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Abstract

In this work, we study the existence of positive periodic solutions for two types of
third-order nonlinear neutral differential equations with variable coefficients. The results
are established by using the Krasnoselskii’s fixed point theorem. The results obtained here
extend the work of Ren, Siegmund and Chen [30]. Two examples are given to illustrate
this work.
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1 Introduction

Third order differential equations arise from in a variety of different areas of
applied mathematics and physics, as the deflection of a curved beam having a
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constant or varying cross section, three layer beam, electromagnetic waves or
gravity driven flows and so on [2, 16, 23, 28, 30].

Delay differential equations have received increasing attention during recent
years since these equations have been proved to be valuable tools in the mod-
eling of many phenomena in various fields of science and engineering, see the
monograph [10, 24] and the papers [1]-[6], [9], [11]-[22], [26]-[28], [30], [32], [33],
[35], [36] and the references therein.

Ren, Siegmund and Chen [30] discussed the existence of positive ω-periodic
solutions for the following neutral functional differential equation

(x(t)− cx(t− τ(t)))′′′ = −a(t)x(t) + f(t, x(t− τ(t))),

where |c| < 1. By employing Krasnoselskii’s fixed point theorem, the authors
obtained existence results for positive ω-periodic solutions.

In the present article, we study the existence of positive ω-periodic solutions
for the following two types of third-order nonlinear neutral differential equations

(x(t)− c(t)x(t− τ))′′′ = a(t)x(t)− f(t, x(t− τ)), (1)

and
(x(t)− c(t)x(t− τ))′′′ = −a(t)x(t) + f(t, x(t− τ)), (2)

where c ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈ C(R× R,R), τ, ω > 0, and c, a are
ω-periodic functions, f is ω-periodic with respect to first variable. To show the
existence of positive ω-periodic solutions, we transform (1) and (2) into inte-
gral equations and then use Krasnoselskii’s fixed point theorem. The obtained
integral equations split in the sum of two mappings, one is a contraction and
the other is compact.

In this paper, we have two main contributions comparing with the existing
results. First, instead of constant c we take variable coefficient c(t). Second,
in addition to |c(t)| < 1, we consider the range |c(t)| > 1 for c(t), which is
new in the literature. Also, the results obtained here extend the work of Ren,
Siegmund and Chen [30].

The organization of this paper is as follows. In section 2, we introduce
some notations and lemmas, and state some preliminary results needed in later
sections. Then we give the Green’s function of (1) and (2) which plays an
important role in this paper. Also, we present the inversions of (1) and (2), and
Krasnoselskii’s fixed point theorem. For details on Krasnoselskii’s theorem we
refer the reader to [7, 8, 25, 29, 31, 34]. In section 3, we present our main results
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on existence of positive ω-periodic solutions of (1) and (2). Two examples are
also given to illustrate this work.

2 Preliminaries

For ω > 0, let Cω be the set of all continuous scalar functions x, periodic in t
of period ω. Then (Cω, ‖.‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,ω]

|x(t)| .

Define
C+
ω = {u ∈ Cω : u > 0} , C−ω = {u ∈ Cω : u < 0} .

Denote

M = sup{a(t) : t ∈ [0, ω]}, m = inf{a(t) : t ∈ [0, ω]}, ρ =
3
√
M.

Lemma 1 ([30]) The equation

u′′′ (t)−Mu (t) = h(t), h ∈ C−ω ,
u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω),

has a unique ω-periodic solution

u(t) =

∫ ω

0

G1(t, s)(−h(s))ds,

where

G1(t, s) =



2 exp( 1
2ρ(s−t))[sin(

√
3
2 ρ(t−s)+π

6 )−exp(− 1
2ρω) sin(

√
3
2 ρ(t−s−ω)+π

6 )]

3ρ2(1+exp(−ρω)−2 exp(−ρω2 ) cos(
√
3
2 ρω))

+ exp(ρ(t−s))
3ρ2(exp(ρω)−1) , if 0 ≤ s ≤ t ≤ ω,

2 exp( 1
2ρ(s−t−ω))[sin(

√
3
2 ρ(t−s+ω)+π

6 )−exp(− 1
2ρω) sin(

√
3
2 ρ(t−s)+π

6 )]

3ρ2(1+exp(−ρω)−2 exp(−ρω2 ) cos(
√
3
2 ρω))

+ exp(ρ(t+ω−s))
3ρ2(exp(ρω)−1) , if 0 ≤ t ≤ s ≤ ω.

