynamics of the approximation scheme. Firstly, for a given Ω > 0, the approxi-
mations αT,N(−ν0 + iω) convergence uniformly in ω ∈ [−Ω,Ω] as T,N → ∞ to
the norm of the transfer operator from (4.1) and they are globally Lipschitz in
ω ∈ R with a uniform Lipschitz constant. Here, the parameter T can be taken
relatively small, since the corresponding to it errors decay exponentially (in an
appropriate norm) uniformly in ω ∈ R and N as T tends to infinity. For example,
in the experiments conducted in [3], the graphs of αT,N(−ν0+ iω) for T = 15 and
T = 25 are indistinguishable. So, the convergence of αT,N(−ν0 + iω) is mostly
affected by the choice of N . In the experiments from [3], it is sufficient to take
N = 10 to obtain the convergence in ω ∈ [−Ω,Ω] for Ω = 30 and the graph
become indistinguishable with the corresponding graphs for N = 20 and N = 30.

Finally, the choice of Ω is related to the conjecture from [3] concerned with
that the norm of the operator from (4.1) behave as an aymptotically almost
periodic (in the sense of Bohr) function as |ω| → ∞. For practical purposes,
this means that the inequality in (4.1) can be verified in a finite interval of ω.
This conjecture is justified by the conducted experiments.

We refer to Section 6 for applications of the Frequency Criterion to the clas-
sical Nicholson blowflies model and its comparison with other methods.

5 Nonautonomous Nicholson blowflies model: attractors
and dimension estimates

Let (Q, ϑ) be a semiflow on a compact metric space Q. We consider the nonau-
tonomous Nicholson blowflies model which is described over q ∈ Q as

ẋ(t) = −δ(ϑt(q))x(t) + P (ϑt(q))x(t− τ)e−a(ϑt(q))x(t−τ), (5.1)
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where δ(·), P (·) and a(·) are continuous functions on Q satisfying

0 < δ− ≤ δ(q), 0 ≤ P (q) ≤ P+ and 0 < a− ≤ a(q) for all q ∈ Q. (5.2)

Let C+ be the cone of nonnegative functions in C([−τ, 0];R) and let BR denote
the closed ball of radius R in the supremum norm.

Lemma 5.1. For any R ≥ R0, where

R0 =
P+

eδ−a−
, (5.3)

solutions x(t) = x(t;ϕ0) to (5.1) with ϕ0 ∈ C+∩BR exist for all t ≥ 0 and satisfy
xt ∈ C+ ∩ BR for all t ≥ 0.

Proof. Take x(t;ϕ0) as in the statement for R ≥ R0 and suppose that it exists on
some interval [−τ, t0) with t0 > 0. From (5.1) and (5.2), it is clearly seen that we
must have xt ∈ C+ for any t ∈ [−τ, t0).

Let B̊R be the interior of BR. Suppose ϕ0 ∈ B̊R. Then in the case xt leaves
B̊R, we may suppose that t0 is such that x(t0) = R and 0 ≤ x(t) < R for any
t ∈ [−τ, t0). Note that the maximum of ye−a−y over y ≥ 0 is (ea−)−1. Then from
(5.1) and (5.2) we have

ẋ(t0) < −δ−R +
P+

ea−
≤ 0 (5.4)

that leads to a contradiction. Since x(t;ϕ0) depend continuously on ϕ0, from this
the conclusion of the lemma follows. The proof is finished.

Similarly to Corollary 5.1 in [1], we obtain the following.

Corollary 1. There is a dissipative skew-product semiflow π in the space Q× C+
given by

πt(q, ϕ0) := (ϑt(q), xt) for t ≥ 0, q ∈ Q and ϕ0 ∈ C+, (5.5)

where x(t) = x(t;ϕ0) is a solution of (5.1) with ϕ0 ∈ C+. Its global attractor A
lies in Q× (C+ ∩ BR0

), where R0 is given by (5.3).

