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Abstract.

We consider stability of special dynamical systems under a random noise.
These systems (networks) are important in many applications. We focus our
attention on supporting of homeostasis of these systems with respect to fluctu-
ations of an external medium (the problem is posed by M. Gromov, A.Carbone
[7]). Using a measure of stochastic stability we show that a network with fixed
parameters is always unstable, i.e., the probability to support homeostasis con-
verges to zero as time T →∞.



Differential Equations and Control Processes, N 2, 2006

1 Introduction

We consider stability of special dynamical systems under a random noise. These
systems (networks) are important in many applications. We focus our attention
on supporting of homeostasis of these systems with respect to fluctuations of an
external medium (the problem is posed by M. Gromov, A.Carbone [7]). Using a
measure of stochastic stability we show that a network with fixed parameters is
always unstable, i.e., the probability to support homeostasis converges to zero
as time T → ∞.We consider stability of special dynamical systems under a
random noise. These systems (networks) are important in many applications.
We focus our attention on supporting of homeostasis of these systems with
respect to fluctuations of an external medium (the problem is posed by M.
Gromov, A.Carbone [7]). Using a measure of stochastic stability we show that
a network with fixed parameters is always unstable, i.e., the probability to
support homeostasis converges to zero as time T →∞.

teGr). Using a measure of stochastic stability we show that a network with
fixed parameters is always unstable, i.e., the probability to support homeostasis
converges to zero as time T →∞.

2 Network models

In last decade, large attention is given to problems of global organization, sta-
bility and evolution of complex networks such as protein and gene networks,
networks of metabolic reactions, neural and economical circuits, Internet etc.
(see [1] for a review). The simplest mathematical model of such network is a
(directed) graph. For example, for a gene network we can associate with this
network a graph where a node describes a gene, the i-th node is connected with
the j-th one if the corresponding genes interact. Stability of these graphs can
be examined in different contexts. For example, we can examine how much
edges (or nodes) must be eliminated in order to destroy connectivity of the
graph. In this paper our attention is focused on stability of the networks with
respect to fluctuations ( an internal noise and oscillations of an environment).
To study this problem, we extend simple graph models. In fact, metabolic reac-
tion networks or gene networks are complex dynamical system, where a scheme
of interaction of substrats,ferments or genes can be associated with a graph. A
part of the substrats enters this system from an external medium (input) and
another part can be considered as an output (products). It is well known that
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these systems successfully support an output independent of fluctuating input
[9, 2].

It is difficult to describe in details such dynamical systems. Genetic circuit
models ( [5, 4, 10] among many others, see [12] for a review) to take into
account theoretical ideas and experimental information on gene interactions.
We consider a model proposed by [10, 11]

∂ui

∂t
= di∆ui + Riσ(

m∑
j=1

Kijuj + θi − ξi(t))− λiui, (2.1)

where m is the number of genes included in the circuit, ui(x, t) is the concentra-
tion of the i-th gene, x ∈ Ω, where Ω is a bounded open domain with a regular
boundary ∂Ω, λi are the gene decay rates, di are diffusion coefficients, the pa-
rameters θi are activation thresholds, ξi(t) describe random fluctuations, and σ

is so-called sigmoidal function (see below). We assume that the ξi are random
processes with piecewise continuous trajectories. Real number Kij measures
the influence of the j-th gene on the i-th one, Ri > 0 are coefficients.

We set the zero Neumann conditions

∂ui

∂n
= 0, x ∈ ∂Ω, t > 0.

The initial data are
ui(x, 0) = si, si ≥ 0, (2.2)

where si are constants. The function σ is a smooth, strictly monotone increasing
function satisfying

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1. (2.3)

The well known example is σ(z) = 1+tanh(z)
2 .

Model (2.1) takes into account the following fundamental processes: a) the
decay (degradation) of gene products (the term −λiui); and b) gene regulation
and synthesis, c) diffusion [10, 11]. Notice that if si are constants, we can set
di = 0, since then the solution depends only on t. Then system (2.1) reduces
to the famous Hopfield model of the attractor neural network [8].