Corollary 1 Green’s function G1 satisfies the following properties∫ ω

0

G1(t, s)ds =
1

M
,

and if
√

3ρω < 4π/3 holds, then

0 < A < G1(t, s) ≤ B, 0 < A < G1(t+ τ, s) ≤ B,
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where

A =
1

3ρ2(exp(ρω)− 1)
, B =

3 + 2 exp(−ρω
2 )

3ρ2(1− exp(−ρω
2 ))2

.

Lemma 2 ([30]) The equation

u′′′ (t) +Mu (t) = h(t), h ∈ C+
ω ,

u(0) = u(ω), u′(0) = u′(ω), u′′(0) = u′′(ω),

has a unique ω-periodic solution

u(t) =

∫ ω

0

G2(t, s)h(s)ds,

where

G2(t, s) =



2 exp( 1
2ρ(t−s))[sin(

√
3
2 ρ(t−s)−π6 )−exp( 1

2ρω) sin(
√
3
2 ρ(t−s−ω)−π6 )]

3ρ2(1+exp(ρω)−2 exp( 1
2ρω) cos(

√
3
2 ρω))

+ exp(ρ(s−t))
3ρ2(1−exp(−ρω)) , if 0 ≤ s ≤ t ≤ ω,

2 exp( 1
2ρ(t+ω−s))[sin(

√
3
2 ρ(t+ω−s)−π6 )−exp( 1

2ρω) sin(
√
3
2 ρ(t−s)−π6 )]

3ρ2(1+exp(ρω)−2 exp( 1
2ρω) cos(

√
3
2 ρω))

+ exp(ρ(s−t−ω))
3ρ2(1−exp(−ρω)) , if 0 ≤ t ≤ s ≤ ω.

Corollary 2 Green’s function G2 satisfies the following properties∫ ω

0

G2(t, s)ds =
1

M
,

and if
√

3ρω < 4π/3 holds, then

0 < A < G2(t, s) ≤ B, 0 < A < G2(t+ τ, s) ≤ B.

Lemma 3 ([30]) The equation

u′′′ (t)− a(t)u (t) = h(t), h ∈ C−ω ,

has a unique positive ω-periodic solution

(P1h)(t) = (I − T1B1)
−1(T1h)(t),

where

(T1h)(t) =

∫ ω

0

G1(t, s)(−h(s))ds, (B1u)(t) = (−M + a(t))u(t).
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Lemma 4 ([30]) If
√

3ρω < 4π/3 holds, then P1 is completely continuous and

0 < (T1h)(t) ≤ (P1h)(t) ≤ M

m
‖(T1h)(t)‖, ∀h ∈ C−ω .

The following theorem is essential for our results on existence of positive
periodic solution of (1).

Theorem 1 If x ∈ Cω then x is a solution of (1) if and only if

x(t) = c(t)x(t− τ) + P1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ)). (3)

Proof. Let x ∈ Cω be a solution of (1). Rewrite (1) as

(x(t)− c(t)x(t− τ))′′′ −M(x(t)− c(t)x(t− τ))

= (−M + a(t))(x(t)− c(t)x(t− τ))− f(t, x(t− τ)) + c(t)a(t)x(t− τ)

= B1(x(t)− c(t)x(t− τ))− f(t, x(t− τ)) + c(t)a(t)x(t− τ).

