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Abstract 
In this article, the authors solved certain non-homogeneous time fractional heat equations which is a 

generalization to the problem of spin- up effects on the geo strophic and quasi – geostrophic drags on  

a slowly rising products or drops in a rotating fluid. In the last three decades, transform methods have 

been used for solving fractional differential equations, singular integral equations.  

The result reveals that the transform method is very convenient and effective. 
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1.             Introduction 

Engineering and other areas of sciences can be successfully modeled by the use of  fractional 

derivatives. That is because of the fact that, a realistic modeling of physical phenomenon having 

dependence not only at the time instant, but also the previous time history can be successfully  

achieved by using fractional calculus. 

In this work, the authors implement transform method for solving the partial fractional diffusion 

equation which arise in applications. Several methods have been introduced to solve fractional 

differential equations, the popular Laplace transform method, [1] , [ 2 ] , [ 3 ], [11] , the Fourier 

transform method [10], the iteration method [17] and operational method [ 10]. However most of  

these methods are suitable for special types of fractional differential equations, mainly the linear  

with constant coefficients. More detailed information about some of these results can be found in  

a survey paper by Kilbas and Trujillo [ 9]. Atanackovic and Stankovic [4],[5]and Stankovic [19]  

used the Laplace transform in a certain space of distributions to solve a system of partial differential 

equations with fractional derivatives, and indicated that such a system may serve as a certain model for 

a visco elastic rod. Oldham and Spanier I , [12] and [ 13] , respectively, by reducing a boundary value 

problem involving Fick’s second low in electro analytic chemistry to a formulation based on the  
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partial  Riemann – Liouville  fractional with half  derivative. Oldham and Spanier [ 13] gave other  

application of such equations for diffusion problems. Uchaikin [20 ],[21 ] in which the connection 

between solution of linear equation of fractional order and solution of the first order has been 

established.Wyss [ 23] and Schneider [18] considered the time fractional diffusion and wave equations 

and obtained the solution in terms of  Fox functions. 

 

1.1      Definitions and notations 

 
The left Caputo fractional derivatives of order 0   ( 1 , )n n n     is defined by 
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The differential equation 2 2 2 2( ) 0x y xy x y       is called modified Bessel equation.  

Its general solution is    1 2( ) ( ) ( )y x c I x c K x    , 

where (.) , (.)I K  are  - order modified Bessel functions of first and second kind respectively.  

On the other hand (.)K  is called Macdonald function. 

The simplest Wright function is given by the series  
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Provided that the integral in bracket converges absolutely. 

 

1.2 :  Solution to singular integral equations with trigonometric kernel,  

 
Laplace transform can be used to solve certain types of singular integral equations. 

 

Lemma 1.1: Solving the following singular integral equation of the form, 
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Solution: Let ( ( ) ( ) , ( ( )) ( )L f t F s L g t G s   be the Laplace transforms of ( ), ( )f t g t respectively,   

 

then one gets the following relation, 
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upon using complex inversion formula, relation (1.4) leads to the following, 
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Example 1.2: Solve the following singular integral equation. 
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Solution: Laplace-transform of the above integral equation, leads to the following  
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2.       Main results 

In this section, the authors considered certain non-homogeneous time fractional heat equations which 

is a generalization to the problem of spin- up effects on the geostrophic and quasi – geostrophic drags 

on a slowly rising products or  drops in a rotating fluid studied by M. Ungarish [22].  

In [20] the fundamental solution for the fractional homogenous diffusion – wave equation using joint 

transform method was obtained. 

In this work, only the Laplace transformation is considered as it is easily understood and being popular 

among engineers and scientists.The basic goal of this work has been to employ the Laplace transform 

method for studying the above mentioned problem. The goal has been achieved by formally deriving 

exact analytical solution.The transform - method introduces a significant improvement in this field 

over existing techniques. 

 

2.1    Non – homogenous time fractional Heat equation. 

 

Problem 2.1:  Solve the non-homogeneous time fractional heat equation,  
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,10  r R .  Let )(xg  be Laplace transformable function. 

Solution. 

Step1: By taking the Laplace transform with respect to variable t of relationship (2.1), we get 
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Replacing (2.8)(2.9),(2.10) in (2.7) leads to the following equation 
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Step3: Replacing 0.5  in (2.25) results in          
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Step 5: Application of Bromwich's integral and the residue theorem, leads to 
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                            (2.30) 

Then subject to (2.28) and the linearity property of the inversion of Laplace transform  

 

and the Laplace transform of convolution of two functions, one has 
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Therefore, to obtain 5,4,3,2,1),,( mtrfm  and then ),( trf , it is sufficient that we evaluate the  

residue of  5,4,3,2,1),,()exp( msrFst m  at every poles of ( , ), 1, 2,3, 4,5mF r s m . 

Finally, after performing all the calculations we get,           
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Step 6: Utilizing Efros's theorem, we have  
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At this point, we calculate every one of the integrals on the right hand side of (2.33). 

First integral: By the change of variable 
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Second integral: By making the change of variable    
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Similarly, by change of variable in the third integral, we obtain 
2

2

2
( )

2

x a
t b v

rt
    

,))
2

(())
2

(exp())
2

(
4

exp(
2

2

2

2

2

0

2

22

b
r

a
terfcb

r

a
ttdx

r

a
bx

t

x




           (2.36) 

 also, by change of variable
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 Fifth integral: By changing the order of integration followed by the change of variable x w   

in the inner integral ,we get  
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along with the change of variable   
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 In the last integral, by the same procedure and using the change of variable x w  , we get  
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                                                                                                                              (2.40) 

 

Finally, substitution of (2.34),(2.35),(2.36),(2.37),(2.38),(2.39),(2.40)in (2.33),leads to the following 

formal solution. 
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                                                                                                   (2.41)  

 

3.      CONCLUSION 

 
The paper is devoted to study and application of Laplace transform. The integral transform provides 

powerful method for analyzing linear systems. The main purpose of this work is to develop a method 

for finding formal solution of certain singular integral equation and analytic solution of the time 

fractional heat equation which is a generalization to the problem of spin up effects on the geo strophic 

and quasi -geostropic drags on a slowly rising products or drops in a rotating fluid.  

We hope that it will also benefit many researchers in the disciplines of applied mathematics,  

mathematical physics and engineering. 
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