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Abstract

In this paper, we study the existence of solutions for a cooperative elliptic systems
governed by Schrédinger operator defined on R™, then we discuss the optimal control of
boundary type for these systems.
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1 Introduction
We consider the following cooperative elliptic system :

((-A+ gy =ay +bya+ fi in R”
(—A+qQ)ys =cyi +dys + fo in R"

y1=g1 as |z| — oo

. Yo=go as x| — oo,

where :

(2)

a,b,c and d are given numbers such that b,¢c > 0
(in this case, we say that the system (1) is cooperative )

q(x) is a positive function and tending to oo at infinity. (3)

In [22], Gali et al. proved the existence of optimal control for system like
(S) with ¢(x) = 0 and with positive weight function. Also they found the set of
inequalities which described the distributed control for systems (5) with ¢(z) =
0 and defined on bounded domain [21]. The case of semilinear cooperative
system with ¢(z) = 0 is discussed in [17].

In [16] Fleckinger, obtained the necessary and sufficient conditions for hav-

ing the maximum principle and the existence of positive solutions for coopera-
tive system (1) which are:

(Mg) — a)(N(g) — d) > bc, (4)

where \(q) is defined later.

Here, we shall use the same conditions (4) to prove the existence of the state
of our system (1); then using the theory of Lions [30], we study the existence
of boundary control for system (1). Our model in the problem is Schrodinger
operator.

{a < Mgq), d<Xqg)
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2 Operator equation.

To prove the existence of the state y = {y1,y2} of system (1), we state briefly
some results introduced in [15] concerning the eigenvalue problem

{<A+q>¢—x<q>¢ in R"

o(x) -0 as |z|—o00, ¢>0.

(5)

The associated variational space is V,(R"), the completion of D(R"), with

respect to the norm :
lylle = </R Ayl? +qul2d$>

Since the imbedding of V,(R") into L?(R") is compact. Then the operator
(—A +q) considered as an operator in L?(R") is positive self-adjoint with com-
pact inverse. Hence its spectrum consists of an infinite sequence of positive
eigenvalue tending to infinity; moreover the smallest one which is called the
principle eigenvalue denoted by A(q) is simple and is associated with an eigen-
function which does not change sign in R”. It is characterized by:

1
2

No) [ P < [ JAgP +alyde vy € ViR, (6
Now, to study our system (1) we have the embedding
Vo(R") x Vy(R") — L*(R") x L*(R")
is continuous and compact then, we define a bilinear form
m: (Vo(RM)? x (Vy(R"))* — R

by
1

1
T((y1,92), (01, P2)) = b e [Ay1 Agy + qyid1]dr + p /n[A?ﬂACbz + qya¢o)dx

d a
—/ yl¢2dﬂf—g/ y2¢2d$—6/ y1¢1dx—/ Yard.

(7)

It is easy to check that 7 is a continuous bilinear form; and then by Lax-
Milgram Lemma, we have the following theorem:
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Theorem 2.1 For fi, fo € L*(R"), there exists a unique solutiony = {y1, y2} €
(V,(R™))? of system (1) if conditions (4) are satisfied.

Proof

We choose m large enough such that a +m > 0 and d +m > 0 and define
on V,(R") the equivalent norm

I, = / 1Ay + (m + @)y de

and we write (7) as:

W((ylv y2)7 (¢17 ¢2)) - %/n [AylACbl + (q + m)ylgbl]dx —

a-+m

yi1p1dx
R’Vl,

- /n Yardx + %/JAWA@ + (¢ + m)yago)dx

d+m

— y2¢2d$—/ y1¢2d1}.
C R n

Then
1 a+m
(), ) = 5 [ (80P + (g m)lnPide =57 [ P
1

~ [ ot [ 18P+ ()l

d+m

- |y2|2dac —/ y1yodr.
C R’n n

By Cauchy Schwartz inequality, we have

1 a+m
m((y1,2), (y1,42)) > E/R 1Ay * + (g +m)|y: [*)dz — = ly1 | da
1 d+m
+ = [ [|Awl* + (g +m)|yllde — —— [ |p|*dx
C JRrn c R®

—2(/ yd)(/ yd)

from (6), we deduce

1 a+m ) 1 d+m 5
> 27 il (5
W((yh:gZ)a(yl)yZ)) = b( )\(q)+m>y1 q,m+ C( )\(q)+m>|y2 q,m
2 yallonllyel
)\+m yl qvm y2 qam'
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If (5) holds, then
((y192), (W1:92) = Clllyllgmm + lly2llgn) (8)

which prove the coerciveness of the bilinear form 7. Then for fi, f, €
L*(R™), system (1) has a unique solution by Lax-Milgram lemma.