From Lemmas 1 and 3, we have

x(t)− c(t)x(t− τ)

= T1B1(x(t)− c(t)x(t− τ)) + T1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

This yields

(I − T1B1)(x(t)− c(t)x(t− τ)) = T1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

Therefore

x(t)− c(t)x(t− τ) = (I − T1B1)
−1T1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ))

= P1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

Obviously,

x(t) = c(t)x(t− τ) + P1(−f(t, x(t− τ)) + c(t)a(t)x(t− τ)).

Corollary 3 If x ∈ Cω then x is a solution of (1) if and only if

x(t) =
1

c(t+ τ)
[x(t+ τ) + P1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t)))] . (4)
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Lemma 5 ([30]) The equation

u′′′ (t) + a(t)u (t) = h(t), h ∈ C+
ω ,

has a unique positive ω-periodic solution

(P2h)(t) = (I − T2B2)
−1(T2h)(t),

where

(T2h)(t) =

∫ ω

0

G2(t, s)h(s)ds, (B2u)(t) = (M − a(t))u(t).

Lemma 6 ([30]) If
√

3ρω < 4π/3 holds, then P2 is completely continuous and

0 < (T2h)(t) ≤ (P2h)(t) ≤ M

m
‖(T2h)(t)‖, ∀h ∈ C+

ω .

The following theorem is essential for our results on existence of positive
periodic solution of (2).

Theorem 2 If x ∈ Cω then x is a solution of (2) if and only if

x(t) = c(t)x(t− τ) + P2(f(t, x(t− τ))− c(t)a(t)x(t− τ)). (5)

Proof. Let x ∈ Cω be a solution of (2). Rewrite (2) as

(x(t)− c(t)x(t− τ))′′′ +M(x(t)− c(t)x(t− τ))

= (M − a(t))(x(t)− c(t)x(t− τ)) + f(t, x(t− τ))− c(t)a(t)x(t− τ)

= B2(x(t)− c(t)x(t− τ)) + f(t, x(t− τ))− c(t)a(t)x(t− τ).

From Lemmas 2 and 5, we have

x(t)− c(t)x(t− τ)

= T2B2(x(t)− c(t)x(t− τ)) + T2(f(t, x(t− τ))− c(t)a(t)x(t− τ)).

This yields

(I − T2B2)(x(t)− c(t)x(t− τ)) = T2(f(t, x(t− τ))− c(t)a(t)x(t− τ)).

Therefore,

x(t)− c(t)x(t− τ) = (I − T2B2)
−1T2(f(t, x(t− τ))− c(t)a(t)x(t− τ))

= P2(f(t, x(t− τ))− c(t)a(t)x(t− τ)).

Obviously,

x(t) = c(t)x(t− τ) + P2(f(t, x(t− τ))− c(t)a(t)x(t− τ)).
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Corollary 4 If x ∈ Cω then x is a solution of (2) if and only if

x(t) =
1

c(t+ τ)
[x(t+ τ) + P2(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t)))] . (6)

Lastly in this section, we state Krasnoselskii’s fixed point theorem which
enables us to prove the existence of positive ω-periodic solutions to (1) and (2).
For its proof we refer the reader to [25, 31, 34].

Lemma 7 (Krasnoselskii [25, 31, 34]) Let D be a closed convex nonempty
subset of a Banach space (B, ‖·‖). Suppose that A and B map D into B such
that

(i) Ax+By ∈ D, ∀x, y ∈ D,

(ii) A is completely continuous,

(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az +Bz.

3 Positive periodic solutions

To apply Lemma 7, we need to define a Banach space B, a closed con-
vex subset D of B and construct two mappings, one is contraction and the
other is a completely continuous. So we let (B, ‖·‖) = (Cω, ‖·‖) and D =
{ϕ ∈ Cω : M1 ≤ ϕ ≤M2}, where M1 is non-negative constant and M2 is posi-
tive constant.

3.1 Positive periodic solutions in the case |c(t)| > 1

In this subsection, we obtain the existence of positive ω-periodic solution for
(1) and (2) by considering the two cases: 1 < c(t) < ∞ and −∞ < c(t) < −1
for all t ∈ [0, ω].

