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Abstract

A time optimal control problem for infinite order parabolic equations is
considered. A time optimal control problem is replaced by an equivalent one

with a performance index in the form of integral form. Constraints on controls
are assumed. To obtain the optimality conditions for the Neumann problem,
the generalization of the Dubovitskii-Milyutin Theorem given by Walczak in

Refs.[41,42] was applied.

1 Introduction

In recent years, significant emphasis has been given to the study of optimal
control for systems governed by parabolic and hyperbolic partial differential
equations with first boundary conditions or with Cauchy conditions. In these
studies, the differential equations are either in general form or in divergence
form. Questions concerning necessary conditions for optimality and existence
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of optimal controls for these problems have been investigated for example in
[8-19,22-43].

In (Refs. [15,18,19,29,32]), the optimal control problems for systems de-
scribed by parabolic and hyperbolic operators with infinite order and consist
of one equation have been discussed. Also we extended the discussion in [9-12]
to n × n coupled systems of elliptic, parabolic and hyperbolic types involving
different types of operators. To obtain optimality conditions the arguments of
(Ref.[38]) have been applied.

Making use of the Dubovitskii-Milyutin theorem from [20]), following (Refs.
[22-35]) Kotarski have obtained necessary and sufficient conditions of optimality
for similar systems governed by second order operator with an infinite number
of variables and with Dirichlet and Neumann boundary conditions. The interest
in the study of this class of operators is stimulated by problems in quantum
field theory.

In [1] a distributed Pareto optimal control problem for the parabolic opera-
tor with an infinite number of variables and with Neumann boundary conditions
is considered. In [2] a time optimal control problem for parabolic equations
with an infinite number of variables is considered. In [29] a distributed control
problem for a hyperbolic system with mixed control state constraints involving
operator of infinite order is considered. In [31] a distributed control problem for
Neumann parabolic problem with time delay is considered. Also in [32], a dis-
tributed control problem for a hyperbolic system involving operator of infinite
order with Dirichlet conditions is considered.

In this paper, the application of the generalized Dubovitskii- Milyutin The-
orem from [41,42] will be demonstrated on an optimization Neumann problem
for system described by parabolic operator with infinite order. A time optimal
control problem for infinite order parabolic equations is considered. A time
optimal control problem is replaced by an equivalent one with a performance
index in the form of integral form. Constraints on controls are assumed.

This paper is organized as follows. In section 2, we introduce some func-
tional spaces with an infinite order. In section 3, we formulate the optimal
control problem and we introduce the main results of this paper. In section 4,
we introduce a real example for this problem.
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2 Some Functional Spaces (Refs.[3-5]).

The object of this section is to give the definition of some function spaces
of infinite order, and the chains of the constructed spaces which will be used
later. We define the Sobolev space W∞ {aα, 2} (Rn) (which we shall denoted by
W∞ {aα, 2}) of infinite order of periodic functions φ(x) defined on all boundary
Γ of Rn, n ≥ 1, as follows,

W∞ {aα, 2} =



φ(x) ∈ C∞(Rn) :

∞∑

|α|=0

aα||Dαφ||22 < ∞




where aα ≥ 0 is a numerical sequence and ||.||2 is the canonical norm in the
space L2(Rn)( all functions are assumed to be real valued), and

Dα =
∂|α|

(∂x1)α1....(∂xn)αn
,

where α = (α1, ..., αn) is a multi-index for differentiation, |α| =
n∑

i=1

αi.

The space W−∞{aα, 2} is defined as the formal conjugate space to the space
W∞{aα, 2}, namely:

W−∞ {aα, 2} = {ψ(x) : ψ(x) =
∞∑

|α|=0

aαDαψα(x)},

where ψα ∈ L2(Rn) and
∞∑

|α|=0

aα||ψα||22 < ∞..

The duality pairing of the spaces W∞ {aα, 2} and W−∞ {aα, 2} is postulated
by the formula

(ψ, ψ) =
∞∑

|α|=0

aα

∫

Rn

ψα(x)Dαφdx,

where
φ ∈ W∞ {aα, 2} , ψ ∈ W−∞ {aα, 2} .

From above, W∞ {aα, 2} is everywhere dense in L2(Rn) with topological
inclusions and W−∞ {aα, 2} denotes the topological dual space with respect to
L2(Rn), so we have the following chain:

W∞ {aα, 2} ⊆ L2(Rn) ⊆ W−∞ {aα, 2} .
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We now introduce L2(0, T ; L2(Rn)) which we shall denoted by L2(Q), where
Q = Rn×]0, T [, denotes the space of measurable functions t → φ(t) such that

||φ||L2(Q) = (

∫ T

0
||φ(t)||22dt)

1
2 < ∞,

endowed with the scalar product (f, g) =

∫ T

0
(f(t), g(t))L2(Rn)dt, L2(Q) is a

Hilbert space. In the same manner we define the spaces L2(0, T ; W∞ {aα, 2}),
and L2(0, T ; W−∞ {aα, 2}), as its formal conjugate resp.