Another possible model is a dynamical system with discrete time, for ex-
ample, defined by the following iterative process

ut+1
i = riσ(

m∑
j=1

Kiju
t
j + θi − ξt

i)− λiu
t
i, (2.4)
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u0
i ≡ si, (2.5)

where t = 0, 1, 2, ..., T , T is an integer, ξt
i are random functions of discrete time

t. Numerical procedures solving (2.1) (with di = 0) lead to models similar to
(2.4). This system was studied in [15, 16]. In this paper we consider system
(2.1), more complicated, than systems (2.4).

To conclude this section, let us make the two remarks. Notice that ξi

are involved nonlinearly in (2.1). In this case it is difficult to study strongly
discontinuous processes ξi. However, we can consider a variant of system (2.1)
with a multiplicative noise, which can have δ-like contributions (see Section 4).
Notice that there also exists a case, where x ∈ Zd, i.e., x runs over a grid and
∆ is a discrete approximation of the Laplace operator [11]. Our results hold for
this case.

Let us formulate now main results. We consider the question on the stochas-
tic stability of genetic circuits (2.1). The stochastic stability can be defined
following the well known ideas (see below and [17, 16]). We extend on the case
(2.1) the result obtained in [16] that the more is the valency of a node the
stabler is the circuit with respect to perturbations in this node. We also prove
that the survival probability of each circuit of a fixed structure tends to zero as
T → ∞. Therefore, ”homeostasis” generated by a fixed circuit will be broken
as time tends to infinity. We give an estimate of the survival probability.

3 Stochastic Stability for Circuits

The important meaning has the problem of stability of networks under random
perturbations of different parameters. We obtain in this section some estimates
on stability of (2.1) under noises.

For si independent of x we can consider problem (2.1) with di = 0. We
assume that random processes ξi(t) are independent for different i. Different
choices of the distributions for ξt

i and Si may correspond to different ”ecological
conditions” (random environments).

Let us introduce functions Ψi by

Prob{ξi(t) > a for all t ∈ [T1, T2]} = Ψi(a, T1, T2). (3.1)

The following assumptions play a key role. Let us suppose first that

Ψi(a, T1, T2) > 0 (3.2a)
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for any i, a and T1, T2 such that T2 > T1. Moreover, let us assume that for any
fixed τ > 0, an index i and a number a the probability Pi(a, τ, T ) that there
exists a moment t0 ∈ [0, T ] such that ξi(t) > a for any t ∈ [t0, t0 + τ ] satisfies

Pi(a, τ, T ) → 1 (T →∞). (3.2b)

Roughly speaking, this means that ξi(t) can take any large values within any
bounded time periods with non-zero probabilities.

Notice that trajectories ηi(t) of the independent standard Wiener process
satisfy (3.2a, b). One can check that the property (3.2a) holds in this case [6].
To show (3.2b), we can use the well known results [6]. First we notice that in
this case the probability PT (b) to attain any fixed b within [0, T ] converges to
1 as T →∞. In fact, due to Theorem 2 from [6], Ch. VI, part 3, we have

PT (b) = Prob{max
t∈[0,T ]

η(t) > b} = 2
1√
2πT

∫ ∞

b

exp(− x2

2T
)dx.

This realtion shows that PT (b) → 1 as T → ∞. Given a, τ , we choose a
sufficiently large b = b(a, τ). The process attains, within a sufficiently large
time interval [0, T ], this value b at some t0(b) ∈ [0, T ]. Moreover, let us notice
that the process is a regular one, i.e., the probability to return on the level a

starting from b within a time interval of a fixed length τ converges to zero as
b → ∞ [6]. This regularity property shows that the Wiener process satisfies
(3.2b).

Let Π be a closed domain in the u - phase space. We say that a system (a
circuit (2.1)) ”survives” in Π (supports homeostasis in Π ) if the concentrations
ui lie in Π. Notice that our conditions (2.3) on σ entail the dissipativity of
(2.1), i.e., there is a box B ⊂ Rm such that each solution with initial data from
this box cannot leave the box B. Moreover, one can show that concentrations
si stay non-negative. It is natural, thus, to suppose that Π is contained in
B ∩ {u : ui ≥ 0}. As a measure of the stochastic stability of the circuit
homeostasis on the time interval [T1, T2], we consider the probability

P (Π, T1, T2) = Prob{u(t) ∈ Π for each t ∈ [T1, T2]}, (3.3)

where u = (u1, ..., um) (see [16]). This probability depends on the circuit pa-
rameters P and the homeostasis domain Π. We name it the survival probability
on the time interval [T1, T2] and denote by P (T1, T2) omitting the dependence
on the domain Π.