Theorem 3 Suppose that
√

3ρω < 4π/3, 1 < c1 ≤ c(t) ≤ c2 <∞ and

m ≤ c(t)a(t)x−f(t, x) ≤ c1M, ∀(t, x) ∈ [0, ω]×
[

m

(c2 − 1)M
,

c1M

(c1 − 1)m

]
. (7)

Then (1) has at least one positive ω-periodic solution x in the subset D1 of B
where D1 =

{
ϕ ∈ Cω : m

(c2−1)M ≤ ϕ ≤ c1M
(c1−1)m

}
.
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Proof. We express (4) as

ϕ(t) = (B1ϕ)(t) + (A1ϕ)(t) := (H1ϕ)(t),

where A1, B1 : D1 → B are defined by

(A1ϕ)(t) =
1

c(t+ τ)
P1(−c(t+ τ)a(t+ τ)ϕ(t) + f(t+ τ, ϕ(t))),

and

(B1ϕ)(t) =
ϕ(t+ τ)

c(t+ τ)
.

It is obvious that A1ϕ and B1ϕ are continuous and ω-periodic. Now we prove
that A1x+ B1y ∈ D1, ∀x, y ∈ D1. By Corollary 1, Lemma 4 and the condition
(7) we obtain

(A1x) (t) + (B1y) (t)

=
1

c(t+ τ)
[P1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) + y(t+ τ)]

≤ 1

c1

[
M

m
T1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) +

c1M

(c1 − 1)m

]

≤ M

mc1
max
t∈[0,ω]

∣∣∣∣∣∣
ω∫

0

G1(t, s)(c(s+ τ)a(s+ τ)x(s)− f(s+ τ, x(s)))ds

∣∣∣∣∣∣
+

M

(c1 − 1)m

≤ M

mc1

ω∫
0

G1(t, s)c1Mds+
M

(c1 − 1)m

≤ M

mc1
c1M

1

M
+

M

(c1 − 1)m

=
c1M

(c1 − 1)m
. (8)
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On the other hand

(A1x) (t) + (B1y) (t)

=
1

c(t+ τ)
[P1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) + y(t+ τ)]

≥ 1

c2

[
T1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))) +

m

(c2 − 1)M

]
≥ 1

c2

ω∫
0

G1(t, s)(c(s+ τ)a(s+ τ)x(s)− f(s+ τ, x(s)))ds+
1

c2

m

(c2 − 1)M

≥ 1

c2

ω∫
0

G1(t, s)mds+
1

c2

m

(c2 − 1)M

≥ 1

c2
m

1

M
+

1

c2

m

(c2 − 1)M
=

m

(c2 − 1)M
. (9)

Combining (8) and (9), we obtain A1x+ B1y ∈ D1, ∀x, y ∈ D1. For ϕ, ψ ∈ D1,
we have

|(B1ϕ)(t)− (B1ψ)(t)| =
∣∣∣∣ϕ(t+ τ)

c(t+ τ)
− ψ(t+ τ)

c(t+ τ)

∣∣∣∣
≤ 1

c1
|ϕ(t+ τ)− ψ(t+ τ)|

≤ 1

c1
‖ϕ− ψ‖ ,

which implies that ‖B1ϕ−B1ψ‖ ≤ 1
c1
‖ϕ− ψ‖. Since 0 < 1

c1
< 1, B1 is a

contraction on D1. From Lemma 4, we know that P1 is completely continuous,
so is A1. By Lemma 7, we obtain that A1 + B1 has a fixed point x ∈ D1, i.e.
(1) has a positive ω-periodic solution x ∈ D1.

Corollary 5 Assume that the hypotheses of Theorem 3 hold. Then (2) has at
least one positive ω-periodic solution x in the subset D1 of B.