3 Formulation of the control problem

The space L?(T") x L*(T") is the space of controls. For a control u = {uy, us} €
(L3(")?, the state y(u) = {yi(u),ya(u)} of the system is given by the solution
of:

((—A+q)yi(u) = ayi(u) + bya(u) + f1 in R"
) (—A + @)ya(u) = cyr(u) + dya(u) + fo in R” @)

y1=u; as |z|] — oo

\ Yo =us as |z| — oo,

The observation equation is given by z(u) = {z1(u), 22(u)} = y(u) =
{y1(u), yo(u)}. For given z4 = {za1, zao} in (L?(R™))?; the cost function is given
by:

J(v) = /n(y1(v) — za1)* + (2(v) — za2)?dx + (Nv,0) (L2 (ryy2 (10)
where N € L((L*(T"))?, (L*(T"))?) is hermitian positive definite operator:
(Nu,u) > nllul[{zgaye- (11)
The control problem then is to find

u = {uy,us} € Uyy such that
J(u) < J(v)

where Uy, is a closed convex subset of(L*(T")).

Under the given consideration, we may apply the Theorem 2.4 of Lions [30]
to obtain the following result:

Theorem 3.1 Assume that (8) and (11) hold. If the cost function is given by
(10), then there exists an optimal control u = {uy,us}; Moreover it is charac-
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terized by the following equations and inequalities:

(—A+ ¢)p1(u) — apa(u) — cpo(u) = y1(u) — 214 in R
(—=A + g)p2(u) — bpi(u) — dpa(u) = yo(u) — 224 in R”
pr(u) =0 pa(u)=0 on T

Op1(u) Opa(u)
T 61/A 61/,4
together with (9), where p(u) = {p1(u), p2(u)} is the adjoint state.

(1}1 — Ul) +

(1}2 — uz)dF + (Nu, v — U)(LQ(F))Q >0 Yve U,

Proof

The control u is characterized by
J(u)(v—u) >0 Yue Uy
which is equivalent to
(y(u) — za, y(v) — y(u)) r2@nyz + (Nu, v — u)r2ryz > 0
le.,

(y1(w) =214, y1(v)—y1(u)) L2(mry2+ (Y2 (v) = 224, y2(v) =y2(w)) L2(@r)2+ (N, v—1u) 2(r)z > 0
(12)
Since (A*P,Y) = (P, AY'), where
Ao = {1, 02}) = A = {(=A + q)p1 — ad1 — b, (—A + q)p2 — cd1 — depa }
for ¢ € (V/(R")*.

Then
(P, AY) = (p1, (A + @)y1 — ayr — by2) + (p2, (A + q)y2 — cy1 — dya)

= (p1; (A + Q) — alp1, y1) — b(p1,¥2) + (P2, (A + @)y2) — c(p2, 11)

— d(p2,y2)
= (A +q)p1,y1) — alpr,y1) — c(p2, y1) + ((=A + @)p2, y2) — d(p2, ¥2)
- b(p17y2)
= ((—A+q)p1 — ap1 — cp2, 1) + ((—A + q)p2 — bpr — dp2, y2)
= (A*P)Y),
where

AP = {p1,p2}) = {(=A+ @)p1 — ap1 — cpa, (=A + q)p2 — bp1 — dp2}

Electronic Journal. http://www.neva.ru/journal 22



Differential Equations and Control Processes, N 4, 2006

where A* is the adjoint for A, P is the adjoint state. Then A*P =Y (u)—Z4

can be written as

(=A+q)p1 —ap1 — cp2 = y1(u) — 214

(—A +q)p2 — bp1 — dpy = y2(u) — 224

pi(u) = pa(u) = 0.
So (12) is equivalent to
(=A+q)p1 —ap1 — cpa, y1(v) — y1(uw)) + ((—A + q)pa — bp1 — dpa, ya(v) — y2(u))
—|—(Nu, v — u)(Lz(F))z >0

(1), (=2 +0)(11(0) — (D) — (P 0(0) = ()i + (),

%(yl(v) = y1(w))r2ry = alpr(u), y1(v) = y1(w) = b(p1(u), y2(v) = ya(u))+

(12, (=2 + 0)(12(0) — () — (P2 1 (0) = )y + ),

%(92(7})_yZ(U)))LQ(F)_C(pQ(u)v Y1 (’U)—?Jl(U))m(Rn)—d(Pz(U); y2(U)—y2(U))L2(Rn)

—i—(Nu, v — u)(L2(F))2 > 0.