We estimate the stability via the following parameters: the valency, |K∗|,
the maximum b of |θi| and some parameter Nkey that will be introduced below.
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It is important to take into account the valency since it is well known that
biological circuits are far from being completely connected: for each fixed node
i we have a valency Vi < m: only Vi among the entries Kij are not equal zero.
In economical, technical and biological applications one has typically Vi << m

[1].

To define Nkey, let us observe first that

inf
u∈Π

ui = Wi ≥ 0. (3.4)

Denote Ui = σ−1(Wi). Some Wi and Ui may be positive. The corresponding
indices i1, ..., is ∈ [1, ...,m] will be named key indices and the corresponding
genes will be named the key ones. In fact, assumption Wi > 0 means that the
organism cannot survive if the concentration of i -th gene is small enough. The
number of the key genes is denoted by Nkey. We denote by I the set of the key
indices corresponding to the key genes.

The first step is a priori estimate of solutions of system (2.1). We obtain

|ui| < µi = max{Riλ
−1
i , si}. (3.5)

Let us fix now a key index i ∈ I and consider (2.1). Using (3.5) one obtains
the following simple inequality

m∑
j=1

Kijuj(t) + θi − ξi(t) ≤ ViK∗µi + b− ξi(t). (3.6)

Suppose t0, τ > 0. Let us take a sufficiently large a and, using hypothesis (3.2),
consider a trajectory ξi(t) such that

ξi(t) > a, t ∈ [t0, t0 + τ ] (3.7)

The probability to find such a trajectory is a positive, due to (3.2a). Consider
system (2.1) on the interval [t0, t0 + τ ]. We choose a number a such that

ViK∗µi + b− ξi(t) < Ui − δ, (3.8)

where δ > 0 is a small positive number. Since σ ∈ (0, Wi) on this interval, and
ui(t0) satisfies estimate (3.7), one derives a priori estimate of ui

0 < ui(t) < µi exp(−λi(t− t0)) + (Wi − δ1)(1− exp(−λi(t− t0)), (3.9)

where δ1 > 0 is a small number, t ∈ [t0, t0 + τ ]. For sufficiently large τ we have
then ui(t0 + τ) < Wi. So, we conclude that the event

ξi(t) > ViK∗µi + b− Ui = γi, t ∈ [t0, t0 + τ ], (3.10)
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entails the event that the concentration ui(t0 + τ) is less than the critical value
Wi. Thus, the set Ai of the random trajectories ξi such that ξi(t) > γi on
[t0, t0 + τ ] is contained in the set Bi of the random trajectories such that the
corresponding solution u(t) satisfies ui(t0 + τ) < Wi. Therefore, the comple-
ments Āi, B̄i of Ai and Bi satisfy B̄i ⊂ Āi. The same holds for the intersections:

B̄ = (∩i∈IB̄i) ⊂ (∩i∈IĀi) = Ā.

Moreover, if at least one ui(t) is less than Wi, the state u(t) is outside of
this domain Π. This shows that the condition u(t0 + τ) ∈ Π is equivalent to
u(t0+τ) ∈ B̄. We obtain thus that ProbB̄ ≤ ProbĀ. Since we suppose that the
random processes ξi are independent, all the events {ξi(t) > γi on [t0, t0 + τ ]}
are independent. This implies ProbĀ = ProbĀ1ProbĀ2...P robĀNkey

. Each
probability ProbĀi can be expressed through Ψi(γi, t0, t0 + τ). Hence, we have

Prob{u(t) ∈ Π} ≤
∏
i∈I

(1−Ψi(ViK∗µi + b− Ui, t− τ, t)) ≡ R(t, τ). (3.11)

Therefore, we have proved

Proposition The survival probability satisfies

P (T1, T2) ≤ R(T1, τ). (3.12)

This estimate implies the following consequence. Notice that the function R is
a monotone increasing function of the valencies Vi. So, to increase the stability,
we can increase the valencies. Moreover, one can prove, by the same arguments
and assumption (3.2b), that all circuits are stochastically unstable as the time
T →∞. In fact, let us consider the arbitrary key index i ∈ I. The probability
that ξi(t) > γi on some [t, t + τ ] ⊂ [0, T ] tends to 1 as T → ∞. Thus, the
probability that for some t + τ ∈ [0, T ] the value ui(t + τ) < Wi also tends to 1
as T →∞.

