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Abstract 

 
           In [1] and [2], the authors used a linear incidence rate into a mathematical model 

to examine the immune impairment for a proliferation model of CTL responses in 

the immune response to HIV. Under the assumption that the immune impairment 

increases over the HIV infection, they classified four processes of the disease 

progression dynamics, according to their virological properties. In particular they 

showed that a typical disease progression presents a risky threshold and an 

immunodeficiency threshold. Moreover the immune system might collapse when 

the impairment rate of HIV exceeds a threshold value. On the other hand if the 

immune impairment rate never exceeds the threshold value, the viral replication is 

well controlled by CTL responses. In this paper we show that all of the above 

results remain valid if we use a general functional response,      instead of    as 

the incidence rate into the above mathematical model. 
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1  Introduction  
    The origin of various disease progression in HIV(i.e. Human Immunodeficiency 

Virus is a lentivirus(i.e. a member of retrovirus family, that causes acquired 

                                                
1
 E-mail address: hajar_ansari@yahoo.com 

2
 E-mail address: hesaraki@sharif.ed 

http://www.math.spbu.ru/diffjournal
mailto:jodiff@mail.ru


Differential Equations and Control Processes, № 1, 2013  

 

Electronic Journal. http://www.math.spbu.ru/diffjournal  90 

immunodeficiency syndrome,AIDS.) infection is largely unresolved but many 

researchers have been trying to explain it. An important factor in understanding the 

unusual incubation period distribution in the development of AIDS(i.e. Acquired 

Immunodeficiency Syndrome) is the dynamics of the long-lasting struggle between HIV 

and our immune system [3]. In early models of HIV infection [4] an explosion in the 

virus load caused by increased HIV variants diversity explains the immune system 

collapse in [5]. The CTL(i.e. Cytotoxic T Cells or killer T cell or Cytotoxic T-

lymphocyte are a sub-group of T cells which induce the death of cells that are infected 

with viruses or are otherwise damaged or dysfunctional.) exhaustion induced by an 

evolutionary increase of viral infectivity accounts for immune deficiency. Moreover, in 

[6] the functional deteriorations of T and B cells caused by accumulations of deleterious 

mutations are considered as a reason for development of AIDS. 

In [1,2]  the authors present discussion of an immune impairment effect caused by the 

depletion and dysfunction of DC(i.e. Dendritic cells are immune cells forming part of 

the mammalian immune system.) on HIV disease progression. Because the progressive 

decrease of DC number and function during the course of HIV-1 is observed [7,8,9]. 

The authors in [1,2] simply assumed that the immune impairment effect increases over 

HIV infection.  

The authors in [1,2] by using the discussion of the immune impairment effect caused by 

the depletion and dysfunction of DC on HIV disease program, extend the standard 

virus-immune model including the effect of immune impairment cause by HIV infection 

[4] to the following equations:          

{

 ̇                      

 ̇                   

 ̇  
    

    
                     

                                                                                      

Here,           and      denote the concentration of the susceptible or uninfected 

target cells, the exposed or infected cells that produce virus and the infective or HIV-1 

virus particles at time  , respectively. The positive constants                  and   are 

the proliferation rate of CD4
+
 T cells( i.e. helper T cells are immune response mediators 

and play an important role in establishing and maximizing the capabilities of the 

adaptive immune response. These cells have no cytotoxic or phagocytic activity and 

cannot kill infected cells or clear pathogens, but in essence manage the immune 

response, by directing other cells or perform these tasks.), the decay rate of infected 

CD4
+
 T cells, the killing rate of infected CD4

+
 T cells, the proliferation rate of CTLs, 

the immune impairment rate of HIV and the decay rate of CTLs, per day, respectively. 

Finally,       is the incidence rate of the transmission of the infection or the rate of 

infection and      is a saturation response or functional response of uninfected cells 

into the exposed cells. 

Here we assume that the saturation response      satisfies the following natural 

hypotheses: 

H1)       .  

H2 )       , for all    .  

H3 )  
      , for all     . 
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Moreover we assume:  

H4) 
  

   
    (

       

  
)   , for all    . 

Notice that most of the famous functional responses such as: Lotka-Voltra, Michealis-

Menten, Holling type II, Holling type IV, Monod-Haldane, Ivlev and Rosenzweig 

satisfy the above hypotheses. See the appendix.  