From (9), we obtain

(p1(w), a(y1(v) — yi(w)) + b(y2(v) — ya(u)) + f1 = fi — a(y1(v) — y1(w))) L2&n)+

(315155) ;01 —ur)r2(r) + (0, a;;(%(v) —y1(w)) o) — c(pa(u), y1(v) = y1(u)) 2y
(p2(w), c(y1(v) — y1(w) + d(y2(v) — v2(w) + fo — fo — c(yr — y1(w))) r2n)+
(8](;1(;) , 2 —u2) r2(r) + (0, a;jA(yz(U) —y2(w)) 20y — d(p2(w), Y2 (v) = y2(v)) L2(rr)+

(NU, v — u)(Lz(F))z > 0.

Then we have

Op1(u Op2(u
(—?V(A ) , U1 — U1)r2r) + (ng(A), v — u2)r2ry + (Nu, v — u) 22 > 0.
le.,
5, 9,
(P20 () 222 )T (Nt 0y = 0 Vi € U € U
T aVA 8”14

Which completes the proof of the theorem.
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Remark 3.2 To study the optimal control for the scalar case

{(—A—i—q)y =ay+ f in R” 13)

y(@) =g in T,
we define a bilinear form m: Vi (R") x V,(R") — R by

w(0.0) = [ (VyVorayoldn—a [ yods
As in theorem (1), we can prove 7 is coercive if a < A(q) and then there ezists
a unique solution of (13) for f € L*(R™). Therefore, the state of the system is
given by the solution of

{ (—A+q)y(u) =ay(u)+ f+u in R"

a
14
(TARNEY A (14)

y(u)

where u is given in the space L*(I') of controls. For given zg in L*(R"), the
cost function is given by

1) = [ o) = sfde + /P (Nv)vdl

where N is a given hermitian positive definite operator. Then we have the
following characterization of optimal control for this system :

(—A+q)p(u) —ap(u) = y1(u) — 24 in R"
plu)=0 in T,

Op(u)
r Ova
together with (14), where p(u) is the adjoint state.

(v —u)dl' + (Nu,v —u)r2ry 20, V v €Uy

Acknowledgement. The author is grateful for the reviewers of the Electronic
Journal of Differential Equations for their fruitful comments and invaluable
suggestions.

REFERENCES

e [1] Adams, R. A.,“ Sobolev Spaces,” Academic Press, New York,
(1975).

Electronic Journal. http://www.neva.ru/journal 24



Differential Equations and Control Processes, N 4, 2006

e 2] Bahaa, G. M.,“ Quadratic Pareto optimal control of parabolic equa-
tion with state-control constraints and an infinite number of variables.”
IMA Journal of Mathematical Control and Information, 20, 2, (2003),
167-178.

e [3] Bergounioux, M., “ Optimal control of problems governed by abstract
elliptic variational inequalities with state constraints.” SIAM J. Control
Optimization, 36, 1, (1998), 273-289.

e [4] Bergounioux, M., and Tiba, D., “ Optimal control for the obstacle
problem with state constraints, ESAIM : Proceedings, 4, (1998),7-19.

e [5| Bonnans, F., Casas, E., “A boundary Pontryagin’s principle for
the optimal control of state-constrained elliptic equations,” Internat. Ser.
Numer. Math., 107, (1992), 241-249.

e [6] Casas, E.,“ Control of an elliptic problem with pointwise state con-
straints.” SIAM J. Control and Optimization, 24, 6, (1986), 1309-1318.

e [7] Casas, E.,“ Boundary Control of semilinear elliptic equations with
pointwise state constraints.” SIAM J. Control and Optimization, 31, 4,
(1993), 993-1006.

e [8] Casas, E.,“ Boundary control problems for quasi-linear elliptic equa-
tions: A Pontryagin’s principle.” Applied Mathematics and Optimization,
33, (1996), 265-291.

e [9] El-Saify, H. A., “ Boundary control problem with an infinite number
of variables.” IJMMS | 28, 1, (2001), 57-62.

e [10] El-Saify H. A., and Bahaa, G. M., “Optimal control for n x n
systems of hyperbolic types.” Revista de Mathematica Aplicadas, 22, 1&2,
(2001), 41-58.

e [11] El-Saify, H. A. and Bahaa, G. M.,“ Optimal control for n x
n hyperbolic systems involving operators of infinite order.” Mathematica
Slovaca, 52, 4, (2002), 409-424.

e [12] El-Saify, H. A. and Bahaa, G. M.,“Optimal control for n x n
coupled systems governed by Petrowsky type equations with control-

constrained and infinite number of variables” Mathematica Slovaca, 53,
(2003), 291-311.