Finally we have the following chains:

L2(0, T ; W∞ {aα, 2}) ⊆ L2(Q) ⊆ L2(0, T ; W−∞ {aα, 2}),

Finally, let us introduce the space

W (0, T ) :=

{
y; y ∈ L2(0, T ; W∞ {aα, 2}), ∂y

∂t
∈ L2(0, T ; W−∞ {aα, 2})

}
,

in which a solution of a parabolic equation with an infinite order will be con-
tained.The spaces considered in this paper are assumed to be real.

3 Time-Optimal Control Problem For Parabolic Equa-

tions

Let us take into account the following optimization problem:

∂y

∂t
+ A(t)y = u, x ∈ Rn, t ∈ (0, T ), (1)

y(x, 0) = yp(x), x ∈ Rn, (2)

∂ωy(x, t)

∂νω
A

= 0, x ∈ Γ, t ∈ (0, T ), (3)

y(x, T ) ∈ K, x ∈ Rn, (4)

u ∈ Uad, (5)

T → min, (6)
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where yp is a given element in L2(Rn), A(t) is a bounded infinite order self-
adjoint elliptic partial differential operator mapping W∞(Rn) onto W−∞(Rn),
which takes the form [18-19]

(AΦ)(x) =
∞∑

|α|=0

(−1)|α|aαD2αΦ(x, t),

and ∂ω

∂νω
A

is the co-normal derivatives with respect to A, for |ω| = 0, 1, 2, .., |ω| ≤
α− 1.

For each t ∈]0, T [, we define the following bilinear form on W∞(Rn):

π(t; φ, ψ) = (A(t)φ, ψ)L2(Rn), φ, ψ ∈ W∞(Rn).

Then

π(t; φ, ψ) =
(
A(t)φ, ψ

)
L2(Rn)

=
(
A(t)φ(x), ψ(x)

)
L2(Rn)

=
( ∞∑

|α|=0

(−1)|α|aαD2αφ(x, t), ψ(x)
)
L2(Rn)

=

∫

Rn

∞∑

|α|=0

(−1)|α|Dαφ(x)Dαψ(x)dx

(7)

The bilinear form (3.7) is coercive on W∞ {aα, 2} that is, there exists η ∈ R,

such that:
π(t; φ, φ) = η||φ||2W∞(Rn), η > 0. (8)

It is well known that the ellipticity of A(t) is sufficient for the coercitivness of
π(t; φ, ψ) on W∞(Rn) [38]. Then

π(t; φ, φ) =

( ∞∑

|α|=0

(−1)|α|aαD2αφ(x, t), φ(x, t)

)

≥
( ∞∑

|α|=0

(−1)|α|aα||Dαφ(x)||2L2(Rn)

)

= η||φ(x)||2W∞(Rn) .
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{
∀φ, ψ ∈ W∞(Rn) the functiont → π(t; φ, ψ) is continuously differentiable in

]0, T [; and

π(t; φ, ψ) = π(t; ψ, φ) (9)

Note. The operator ∂
∂t + A(t) is an infinite order parabolic operator which

maps L2(0, T ; W∞ {aα, 2}) onto L2(0, T ; W−∞ {aα, 2}).

Remark 3.1 The equations (3.1)-(3.3) have the unique generalized solution
such as

y ∈ W (0, T ) :=

{
y| y ∈ L2(0, T ; W∞(Rn)),

∂y

∂t
∈ L2(0, T ; W−∞(Rn))

}

continuously dependent on the right-hand side of (3.1) and the initial condi-
tion (3.2). Moreover, y ∈ W (0, T ) is a continuous function [0, T ] → L2(Rn)
(compare with Theorems 1.1 and 1.2 Chapt. 3 [38])

Let us denote by U := L2(0, T ; L2(Rn)) = L2(Q), the space of controls and
by Y := L2(0, T ; W∞(Rn)) the space of states.

We assume that Uad is a closed, convex subset of U and K is a closed,
convex subset of L2(Rn) with non-empty interior.

3.1 An equivalent optimization problem

The optimization problem (3.1)-(3.6) can be replaced by another equivalent one
with a fixed time T and a performance index in a form of integral (compare
with [40]). To show that we need two auxiliary theorems.