The authors in [1] studied the mathematical analysis of the system (1.1) by assuming 

that the rate of infection is bilinear i.e.          . However, the actual incidence 

rate is probably not linear over the entire range of  . Thus, it is reasonable to assum that 

the infected rate is given by one of the famous functional responses such as Michealis-

Menten, Holling type II and IV, Monod-Haldane, Ivlev and Rosenzweig. Since all of 

these functional responses satisfy hypotheses H1-H4, we consider the system (1.1) with 

the general functional response     , for mathematical analysis investigation of HIV 

infection.   

In this paper, we will analyze the global stability of the viral free equilibrium and the 

local and global stability of the infected equilibrium points for general incidence rate. In 

fact, we will show that the results which are obtained in [2] remain valid for general 

functional response,     . In fact the model (1.1) has four possible equilibria: 

uninfected equilibrium, shortage state equilibrium, immunodeficiency equilibrium and 

controlled state equilibrium. In section 2, we consider the stability of the uninfected and 

the shortage state equilibria. In section 3, we study the stability of the other equilibria. 

In section 4, we will discuss the biological results.         

2  Equilibrium Points and Stability  
   In this section and the next one, we will find the equilibrium points of the system (1.1) 

and then we will consider the stability property of them. In order to do this, we will find 

the eigenvalues of the linearized system of this system at these points. 

At an equilibrium point of the system (1.1) we must have  

{

                     

                  
    

    
                       

                                                                                        

From the third equation we obtain      or 
   

    
  .  

In the following, we consider the case     and the other case will be considered in 

section 3. 

By substituting      into the second equation yields,            . If    , then 

from the first equation we must have   
 

 
. Thus     

 

 
      is one of the 

equilibrium points which is called uninfected steady state of the system. If         

 , by using this in the first equation of (2.1) we get   
    

 
. Hence at the second 

equilibrium point, if exists we must have  

                                                                                                                                 

By hypothesis,   , we have  ̇   . Since at an equilibrium point we must have 

  
    

 
   the acceptable root of (2.2) must be in the interval,    

 

 
 . Therefore the 
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second equilibrium point exists if and only if,   
 

 
   . Let     

  
 

 
 

 
. This number is 

called the basic reproductive ratio of the virus for the system. Thus we have the 

following theorem. 

Theorem 2.1 . For    , if     , then the uninfected steady state      
 

 
      is 

the unique equilibrium point of the system (1.1). If     , then in addition to the 

uninfected steady state , there is another equilibrium point               with 

      
 

 
  and     .    

Here we will analyze the local asymptotical stability of these equilibrium points. In 

order to do this, we check the sign of the eigenvalues of Jacobi matrix of (1.1) at these 

points. This matrix is given by   

     [

               

                  
   

    

   

       
   

    
  

]                                                  

where           .  

At first we consider the local stability of the equilibrium point   . Hence, we calculate 

the eigenvalues of      : 

   (           )     

   

[
 
 
 
      

 

 
  

       
 

 
  

     ]
 
 
 
 

    

Therefore, the eigenvalues of       are the roots of the characteristic polynomial  

     (     (
 

 
))          

Thus,       ,       (
 

 
) and       are the eigenvalues of      . Clearly, 

   and    have negative real part. If,        (
 

 
)   , then the rest point    is 

locally asymptotically stable. This condition is the same as,      . Therefore, we 

have proved the following theorem. 

Theorem 2.2. If     , the equilibrium point    is locally asymptotically stable and if 

    , this equilibrium point  is unstable.  

Now we will show that if     , the equilibrium point    is globally asymptotically 

stable. First of all, consider the following domain in the         space, 

   {                        }     
 

 
    

It follows from hypotheses    and    and the equations of the system (1.1), if an orbit 

initiating on the boundary of   , then this orbit gets into    immediately as time 

increases. This means that the flow generated by that system gets into    on the 

boundary of   . Let     , for   
 

 
 and consider the following set for     : 
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   {            
 

 
                         }  

 

where,                (
 

 
  )      

    

  
 , and       

 

 
 .  