Electronic Journal. http://www.neva.ru/journal 25



Differential Equations and Control Processes, N 4, 2006

e [13] El-Saify, H. A., and Bahaa, G. M.,“ Boundary control for n x n
systems of hyperbolic types involving infinite order operators.” Accepted for
oral in the second International Conference of Mathematics, Islamic Uni-
versity , Gaza, Palastin, Editor. M. S. Al-Atrash, 26-28 Augusts. (2002).

e [14] El-Saify, H. A., Serag, H. M, and Bahaa, G. M.,“ On optimal
control for n x n elliptic system involving operators with an infinite number
of variables.” Advances in Modelling & Analysis, 37, 4, (2000), 47-61.

e [15] Fleckinger, J.,“ Estimates of the number of eigenvalues for an op-
erator of Schrodinger type.” Proceedings of the Royal Society of Edinburg,
89A, (1981), 355-361.

e [16] Fleckinger, J.,“ Method of sub-super solutions for some elliptic sys-
tems defined on R".” Preprint UMR MIP, Universite Toulouse, 3, (1994).

e [17] Fleckinger, J., and Serag, H.,“ Semilinear cooperative elliptic sys-
tems on R"™.” Rendiconti Di Mathematica Seri. VII, 15 , Roma (1995),
89-108.

e [18] Gali, I. M., and El-Saify, H. A., “ Optimal control of a system
governed by hyperbolic operator with an infinite number of variables.”
JMAA, 85, 1, (1982), 24-30.

e [19] Gali, I. M, and El-Saify, H.A.,“ Distributed control of a system
governed by Dirichlet and Neumann problems for a self-adjoint elliptic
operator with an infinite number of variables.” Journal of Optimization
Theory and Applications 39, 2, (1983), 293-298.

e [20] Gali, I. M. and El-Saify, H. A., “ Control of system governed by
infinite order equation of hyperbolic type.” Proceeding of the international

conference on " Functional-Differential systems and related topics”. 111,
Poland, (1983), 99-103.

e 21| Gali, I. M. and Serag, H., “ Distributed control of cooperative el-
liptic systems.” Accepted for presentation at the UAB-Georgia Tech Inter-

national Conference on Differential Equations and Mathematical Physics,
Birmingham, Alabama, USA, March 13-19, (1994)

e 22| Gali, I. M. and Serag, H.,“ Optimal control of cooperative elliptic
systems on R"™.” Journal of Egyptian Mathematics Society, 13, (1995),
33-39.

Electronic Journal. http://www.neva.ru/journal 26



Differential Equations and Control Processes, N 4, 2006

e 23] Gali, I. M., El-Saify, H. A. and El-Zahaby, S. A., “Distributed
Control of a system governed by Dirichlet and Neumann Problems for El-
liptic equations of infinite order.” Proceeding of the international confer-
ence on "Functional -Differential systems and related topics III, Poland,”

(1983), 83-87.

e [24] Kotarski, W.,* Some problems of optimal and Pareto optimal con-
trol for distributed parameter systems.” Reports of Silesian University,
No0.1668, Katowice, Poland, (1997), 1-93.

e 25| Kotarski, W.,“ Optimal control of a system governed by Petrowsky
type equation with an infinite number of variables.” Acta Univ. Palack.
Olomuc. Fac. Rerum Natur. Math. 35, (1996), 73-82.

e [26] Kotarski, W.,“ Optimal control of a system governed by a parabolic
equation with an infinite number of variables.” Journal of Optimization
Theory and Applications, 60, (1989), 33-41.

e [27] Kotarski, W., El-Saify, H. A. and Bahaa, G. M.,“Optimal
control of parabolic equation with an infinite number of variables for non-

standard functional and time delay.” IMA Journal of Mathematical Control
and Information, 19, 4, (2002), 461-476.

e 28] Kotarski, W., El-Saify, H. A. and Bahaa, G. M.,“ Optimal con-
trol problem for a hyperbolic system with mixed control-state constraints

involving operator of infinite order.” International Journal of Pure and
Applied Mathematics, 1, 3, (2002), 241-254.

e [29] Kowalewski, A. and Kotarski, W.,“ On application of Milutin-
Dubovicki’s theorem to an optimal control problem for systems described

by partial differential equations of hyperbolic type with time delay.” Sys-
tems Sci. 7, 1, (1981), 55-74.

e (30| Lions, J. L., “ Optimal Control of Systems Governed by Par-
tial Differential Equations”, Springer-Verlag, Band170, (1971).

e [31|Tr6ltzsch, F.“ Optimality Conditions for Parabolic Control
Problems and Applications.” Teubner-Texte zur Mathematik, Band
62, Leipzig, (1984).

2

e [32] Walczak, S.“ One some control problems.” Acta Universitatis

Lodziensis. Folia Mathematica, 1, (1984), 187-196.

Electronic Journal. http://www.neva.ru/journal 27



Differential Equations and Control Processes, N 4, 2006

e [33] Werner, J. “Optimization Theory and Applications.” Viewag,
Advanced Lectures In Mathematics, Braunschweig, Wiesbaden, (1984).

Electronic Journal. http://www.neva.ru/journal 28