4 Stability under jump-like noises

.

We consider a network under jump-like multiplicative noise

dui

dt
= Riσ(

m∑
j=1

Kijuj + θi)− λiui + gi(u)ξi(t), (4.1)
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where gi are smooth functions, ξi are processes defined by

ξi =
∑

k

γikδ(t− tk),

where tk are random time moments, 0 < t1 < t2 < ... < tk < ..., γik are random
numbers. We suppose that the processes ξi are time homogeneous.

As above, we are going to estimate the stochastic stability of the network
defined by (4.1), i.e, the probability P (T1, T2) = P (0, T ), T = T2 − T1.

First we observe that the noise influence reduces to jump-like changes of
the system trajectories. Suppose u(0) = v0. On the interval [0, t1] we have the
trajectory u(t, u0), t ∈ (0, t1] defined by (4.1) with ξi ≡ 0. The jump at t1 gives
the trajectory u(t, v1), where t ∈ (t1, t2] and where initial data are

u(t1) = v1 + w1, v1 = lim
t→t1−0

u(t), w1 = gi(v
1)γi1, (4.2)

etc. In general, an analysis of such jump dynamics is a difficult problem. In
order to simplify the situation, we suppose the following.

We suppose that Π contains a unique local attractor A of (4.1), which is a
hyperbolic set with a Bowen-Ruelle-Sinai invariant measure ρ(u). The support
of this measure lies in A. The results of [14] shows that this situation is quite
possible in the networks: the Hopfield networks can have any structurally stable
attractors.

The second hypothesis is that the jumps are, in a sense, seldom in average.
This means that the mathematical expectation

E(tk − tk−1) = τrand >> τattr, (4.3)

where τattr is a characteristical time, which describes the rate of trajectory ap-
proaching to the attractor A (physically, it is the relaxation time). Clearly, we
use a rough estimate τ−1

attr ≈ min{λs}, where λs are negative Lyapunov expo-
nents associated with the dynamics on the attractor. Since we assume that the
random process is time homogeneous, the distributions of γik are independent
of k.

The hypothesis (4.3) yields the following result. Suppose [0, T ] time interval
such that τattr << T << τrand. Let us introduce the formal small parameter
ε = τattr/τrand. Then one can expect that

P (0, T ) =

∫
A

ρ(u)qg,γ(u)du + o(1) (ε → 0), (4.4)
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where qg,γ(u) is the probability that, making a jump from the point u, the
system state leaves the domain Π:

qg,γ(u) = Prob{u + gγ(u) /∈ Π}, (4.5)

where gγ is a random vector with components gγ
i (u) = giγik. This vector is

defined by the multiplicative factor g and the probabilistic law for γik.

Relation (4.5) allows us to define an optimal attractor structure. Under
above hypothesis the attractor A giving maximal survival probability is an
equilibrium A = {u∗}. Here u∗ is a point, where the function qg,γ(u) has the
global minimum. Then ρ(u) = δ(u− u∗).

So, we see that the optimal attractor structure is trivial. The situation
changes dramatically if the system may be under different random perturbations
(g, γ) ∈ G from some family G of perturbations. Suppose it is impossible to
foresee which from them influences on our system (unpredictable environment
). In this case we obtain (as ε → 0))

min
(g,γ)∈G

PT (Π) = min
(g,γ)∈G

∫
A

ρ(u)qg,γ(u)du.

This relation leads to the following minimax problem for the optimal measure
ρ:

max
ρ

min
(g,γ)∈G

∫
A

ρ(u)qg,γ(u)du.

One can show [3] that, in general, the support of the measure ρ is localized on a
certain set. Then the attractor must be chaotic or periodic, and the dynamics
on this attractor must be complex.

Another method to obtain a larger stability in an inpredictable environ-
ment is a simple dynamics under a small internal noise. This noise helps to
stabilize the system in the non-predictable environment, because there also is
an invariant measure ρ(u) localized on a set [17]. There occurs, therefore, an
interesting problem: that is better, for stabilization, an internal noise or chaos?
Under which conditions the chaos is stabler?
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