If we differentiate          along the orbits of the system (1.1), we obtain: 

 
  

  
         ̇     ̇  

    

  
 ̇                       

                 
    

  
(

    

    
   )                

             
     

  
  [       

    

  

    

    
]  

 

Since on that part of the surface,            which is some part of the boundary of 

the set   , we have        and         and         
    

  

    

    
 

       
    

  

  

 
    , therefore 

  

  
  . Thus, the flow gets into    on 

          . Hence the flow gets into    from its boundery. Therefore, if an orbit 

starts outside of    in  , then that orbit must get into    in a finite positive time. But, 

        ̅ . Hence, if  an orbit start in  , then it must approach to    as time tends to 

infinity. Hence we have proved the following theorem. 
 

Theorem 2.3. If     , then    is the only rest point of the system (1.1). This rest 

point is globally asymptotically stable.  

 

Now we consider the local asymptotical stability of   . Notice that from (2.3) we have 

  

      [

      
        

   
          

  
     

     
  

]    

Therefore, the eigenvalues of       are the roots of the characteristic polynomial  

(  
     

     
  )              

where        
      and       

     . Thus,    
     

     
   is one of the 

eigenvalues and the other two are the roots of           . We call them 

         . We know that           and        . It follows from the hypotheses 

  ,      . Thus,    and    have negative real parts. So if    
     

     
    , then 

the equilibrium    is locally asymptotically stable. This is possible for     as    and 

   are independent of  . 

Therefore, we have proved the following theorem.  
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Theorem 2.4. If      and 
     

     
    , then the equilibrium point              

exists and is locally asymptotically stable. 

As we know the basic reproductive ratio of the virus for the system (1.1) is    and for 

     both,    and    exist. In this case, we show that the equilibrium point    is 

globally asymptotical stable in D under the condition    
  

  
. In order to see this, 

consider the following positive function on  : 

         ∫    
     

    
   

 

  

          
 

  
 

   

 
   

where,              as before. Calculating the time derivative of          along the 

positive solutions of the system (1.1) gives 

 ̇  (  
     

    
)  ̇   ̇  

   ̇

 
 

   

 
 ̇  (          ) (  

     

    
) 

 (  
  

 
)                

   

 
(

    

    
   )  

At the equilibrium point           we have 

                       
By considering these equalities we can write 

 ̇  (  
     

    
) (                    ) 

 (  
  

 
)                    

   

 
(

    

    
   ) 

         (  
     

    
)  (             )(  

     

    
) 

                             (
   

 

    

    
    ) 

    (  
 

  
) (  

     

    
)  (                           ) 

(  
     

    
)                              (

   

 

    

    
    ) 

    (  
 

  
) (  

     

    
)  (              ) (  

     

    
) 

                                                 

         (
   

 

    

    
    )     (  

 

  
) (  

     

    
)   

       (  
    

     
) (  

     

    
)  (

   

 

    

    
    )  

Since     , the first and second term must be negative for     . Since 
    

    
 

  

 
    so by using    

  

  
, the third term is nonpositive. Moreover the equality holds 

only at the point    . 
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Since  ̇          for            and,  ̇            and            for 

           and             , thus          is a Lyapunov function of the system 

(1.1) for      on  . Therefore, we have proved the following theorem. 

 Theorem 2.5. If the infected equilibrium point              exists and    
  

  
, 

then this equilibrium point is globally asymptotically stable in  . 
Remark 2.1. If Theorem 2.5 holds,    and    are all of the equilibrium points of the 

system (1.1).  

 

3  Other Equilibrium Points and Their Stability  
    In this section, we will find the equilibrium points of the system (1.1) for       and  
   

    
  . Then we will consider the stability of these points.  

From 
   

    
   we obtain 

  
       

  
                                                                                                                               

and from the second equation of (2.1) we get  

  
   

 
                                                                                                                           

where        . If    , then the system (1.1) does not have any rest point in   
 . 

Hence we look for a rest point in the set        .    

By substituting    from (3.1) into the first equation of (2.1) we obtain  

            (
       

  
)                                                                            

Hence if (1.1) has another equilibrium point, it must satisfy in (3.1), (3.2) and (3.3). In 

the following, we discuss in more detail about the existence of such solution. From (3.3) 

we can write 

  (
       

  
)                                                                                  

The right hand side of (3.4) is a straight line and by hypothesis   , the left hand side is a 

concave upward curve with positive values.  

If         , then               is negative in    , but the left hand side of 

(3.4) is positive. Therefore, in this case, the equation (3.4) does not have any solution. 