Theorem 4 Suppose that
√

3ρω < 4π/3, −∞ < c3 ≤ c(t) ≤ c4 < −1 and

c3

c4
M < f(t, x)− c(t)a(t)x ≤ −c4m, ∀(t, x) ∈ [0, ω]× [0, 1]. (10)

Then (1) has at least one positive ω-periodic solution x in the subset D̃2 of B,
where D̃2 = {ϕ ∈ Cω : 0 < ϕ ≤ 1}.
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Proof. Let D2 = {ϕ ∈ Cω : 0 ≤ ϕ ≤ 1}. We define A1, B1 : D2 → B as follows

(A1ϕ)(t) =
−1

c(t+ τ)
P1(c(t+ τ)a(t+ τ)ϕ(t)− f(t+ τ, ϕ(t))),

and

(B1ϕ)(t) =
ϕ(t+ τ)

c(t+ τ)
.

Now we prove that A1x+B1y ∈ D2, ∀x, y ∈ D2. By Corollary 1, Lemma 4 and
the condition (10) we obtain

(A1x) (t) + (B1y) (t)

=
−1

c(t+ τ)
P1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) +

y(t+ τ)

c(t+ τ)

≤ −1

c4

M

m
T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t)))

≤ −M
mc4

max
t∈[0,ω]

∣∣∣∣∣∣
ω∫

0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds

∣∣∣∣∣∣
≤ −M
mc4

ω∫
0

G1(t, s)(−c4m)ds

≤ −M
mc4

(−c4m)
1

M
= 1. (11)

On the other hand

(A1x) (t) + (B1y) (t)

=
−1

c(t+ τ)
P1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) +

y(t+ τ)

c(t+ τ)

≥ −1

c3
T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) +

1

c4

≥ −1

c3

ω∫
0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds+
1

c4

≥ −1

c3

ω∫
0

G1(t, s)(
c3

c4
M)ds+

1

c4

≥ −1

c3
(
c3

c4
M)

1

M
+

1

c4
= 0. (12)

Electronic Journal. http://diffjournal.spbu.ru 55



Differential Equations and Control Processes, N 3, 2018

Combining (11) and (12), we obtain A1x + B1y ∈ D2, for all x, y ∈ D2. For
ϕ, ψ ∈ D2, we have

|(B1ϕ)(t)− (B1ψ)(t)| =
∣∣∣∣ϕ(t+ τ)

c(t+ τ)
− ψ(t+ τ)

c(t+ τ)

∣∣∣∣
≤ −1

c4
|ϕ(t+ τ)− ψ(t+ τ)|

≤ −1

c4
‖ϕ− ψ‖ ,

which implies that ‖B1ϕ−B1ψ‖ ≤ −1
c4
‖ϕ− ψ‖. Since 0 < −1

c4
< 1, B1 is a

contraction on D2. From Lemma 4, we know that P1 is completely continuous,
so is A1. By Lemma 7, we obtain that A1 + B1 has a fixed point x ∈ D2,
i.e. (1) has a nonnegative ω-periodic solution x with 0 ≤ x(t) ≤ 1. Since
f(t, x) − c(t)a(t)x > c3

c4
M , it is easy to see that x(t) > 0, i.e. (1) has positive

ω-periodic solution x ∈ D̃2.

Corollary 6 Assume that the hypotheses of Theorem 4 hold. Then (2) has at
least one positive ω-periodic solution x in the subset D̃2 of B.

3.2 Positive periodic solutions in the case |c(t)| < 1

In this subsection, we obtain the existence of a positive periodic solution for
(1) and (2) by considering the three cases; 0 < c(t) < 1, −1 < c(t) ≤ 0 and
c(t) = 0 for all t ∈ [0, ω].

Theorem 5 Suppose that
√

3ρω < 4π/3, 0 < c5 ≤ c(t) ≤ c6 < 1, and

c5m ≤ f(t, x)−c(t)a(t)x ≤M, ∀(t, x) ∈ [0, ω]×
[

c5m

(1− c5)M
,

M

(1− c6)m

]
. (13)

Then (1) has at least one positive ω-periodic solution x(t) in the subset D3 of

B, where D3 =
{
ϕ ∈ Cω : c5m

(1−c5)M ≤ ϕ ≤ M
(1−c6)m

}
.