Now let y0(t) = x(t;ϕ0) be a solution of (5.1) with ϕ0 ∈ C+. Then the
linearized over the corresponding trajectory equation reads as

ẋ(t) = −δ(ϑt(q))x(t) + P (ϑt(q))
[
1− a(ϑt(q))y0(t− τ)

]
e−a(ϑt(q))y0(t−τ)x(t− τ).

(5.6)
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Thus, in terms of (3.6) for ℘ = (q, ϕ0) ∈ Q× C+ we have

L0(℘) = −δ(q) and L−τ(℘) = P (q)[1− a(q)ϕ0(−τ)]e−a(q)ϕ0(−τ). (5.7)

Consequently, for a fixed κ = κ0 = κJ , the eigenvalue λ1(℘) of the 1 × 1-
matrix from (3.6) is given by

λ1(℘) = −2δ(q) + eκτ |P (q)|2(1− a(q)ϕ0(−τ))2e−2a(q)ϕ0(−τ) + 1. (5.8)

Note that (1− ay)2e−2ay ≤ 1 for any y ≥ 0 and a ≥ 0. So,

λ1(℘) ≤ −2δ− + eκτ |P+|2 + 1. (5.9)

Let Ξ be the linear cocycle generated by (5.6) in H = R× L2(−τ, 0;R) over
the semiflow (Q× C+, π).

Theorem 2. Suppose¶¶ that 1− 2δ− + |P+|2 ≥ 0. Then

dimL Ξ ≤ |P+|2ep∗+1 · τ + 1, (5.10)

where p∗ is the unique root p ≥ −1 of

pep+1 =
1− 2δ−

|P+|2
. (5.11)

Proof. From (5.9) in terms of (3.7), we have

α+(m) ≤ 1

2

[
−2δ− + eκτ |P+|2 + 1− κ(m− 1)

]
=: σ(m). (5.12)

Note that σ(m) is a concave function of real m ≥ 1. Then finding d∗ such that
σ(d∗) = 0 would guarantee that dimL Ξ ≤ d∗ (see Remark 3.2 in [1]). Clearly,
such d∗ is given by

d∗ =
eκτ |P+|2 + 1− 2δ−

κ
+ 1. (5.13)

Minimizing it over κ > 0, we obtain

eκτ(κτ − 1) =
1− 2δ−

|P+|2
, (5.14)

where making the change κ = τ−1(p+1) with p ≥ −1 leads to (5.11). Note that
p = −1 (or κ = 0) corresponds to 1− 2δ− + |P+|2 = 0 and d∗ is well-defined in
the limit κ → 0+. The proof is finished.

¶¶Otherwise from (5.9) with κ = 0 we have λ1(℘) = 1− 2δ− + |P+|2 < 0 and, as a consequence, dimL Ξ = 0.
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Note that the upper estimate in (5.10) depends on the change∗∗∗ x(t) 7→ x(κt)
(with some κ > 0) in (5.1), although the Lyapunov dimension does not. Let us
derive from it the following estimate which is invariant w.r.t. such time scaling.
Corollary 2. Suppose that††† P+ ≥ δ−. Then

dimL Ξ ≤ ep
∗+1 · P+τ + 1, (5.15)

where p∗ is the unique root p ≥ −1 of

pep+1 = 1− 2
δ−

P+
. (5.16)

Proof. Applying the change x(t) 7→ x( 1
P+ t) in (5.10) gives the transformation in

the coefficients as δ(·) 7→ δ(·)
P+ and P (·) 7→ P (·)

P+ and τ 7→ τP+. Then Lemma 2
applied after this change gives the desired. The proof is finished.

However, (5.15) is not the maximum that can be achieved from Theorem 2
and in general from the change x(t) 7→ x(κt) we have the following.
Corollary 3. Suppose that P+ ≥ δ−. Then

dimL Ξ ≤ inf
κ>0

(
κep

∗(κ)+1 · |P+|2τ + 1
)
, (5.17)

where p∗(κ) is the unique root p ≥ −1 of

pep+1 =
1− 2κδ−

κ2|P+|2
. (5.18)

Let us consider the autonomous version of (5.1) given by

ẋ(t) = −δx(t) + Px(t− τ)e−ax(t−τ), (5.19)

with some parameters δ > 0, P > 0 and a > 0. This equation was suggested
by W.S.C. Gurney, S.P. Blythe and R.M. Nisbet [19] as a model for laboratory
insect populations studied by A.J. Nicholson and it showed a good quantitative
agreement with his results.