This means that (3.3) cannot have any solution if         .  

If          and    is very small or        , then as the concavity of 

  (
       

  
)   does not change, the line              intersects the 

curve   (
       

  
)    in one point or  two points. Hence (3.3) admits at most two 

solutions in    . Notice that the line              is decreasing with respect to 

  and the curve    
       

  
    is increasing with respect to it. Thus if   decreases these 

two curves may intersect each others in two points.  
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 If the line is tangent to the curve, then (3.4) and therefore, (3.3) has one solution. Hence 

the system (1.1) admits another rest point. Let               be this point, where 

   
        

   
,     

       

 
 and   satisfies in (3.4).  

We show the corresponding   to this rest point by   . This number is called the 

immunodeficiency threshold.  

If     , then the line cuts the curve in two different points and  the equation (3.4) has 

two different solutions. In this case, the system (1.1) has two other rest points. Let 

              be these points, with      . Thus       and      . If 

       , then    and   are not in   
 , but   is in   

  for small values of  . If 

       , then      
  for        and      

  for      and      small.  That 

is, there is an        such that           
   and   is in   

  for        . Thus 

we have proved the following theorem.  

Theorem3.1. If the line                and the curve        
       

  
  

intersect each other, then there is       such that      
  for        and      

  

for        .  

The number    is called the risky threshold rate of  immune impairment.   

Now we consider the stability of   . From (2.3) we have  

      [

                  

             

     

     

     

        
 

]                                                          By 

substituting    
        

   
,    

  
        

      

 
 in (3.5) yield  

      

[
 
 
 
 
                  

             

         

        

       

          
 

]
 
 
 
 

                                                

where       
 (     )

   
 . Therefore, the characteristic polynomial of       is  

      
                                                                                                       

Where            
   ,          

     
 (    )

       
 and     

    

     
 (   

       
       

  ). 

From the Routh-Hurwitz criterion, all eigenvalues have negative real parts if  

                             
By hypothesis   , we have         , thus      and     . Now we determine 

the sign of     and        . Since    satisfy in (3.4) and      , at    we have 

 

  
(  (

       

  
)   )            

By substituting       
        

   
  we get  
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          (
        

   )                                                                  

By using (3.8) and (3.4) we obtain   

   (
    

     ) (                  
  )     

Hence,     . Now we show that           .   

        
        

     
    

      
           

     
 

        

     
  

           

      
    

        

         
      

    
        

         

where       (
        

   
).  

Therefore, we establish the local asymptotical stability of   .  

For   , at   we have,  

 

  
(  (

       

  
)   )                                       

From the above inequality and       
        

   
  we obtain  

          (
        

   )                                                                      

Therefore, by using (3.16) and (3.4) 

    
    

     
                          

Since      we conclude that the real part of one of three roots of the equation (3.14) 

is positive. Hence,   is always unstable.  Therefore we have the following theorem. 

Theorem 3.2. Suppose that the equilibrium               exist. The equilibrium 

point   is always unstable and the equilibrium point    is always locally 

asymptotically stable. 

4  Discussion   
The model which is given by the system (1.1) has four possible equilibria:  

   (
 

 
    )                                            

The basic reproductive number for one infected cell is definable as    
 

 
  

 

 
 , which 

represents the average number of cells infected by a single infected cell in an otherwise 

susceptible cell population.  

In a healthy human only activated CD4
+
T cells attain an equilibrium level of   

 

 
. 

This homeostatic equilibrium is designated by    in the above.  

By Theorem 2.1,   , the uninfected equilibrium or healthy state always exists and by 

Theorem 2.2 for     , it is the unique equilibrium and  is globally asymptotically 

stable. This means that the infected CD4
+
Tcells decreases to zero.  
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After infection of HIV, if     , then infected CD4
+
T cells increase to high level and 

uninfected CD4
+
T cells decrease to a low level. This situation is appeared by the 

infected equilibrium   .  

By Theorem 2.1,    exists if and only if     . It is locally asymptotically stable if 
     

     
  . In this case the infected equilibrium    is the steady state of the model. This 

means that infected CD4
+
T cells increase initially to high level and subsequently 

converge to an equilibrium value    and the activated CD4
+
T cells attain an equilibrium 

level of   . This equilibrium    represents a state in which the virus load of HIV is 

balanced with no immune response, because of a shortage of activated CD4
+
T cells 

during a primary pose of HIV infection. In this case,    is designated as the shortage 

state. If      and 
     

     
  , then    is not acceptable or it is unstable.     