Proof. We express (3) as

ϕ(t) = (B2ϕ)(t) + (A2ϕ)(t) := (H2ϕ)(t),

where A2, B2 : D3 → B are defined by

(A2ϕ)(t) = P1(c(t)a(t)ϕ(t− τ)− f(t, ϕ(t− τ))),
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and
(B2ϕ)(t) = c(t)ϕ(t− τ).

It is obvious that A2ϕ and B2ϕ are continuous and ω-periodic. Now we prove
that A2x+ B2y ∈ D3, ∀x, y ∈ D3. By Corollary 1, Lemma 4 and the condition
(13) we obtain

(A2x) (t) + (B2y) (t)

= P1(c(t)a(t)x(t− τ)− f(t, x(t− τ))) + c(t)y(t− τ)

≤ M

m
T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) + c6

M

(1− c6)m

≤ M

m
max
t∈[0,ω]

∣∣∣∣∣∣
ω∫

0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds

∣∣∣∣∣∣
+ c6

M

(1− c6)m

≤ M

m

ω∫
0

G1(t, s)Mds+ c6
M

(1− c6)m

≤ M

m
M

1

M
+ c6

M

(1− c6)m
=

M

(1− c6)m
. (14)

On the other hand

(A2x) (t) + (B2y) (t)

= P1(c(t)a(t)x(t− τ)− f(t, x(t− τ))) + c(t)y(t− τ)

≥ T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) + c5
c5m

(1− c5)M

≥
ω∫

0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds+ c5
c5m

(1− c5)M

≥
ω∫

0

G1(t, s)c5mds+ c5
c5m

(1− c5)M

≥ c5m
1

M
+ c5

c5m

(1− c5)M
=

c5m

(1− c5)M
. (15)

Combining (14) and (15), we obtain A2x+B2y ∈ D3,∀x, y ∈ D3. For ϕ, ψ ∈ D3,
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we have

|(B2ϕ)(t)− (B2ψ)(t)|
= |c(t)ϕ(t− τ)− c(t)ψ(t− τ)|
≤ c6 |ϕ(t− τ)− ψ(t− τ)|
≤ c6 ‖ϕ− ψ‖ ,

which implies that ‖B2ϕ−B2ψ‖ ≤ c6 ‖ϕ− ψ‖. Since 0 < c6 < 1, B2 is a
contraction on D3. From Lemma 4, we know that P1 is completely continuous,
so is A2. By Lemma 7 we obtain that A2 +B2 has a fixed point x ∈ D3, i.e. (1)
has a positive ω-periodic solution x ∈ D3.

Corollary 7 Assume that the hypotheses of Theorem 5 hold. Then (2) has at
least one positive ω-periodic solution x in the subset D3 of B.

Theorem 6 Suppose that
√

3ρω < 4π/3, −1 < c7 ≤ c(t) ≤ c8 < 0 and

−c7M < f(t, x)− c(t)a(t)x ≤ m, ∀(t, x) ∈ [0, ω]× [0, 1]. (16)

Then (1) has at least one positive ω-periodic solution x in the subset D̃4 of B,
where D̃4 = {ϕ ∈ Cω : 0 < ϕ ≤ 1}.

Proof. Let D4 = {ϕ ∈ Cω : 0 ≤ ϕ ≤ 1}. Now we prove that A2x + B2y ∈ D4,

∀x, y ∈ D4. By Corollary 1, Lemma 4 and the condition (16) we obtain

(A2x) (t) + (B2y) (t)

= P1(c(t)a(t)x(t− τ)− f(t, x(t− τ))) + c(t)y(t− τ)

≤ M

m
T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t)))

≤ M

m
max
t∈[0,ω]

∣∣∣∣∣∣
ω∫

0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds

∣∣∣∣∣∣
≤ M

m

ω∫
0

G1(t, s)mds

≤ M

m
m

1

M
= 1. (17)
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On the other hand