Although for (5.19) one is usually interested in stable periodic oscillations, the
model can demonstrate chaotic behavior. This possibility is not clearly indicated
in the literature, although in the survey of Hastings et al. [21] it is noted that

∗∗∗In terms of (2.10) considered as a transfer equation with the boundary condition (5.1), this is not only
the change of time. More precisely, beside x(t) 7→ x(κt) we also have ϕ(t, θ) 7→ ϕ(κt, κθ). So, the change is
spatio-temporal.

†††For P+ < δ− we have dimL Ξ = 0 by the same reasons as above.
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the original Nicholson investigations contain chaotic experimental data. On the
other hand, in [19], nonperiodic oscillations in the region of linear instability were
classified as “formally aperiodic” with a “single clearly marked dominant period”.

For (5.19), chaotic behavior can be observed, for example, for a = τ = 1,
δ = 9.5 and P = 250 (such parameters are included into the study from [19]). For
such parameters, using the JiTCDDE package for Python to compute Lyapunov
exponents (see G. Ansmann [12] and the repository for details), we observed the
following values

λL1 = 0.2176± 0.0030, λL2 = 0.0577± 0.0029,

λL3 = −0.0006± 0.0037, λL4 = −0.1554± 0.0053

λL5 = −0.4462± 0.0059.

(5.20)

Thus, there are two positive Lyapunov exponents.
Moreover, for the above parameters, (5.15) gives the estimate dimL Ξ ≤

883.821 and (5.17) (the minimum is achieved at κ ≈ 0.0015) gives dimL Ξ ≤
671.004. From numerical experiments we have that the zero stationary state
ϕ0 has a 81-dimensional unstable manifold and the Lyapunov dimension at ϕ0

satisfies dimL ϕ
0 ∈ (215, 216). This contrasts to the Lyapunov dimension at

the positive equilibrium ϕ+ which satisfies dimL ϕ
+ ∈ (16, 17). Moreover, for

P ∈ [250, 10000], the value dimL ϕ
0 shows an approximately linear growth as

0.865 · P and the dimension of the unstable manifold of ϕ0 grows approximately
as 0.318 · P . Thus (5.15) as well as the resulting estimates for the Hausdorff
or fractal dimensions of A seem to be asymptotically sharp as P → ∞ since
ep

∗+1 ≤ e2. From this, we may conjecture the following.

Conjecture 1. For (5.19), the Eden conjecture at ϕ0 is valid, i.e.

dimL Ξ = dimL ϕ
0. (5.21)

6 Classical Nicholson blowflies model: comparison of re-
sults on the global stability

In this section, we will discuss results on the global stability of (5.19) in the
positive cone C+ and compare them with applications of the Frequency Criterion
discussed in Section 4.

It can be shown (see‡‡‡ [42]) that for δ ≥ P any solution starting in the cone
‡‡‡For δ > P , this can be also deduced from the fact that dimL Ξ = 0 (see Corollary 2). Since dimH A ≤
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C+ tends to the zero stationary state ϕ0 ≡ 0. For δ < P , ϕ0 loses its stability and
the positive equilibrium ϕ+ = a−1 ln P

δ appears in C+.
In [24], M.R.S. Kulenović, G.F. Ladas and Y.G. Sficas proved that ϕ+ is

globally attracting in the cone C+ provided that

(eδτ − 1)

(
P

δ
− 1

)
< 1. (6.1)

Later, their result was sharpened by J.W. So and J.S. Yu to

(eδτ − 1) ln

(
P

δ

)
≤ 1 (6.2)

and L. Jingwen [23] complemented it with the two new regions given by

(eδτ − 1) ln

(
P

δ

)
< 1 +

1

aϕ+
, if aϕ+ ≥

√
5− 1

2
, or

(eδτ − 1) ln

(
P

δ

)
≤ 1 +

1

aϕ+
, if aϕ+ >

√
1 + 4

√
3− 1

2
.