In addition to the two equilibria    and   , at the end of the primary phase, if CTL 

responses are induced, then the infected cells are regulated by them for a long time at 

some steady state. Actually, if    is large and   is small, then from the equation (3.4) our 

model must have two possible interior equilibria               and    
           with,      ,      ,      . However, by Theorem 3.2,    is 

always unstable if exists. Therefore the equilibrium    is considered as a controlled 

state, in which effective and sustained CTLs have been established and the virus load is 

suppressed at a low level. In fact if   increases or   decreases,    tends to a lower level.  

On the other hand, if CTLs are not induced at the end of the primary phase, then 
     

     
   and by Theorem 2.4 or 2.5,    is the only state equilibrium of the model for 

small values of   and large values of  . This means that   infected individuals 

immediately develop AIDS after the acute infection. Consequently, when a complete 

breakdown of the immune system occurs, implying that   converge zero, activated and 

infected CD4
+
T cells also converge to the same equilibrium values   . In this case, the 

steady state    is called the immunodeficiency state.  

The immune impairment rate is low at the beginning of the infection. Therefore, 

sustained CTL responses are established and the viral replication is suppressed at a low 

level in the stable controlled state    after the CTL naives begin to expand and 

differentiate. Consequently, the virus load of HIV equilibrates and remains at a 

virological set point immediately after the acute infection.   

By Theorem 3.2,    always is stable and the shortage state    is stable in x-y space, but 

is unstable in all space if   is small which implies that convergent steady state of model 

(1.1) always transfers from    to    if   becomes positive. Furthermore, even if the 

immune impairment rate,   increases the viral replication is well controlled by CTL 

responses at    until the rate exceeds the risky threshold    i.e.    . On the other 

hand, when the impairment rate becomes greater than the immunodeficiency threshold 

(i.e.    ) the shortage state becomes the immunodeficiency state i.e.   . In this 

situation the immunodeficiency state    becomes a unique stable steady state of model 

(1.1). This means that the risky zone expands into total space and the patients always 

develop AIDS.       

Appendix  
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   In this section, we investigate the hypothesis H4 for some famous functional 

responses.  

The following lemma helps us to show easier the concavity of the functional responses. 

Lemma. The function      (
       

  
) is concave upward if the function   

      
 

 
  is concave upward.  

Proof: We can write,       
  

 
 

 

  
 . Let   

  

 
 and   

  

 
, then         

 

 
 . 

Since change of scale of independent variable does not change the concavity of the 

function, the proof is complete.    

i) Lotka-Volterra or Holling I: we let         . For this functional response we have:  
 

  
[   (  

 

 
)]  

 

  
                      

Therefore,  

  

   
[   (  

 

 
)]  

  

   
                   

ii) Holling II or Michealis-Menten or Rosenzweig: Thus we have      
  

   
  and  

 

  
[   (  

 

 
)]  

 

  
[
         

        
]  

                        

             

Therefore,  

  

   [   (  
 

 
)]  

  

   [
         

        
]   

                             

               

iii) Holling type IV or Monod-Haldane: we get        
  

      
. Hence we have  

 

  
[   (  

 

 
)]  

 

  
[

         

                    
]   

 

                                      

                            
and 

  

   [   (  
 

 
)]  

  

   [
         

                    
]   

 

(                    )
                

                                      

                                        

             
 

(                    )
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iv) Ivlev: we let                and we have  
 

  
[   (  

 

 
)]  

 

  
[   (   

  (  
 
 
)
)]   

    (   
     

 
 
 
)    

     
 
 
 
   

So  

  

   
[   (  

 

 
)]  

  

   
[   (   

  (  
 
 
)
)] 

     (  
 

 
 

  

  
) 

  (  
 
 
)
    

     
 
 
 
   

    
 
 
 
 (  

 

 
 

  

  
)  

   
     

 
  

  (   (  
 

 
)  

 

 
( (  

 

 
))

 

)   

(  
 

 
 

  

  )    
     

 
 
 
[          

 

 
  

   

 
]       
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