Theorem 3.2 Let T 0 > 0 be the optimal time for the problem (3.1)-(3.6). If
intK 6= ∅, then

y(x, T 0) ∈ ∂K (boundary ofK) (10)

for any y satisfying (3.1)-(3.4).

Proof Any solution of (3.1)-(3.3) is continuous with respect to t. If (3.10)
is not true, then there exists an admissible state y such as y(x, T 0) ∈ intK.
Thus a T̂ < T 0 exists so that y(x, T̂ ) ∈ K. This contradicts the optimality of
T 0 and hence (3.10) must be fulfilled.
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Theorem 3.3 Let T 0 > 0 be the optimal time for the problem (3.1)-(3.6), let
u0 and y0 be an optimal control and the corresponding state, respectively. Then
with the assumptions given above there exists a non-trivial element g ∈ L2(Rn)
so that the pair (y0, u0) is optimal for the following control problem with the
fixed time T 0:

I(y, u) :=

∫

Rn

g(x)y(x, T 0)dx → min (11)

subject to the constraints (3.1)-(3.3).

Proof The linearity of the equations (3.1)-(3.3) implies that the endpoints
y(x, T 0) of all admissible states y form a convex set YT 0. From Theorem (3.1)
we have YT 0 ∩ int K = ∅ and y0(0, T 0) ∈ ∂K. Since intK 6= ∅ thus there exists
a closed hyperplane separating YT 0 and K containing y0(x, T 0), i.e. there is a
nonzero g ∈ [L2(Rn)]∗ = L2(Rn)

sup
y∈YT0

∫

Rn

g(x)y(x, T 0)dx ≤
∫

Rn

g(x)y0(x, T 0)dx

≤ inf
y∈K

∫

Rn

g(x)y(x, T 0)dx.

This completes the proof.

Remark 3.4 If the set K has a special form i.e.

K = {y} (x, T ); ||y − z||L2(Rn) ≤ ε,

where ε > 0 and z ∈ L2(Rn) are given, then g is known explicitly and is
expressed by g(x) = 2(y0(x, T )− z(x)).

Remark 3.5 The method fails if intK = ∅, e.g. in the case when K consists
of a single point.

3.2 Optimality conditions

Now based on Theorem (3.2) we can be ready to formulate the necessary con-
dition of optimality for problem (3.1)-(3.6).

Theorem 3.6 Assuming that T 0 > 0 is the optimal time for the problem (3.1)-
(3.6), u0 and y0 are the optimal control and the corresponding state, respectively.
Then with the assumptions given above at the beginning of section 3, there exist
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an element g ∈ L2(Rn) and the adjoint state p ∈ W (0, T ) so that the following
system of partial differential equations and inequalities must be satisfied:

State equations:

∂y0

∂t
+ A(t)y0 = u0, x ∈ Rn, t ∈ (0, T 0) (12)

∂ωy0(x, t)

∂νω
A

= 0, x ∈ Γ, t ∈ (0, T 0), (13)

y0(x, 0) = yp(x), x ∈ Rn, (14)

y0(x, T 0) ∈ K, x ∈ Rn. (15)

Adjoint equations:

−∂p

∂t
+ A(t)p = 0, x ∈ Rn, t ∈ (0, T 0), (16)

∂ωp(x, t)

∂νω
A

= 0, x ∈ Γ, t ∈ (0, T 0), (17)

p(x, T 0) = g(x), x ∈ Rn. (18)

Maximum conditions:

∫

Q

p(u− u0)dxdt ≥ 0 ∀u ∈ Uad, (19)

∫

Rn

g(x)(y − y0)dx ≥ 0 ∀y ∈ K. (20)

Proof According to Theorem (3.2) our problem is equivalent to the one
with the fixed time T 0 and the performance index in the integral form (3.11).
For such a new problem we formulate the necessary conditions of optimality
by applying the generalized Dubovitskii-Milyutin Theorem (Theorem 1.8.1 in
[26]). Let us denote by Q1, Q2, Q3 the sets in the space E := Y × U as follows

Q1 :=





(y, u) ∈ E;

∂y

∂t
+ A(t)y = u

y(x, 0) = yp(x)

∂ωy(x, t)

∂νω
A

= 0,




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Q2 :=

{
(y, u) ∈ E; y ∈ Y, u ∈ Uad

}
,

Q3 :=

{
(y, u) ∈ E; y(x, T 0) ∈ K, u ∈ Uad

}
.

Thus the optimization problem may be formulated in such a form

I(y, u) → min subject to (y, u) ∈ Q1 ∩Q2 ∩Q3.