(6.3)

All the above methods are based on direct a priori estimates for solutions. In
[18], I. Györi and S. Trofimchuk involved the theory of one-dimensional maps with
negative Schwarzian derivative into the problem and complemented the previous
results by the condition

(1− ρ) ln

(
P

δ

)
< 1− ρ+

1

2

(
1 +

√
1 + 4ρ(1− ρ)

)
, where ρ = e−δτ . (6.4)

It is however does not entirely cover (6.2) and (6.3).
Finally, E. Liz, V. Tkachenko and S. Trofimchuk further developed the method

and obtained in [36] the region of global stability whose boundary is very close
to the region of linear instability of ϕ+. Their result significantly improves the
previous investigations and cannot be sharpened without taking into account that
the delay in (5.19) is independent of time§§§.

It is however interesting to compare the Frequency Criterion (see below (4.3))
with the above mentioned results excluding the result of [36] which is unreachable
for rough general methods.

Firstly, note that by the change x(t) 7→ ax(τt) we may assume in (5.19) that
a = τ = 1 (with the new δ and P being δτ and Pτ respectively in the old terms)
dimL Ξ = 0, the global attractor cannot contain nonstationary points. There is only one stationary point in C+
and so we must have A = {ϕ0}.

§§§It is known that their criterion is sharp in the class of time-dependent delays [36].
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and the above inequalities are independent on such a change. Now let us consider
the linearized equation along a solution y0 : [−1,+∞) → R of (5.19) as

ẋ(t) = −δx(t) + P [1− y0(t− 1)] e−y0(t−1)x(t− 1). (6.5)

Note that for any y ∈ [0, Peδ ] we have

1 =: d+ ≥ (1− y)e−y ≥ d− :=

{
−e−2, if P ≥ 2eδ,

(1− P
eδ)e

− P
eδ , otherwise.

(6.6)

We put κ := P (d− + d+)/2. Then (6.5) can be written as

ẋ(t) = −δx(t) + κx(t− 1) + F ′(y0(t− 1))x(t− 1), (6.7)

where |F ′(y)| ≤ Λ := P − κ for any y ∈ [0, Peδ ].
Let A be the global attractor of π in C+ generated by (5.19) (see Corollary

1). Note that A is located in the ball of radius P
eδ .

Now let us apply the approximation scheme (AS.1)-(AS.4) to (6.7) con-
sidered in the context of (4.4) with P := A; Ãϕ := −δϕ(0) + κϕ(−1) and
Cϕ := ϕ(−1) for ϕ ∈ C([−1, 0];R); B̃ := 1 and the above given F ′ and Λ.

We use a numerical realization of the approximation scheme on Python (see
the repository for details). Parameters of the scheme are taken as Ω = 10, N = 10,
T = 15 and ν0 = 0.01. With such parameters, we verified the corresponding
frequency conditions for (6.7) with δ ∈ (0.1, 5) and P ∈ (1.5, 5). Results are
collected in Fig. 1. We note that, although the Frequency Criterion seem to
completely cover only the result of [24], it also covers a region which is not covered
by the other criteria considered¶¶¶. Moreover, the criterion fails for large P/δ
since the bound for the global attractor and, consequently, the Lipschitz constant
Λ become rough.

Data availability

The data that support the findings of this study can be generated using the scripts
in the repository:
https://gitlab.com/romanov.andrey/nicholson-blowflies-experiments
¶¶¶Note that the result of [36] (excluded in Fig. 1) covers all the considered space of parameters.
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Figure 1: Regions in the (P, δ)-space with δ ∈ (0.1, 5) and P ∈ (1.5, 5) covered by the Frequency
Criterion (gray) verified via the approximation scheme (AS.1)-(AS.4); by (6.1) (blue); by (6.2)
(orange); by (6.3) (green); by (6.4) (red). For each criterion, except the Frequency Criterion,
we do not color the region covered by the preceding ones.
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