(A2x) (t) + (B2y) (t)

= P1(c(t)a(t)x(t− τ)− f(t, x(t− τ))) + c(t)y(t− τ)

≥ T1(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))) + c7

≥
ω∫

0

G1(t, s)(f(s+ τ, x(s))− c(s+ τ)a(s+ τ)x(s))ds+ c7

≥
ω∫

0

G1(t, s)(−c7M)ds+ c7

≥ (−c7M)
1

M
+ c7 = 0. (18)

Combining (17) and (18), we obtain A2x + B2y ∈ D4, ∀x, y ∈ D4. Obviously,
B2ϕ is continuous and it is easy to show that (B2ϕ)(t+ ω) = (B2ϕ)(t). So, for
ϕ, ψ ∈ D4, we have

|(B2ϕ)(t)− (B2ψ)(t)| = |c(t)ϕ(t− τ)− c(t)ψ(t− τ)|
≤ −c7 |ϕ(t− τ)− ψ(t− τ)|
≤ −c7 ‖ϕ− ψ‖ ,

which implies that ‖B2ϕ−B2ψ‖ ≤ −c7 ‖ϕ− ψ‖. Since 0 < −c7 < 1, B2 is a
contraction on D4. From Lemma 4, we know that P1 is completely continuous,
so is A2. By Lemma 7, we obtain that A2 + B2 has a fixed point x ∈ D4,
i.e. (1) has a nonnegative ω-periodic solution x with 0 ≤ x(t) ≤ 1. Since
f(t, x)− c(t)a(t)x > −c7M , it is easy to see that x(t) > 0, i.e. (1) has positive
ω-periodic solution x ∈ D̃4.

Corollary 8 Assume that the hypotheses of Theorem 6 hold. Then (2) has at
least one positive ω-periodic solution x in the subset D̃4 of B.

Theorem 7 ([30]) If
√

3ρω < 4π/3 holds, c(t) = 0 and

0 < f(t, x) ≤M, ∀(t, x) ∈ [0, ω]×
[
0,
M

m

]
.

Then (1) has at least one positive ω-periodic solution x with 0 < x(t) ≤ M
m .

Remark 1 In a similar way of Theorem 7 we can prove that the (2) has at
least one positive ω-periodic solution x when c(t) = 0.
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Example 1 Consider the third-order nonlinear neutral differential equation(
x(t)−

(
2 + sin2 t+

1

0.9 + 8 sin2 t

)
x(t− 6π)

)′′′
=

1

103
(1− 1

102
sin2 t)x(t)− 1

104
(6 + sin t)− 1

103
exp(cos(x(t− 6π))). (19)

Note that (19) of the form (1) with ω = 2π, c(t) = 2 + sin2 t + 1
0.9+8 sin2 t

,

a(t) = 1
103 (1−

1
102 sin2 t), f(t, x(t−6π)) = 1

104 (6+sin t)+ 1
103 exp(cos(x(t−6π))),

and τ = 6π. It is easy to verify that the conditions of Theorem 3 are satisfied
with m = 99

105 and M = 1
103 . Thus (19) has at least one positive ω-periodic

solution.

Example 2 Consider the third-order nonlinear neutral differential equation(
x(t) + (3 +

sin t

10
)x(t− 4π)

)′′′
= − 1

103
(1− 1

2
sin2 t)x(t) +

1

104
(2 + sin t) +

1

103
sin(x(t− 4π)). (20)

Note that (20) of the form (2) with ω = 2π, c(t) = −(3 + sin t
10 ), a(t) = 1

103 (1 −
1
2 sin2 t), f(t, x(t − 4π)) = 1

104 (2 + sin t) + 1
103 sin(x(t − 4π)) and τ = 4π. It is

easy to verify that the conditions of Corollary 6 are satisfied with m = 1
2×103

and M = 1
103 . Thus (20) has at least one positive ω-periodic solution.
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