We approximate the sets Q1, and Q2 by the regular tangent cones (RTC), Q3

by the regular admissible cone (RAC) and the performance functional by the
regular cone of decrease (RFC).

The tangent cone to the set Q1 at (y0, u0) has the form

RTC(Q1, (y
0, u0)) =

{
(ỹ, ũ) ∈ E; P ′(y0, u0)(ỹ, ũ) = 0

}

=





(ỹ, ũ) ∈ E;

∂ỹ

∂t
+ A(t)ỹ = ũ

ỹ(x, 0) = 0

∂ωỹ(x, t)

∂νω
A

= 0,





where P ′(y0, u0)(ỹ, ũ) is the Frèchet differential of the operator

P (y, u) := (
∂y

∂t
+ A(t)y − u, y(x, 0)− yp(x))

mapping from the space

W := L2(0, T ; W∞(Rn))× L2(Q)

into the space
Z := L2(0, T ; W−∞(Rn))× L2(Rn).

Applying theorem on the existence of the solution to the equation (3.1)-(3.3)
Remark (3.1) it is easy to prove that P ′(y0, u0) is the mapping from the space
W onto Z as required in the Lusternik Theorem (Theorem 9.1 in [20]).

The tangent cone RTC(Q2, (y
0, u0)) to the set Q2 at (y0, u0) has the form

Y × RTC(Uad, u
0), where RTC(Uad, u

0) is the tangent cone to the set Uad at
the point u0. It is known that the tangent cones are closed [36].
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Then we can show that:-

RTC(Q1 ∩Q2, (y
0, u0)) = RTC(Q1, (y

0, u0)) ∩RTC(Q2, (y
0, u0)).

Further taking into account Theorem 3.3 in [42] it is easy to see that the ad-
joint cones [RTC(Q1, (y

0, u0))]∗ and [RTC(Q2, (y
0, u0))]∗ are of the same sense.

The admissible cone RAC(Q3, (y
0, u0)) to the set Q3 at (y0, u0) has the form

RAC(K, y0(x, T 0))×U, where RAC(K, y0(x, T 0s)) is the admissible cone to the
set K at the point y0(x, T 0).

According to Theorem 7.5 [20] the regular cone of decrease for the perfor-
mance functional is given by

RFC(I, (y0, u0)) =

{
(ỹ, ũ) ∈ E;

∫

Rn

g(x)ỹ(x, T 0)dx < 0

}
.

If RFC(I, (y0, u0)) 6= ∅, then the adjoint cone consists of the elements of
the form (Theorem 10.2 [20])

f4(ỹ, ũ) = −λ0

∫

Rn

g(x)ỹ(x, T 0)dx, where λ0 ≥ 0.

The functionals belonging to [RTC(Q1, (y
0, u0))]∗ have the form (Theorem 10.1

[20])
f1(ỹ, ũ) = 0 ∀(ỹ, ũ) ∈ RTC(Q1, (y

0, u0)).

The functionals

f2(ỹ, ũ) ∈ [RTC(Q2, (y
0, u0))]∗ and f3(ỹ, ũ) ∈ [RAC(Q3, (y

0, u0))]∗

can be expressed as follows

f2(ỹ, ũ) = f 1
2 (ỹ) + f 2

2 (ũ),

f3(ỹ, ũ) = f 1
3 (ỹ) + f 2

3 (ũ)

where f 1
2 (ỹ) = 0 ∀ỹ and f 2

3 (ỹ) = 0 ∀ũ ∈ U (Theorem 10.1 in [20]), f 2
2 (ũ) is

the support functional to the set Uad at the point u0 and f 1
3 (ỹ) is the support

functional to the set K at the point y0(x, T 0) (Theorem 10.5 in [20]).

Since all assumptions of the Dubovitskii-Milyutin Theorem are satisfied
and we know suitable adjoint cones then we are ready to write down the Euler-
Lagrange Equation in the following form

f 2
2 (ũ) + f 1

3 (ỹ) = λ0

∫

Rn

g(x)ỹ(x, T 0)dx, ∀(ỹ, ũ) ∈ RTC(Q1, (y
0, u0)). (21)
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Introducting the adjoint variable p by the equation (3.16)-(3.18) and taking
into account that ỹ is the solution of P ′(y0, u0)(ỹ, ũ) = 0 for any fixed ũ, we
obtain

0 =

∫

Q

(
∂p

∂t
+ A(t)p

)
ỹdxdt =

∫

Rn

(
−p(x, T 0)ỹ(x, T 0)

)
dx

+

∫

Rn

p(x, 0)ỹ(x, 0)dx +

∫

Q

p

(
∂ỹ

∂t
+ A(t)ỹ

)
dxdt

= −
∫

Rn

p(x, T 0)ỹ(x, T 0)dx +

∫

Q

pũdxdt.

Hence ∫

Rn

g(x)ỹ(x, T 0)dx =

∫

Q

pũdxdt. (22)

From (3.21) and (3.22) we get

f 2
2 (ũ) + f 1

3 (ỹ) =
1

2
λ0

∫

Q

pũdxdt +
1

2
λ0

∫

Rn

g(x)ỹ(x, T 0)dx (23)

A number λ0 cannot be equal to 0 because in such a case all functionals in
the Euler-Lagrange Equation would be zero which is impossible according to the
Dubovitskii-Milyutin Theorem. Using the definition of the support functional
and dividing both members of the obtained inequalities by λ0 from (3.23) we
obtain the maximum conditions (3.19)-(3.20).

If RFC(I, (y0, u0)) = ∅ then the optimality conditions (3.12)-(3.20) are ful-
filled with equality in the maximum conditions (3.19)-(3.20). This last remark
completes the proof.

4 Real example

We shall us the following notation:

Q =QT = Ω×]0, T [, Ω an open subset of Rn;

Σ =ΣT = Γ×]0, T [,

Γ =boundary of Ω, Σ = lateral boundary of Q,

V ⊂ H ⊂ V ′.

Let us consider the system whose state is given by

d

dt
y(t; v) + A(t)y(t; v) = f + Bv (24)

Electronic Journal. http://www.neva.ru/journal 74



Differential Equations and Control Processes, N 4, 2005

y(0, v) = y0 (25)

where A(t)y = −
n∑

i,j=1

∂

∂xi
(aij(x, t)

∂y

∂xj
), aij be given functions in Ω×]0, T [= Q

with 



aij ∈ L∞(Q),
n∑

i,j=1

aij(x, t)ξiξj ≥ α(ξ2
1 + ..... + ξ2

n) α > 0, ξi ∈ R,

almost everywhere in Ω,

B ∈ L(U,L2(0, T, V ′)) (26)

Let Uad be a given closed, convex subset of U and let y1 be a given element in
H.

We assume that
{

there exists a v ∈ Uad such that

y(τ ; v) = y1 for an appropriate τ ∈ [0, T ] and τ ≤ T
(27)

The optimal time is defined by

τ0 = inf τ, τ such that (4.4) holds (28)

The Problem which we shall study are :

existence of an optimal control, that is, existence of u ∈ Uad such that

y(τ0; u) = y1; (29)

Lemma 4.1 We assume that
{
∀φ, ψ ∈ W 1(Rn) the function t → π(t; φ, ψ) is continuously differentiable in

]0, T [; and

π(t; φ, ψ) = π(t; ψ, φ) (30)

and there exists a λ such that

π(t; φ, φ) + λ|φ|2 ≥ α||φ||2, α > 0, ∀φ ∈ V, t ∈]0, T [, (31)

(4.4) and (4.3) hold and that Uad is bounded. Then there exists an optimal
control, that is u ∈ Uad such that (4.6) is satisfied.
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Proof See Theorem 17.1 in [38] Chapter III, section 17.2.

Example Take U = L2(Σ). Let the state y(v) be given by

∂

∂t
y(v) + A(t)y(v) = f,

∂y

∂νA
(v) = v,

y(x, 0, v) = y0(x).

Theorem 17.1 [38] may be applied to this example. Hence the theorem covers
the case of boundary control.

Remark 4.2 Theorem 17.1 [38] may be modified without any difficulty to cover
the case of systems with Dirichlet boundary conditions (cf [38] section 9) and
where the control is exercised through the boundary.

Comments

The main result of the paper contains necessary and sufficient conditions of
optimality (of Pontryagin’s type) for infinite order parabolic system that give
characterization of optimal control. But it is easily seen that obtaining ana-
lytical formulas for optimal control is very difficult. This results from the fact
that state equations (3.12)-(3.15), adjoint equations (3.16)-(3.18) and maxi-
mum conditions (3.19)-(3.20) are mutually connected that cause that the usage
of derived conditions is difficult. Therefore we must resign from the exact deter-
mining of the optimal control and therefore we are forced to use approximations
methods. Those problems need further investigations and form tasks for future
research.

Also it is evident that by modifying:

- the boundary conditions,

- the nature of the control (distributed, boundary),

- the nature of the observation,

- the initial differential system,

an infinity of variations on the above problem are possible to study with
the help of Dubovitskii-Milyutin formalism.
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