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Abstract

Real two-dimensional autonomous systems of ordinary differential equations whose
unperturbed parts are vector homogeneous polynomials of the second order are considered.
As to perturbations, they are formal vector power series whose expansions don’t contain
members of order less than three.

A normalization of the unperturbed part of the system is presented. Namely, nine-
teen classes of equivalence of vector homogeneous polynomials with respect to any linear
invertible transformations have been founded. Each class is represented by a canonical
form, i.e. by a polynomial of the special representation having the maximal number of zero
coefficients.

Generalized normal forms for five types of systems whose unperturbed parts are
degenerate canonical forms are explicitly given. These normal forms can be obtained
by almost identical formal transformations.

1This research was financially supported by the Russian Foundation for Basic Research
(project no. 09–01–00734-a)
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Part I

The set of the problem

1 Introduction

This work continues the series of papers ([1] – [6]) devoted to a constructive normalization of
real two-dimensional autonomous systems

ẋi = Pi(x) +Xi(x) (i = 1, 2), (1)

where x = (x1, x2), Pi = aix
2
1+2bix1x2+cix

2
2 is the unperturbed part, Xi =

∑∞
p=2X

(p+1)
i (x) is

a perturbation of the system and X
(r)
i =

∑r
s=0X

(s,r−s)
i xs1x

r−s
2 – a form of order r (P = P (2)).

In [1, p. 1] and [8, § 3] a method of resonance equation is stated. That makes it possible
for any system with the fixed unperturbed part to obtain all possible formally equivalent to it
generalized normal forms (GNF) in explicit form, on condition that we can overcome some
technical computational problems.

As opposed to common definition for resonance normal forms (Poincare normal forms,
or formerly normal forms) there are a lot of definitions for GNF. Their concise description is
given, for example, in [7], [8].

Sufficiently complete and containing all the proofs the theory of resonance normal forms
(i. e. the forms where the matrix of the linear part has nonzero eigenvalues) is given in [9], and
in a reduced variant in [10], [11].

This paper pursues two objects.

1) The first goal is to decompose the set of systems

ẋ1 = a1x
2
1 + 2b1x1x2 + c1x

2
2, ẋ2 = a2x

2
1 + 2b2x1x2 + c2x

2
2 (2)

unperturbed according to (1) into equivalence classes with respect to linear invertible changes
of variables, i. e. to select a finite set of most simple systems: canonical forms (CF) which are
mutually linear non-equivalent, and such systems that a system (2) may be reduced to one
of CF by a linear invertible change of variables. Here ”simplicity” of a CF means that such
a form is the most appropriate variant to be the unperturbed part of (1) that later on will be
normalized by means of almost identical changes. In fact, reduction to a canonical form means
a normalization of quadratic polynomials (P1, P2) in (1) or (2).

It is proved in part II that a unperturbed system (2) has 19 canonical forms, being all
of them are constructively obtained, i.e. for every CF conditions on coefficients of (2) are given
in explicit form and the linear singular change of variables reducing this system to the selected
CF is given. It should be noted that 5 CF of 19 have two representations: main and degenerate,
being degenerate representation differs from the main one such that one of polynomials in CF,
for example P2, is equal to zero identically.

A similar classification of quadratic canonical forms, including degenerate ones, was pre-
viously realized in [2, § 2]. On basis of this classification in [2] – [6] investigations of formal
equivalence of system (1) with 11 CF, each taken as the unperturbed part, were carried out
and then all the GNF were constructed.
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However, as it turned out that given classification was not complete and had some short-
comings, because at that time the conditions (that have to be in a definition of CF) both
on the location of nonzero coefficients in P1, P2 and polynomial normalizing were not clearly
formulated.

These conditions are formulated below in p. 3.3, part II. They do not effect essentially on
the following normalization of the system (1), but allows us to extract uniquely so called ’main
CF’ and linearly equivalent to it additional canonical forms that either have the same number
of nonzero elements which may not be located on optimal places or are normalized by other
way.

Indicated differences in definition CF led to the situation when in the process of investiga-
tion of GNF in some initial systems additional (according to the classification given in [2, § 2]),
but not main CF were taken.

In part II all mentioned shortcomings of the previous classification are eliminated, and
the classificationf is based on other principles, which allowed one to prove the pairwise linear
nonequivalence for obtained CF and to state in explicit form the conditions on the initial system
(1) wherein it may be reduced to a definite CF.

2) The second goal of the paper is to normalize all the systems (1) in which every of 5
degenerate CF is sequentially taken as the unperturbed part.

Generally speaking, such a normalization is less effective as compared with normaliza-
tion the system (1) whose unperturbed part is given by a main canonical form equivalent to
a degenerate one. But inasmuch as main canonical forms turn out to be more complex than
degenerate ones, up to now due to considerable computational difficulties there is no complete
normalization for some of them.

In part III for a system (1) with the unperturbed part selected from 5 degenerate CF and
an arbitrary perturbation all GNF that may be obtained by almost identical transformation
are written. Examples of normal forms with special structures are also given.

For completeness it should be noted that there is one more method to normalize (1) with
a degenerate CF in the unperturbed part. For this purpose we should take some term (or
terms) from the perturbation X2 of (1) that has order greater than two and put it on the place
of the absent quadratic polynomial P2 , so that we can justify orders by assigning a weight to
each variable.

The above method is described in [1, p. 1] and implemented in [8, § 6]. It is clear that in
GNF the new (not quadratic) polynomial P2 does not change (do not annul even partially),
but using the polynomial we can annul some additional terms of the perturbation.

At last, part IV contains results concerning the problem of obtaining all GNF (in explicit
form) of systems having one of 19 CF as the unperturbed part.

2 Formal system equivalence

So, consider a two-dimensional real autonomous system (1)

ẋi = Pi(x) +Xi(x) (i = 1, 2),

where Pi = aix
2
1 + 2bix1x2 + cix

2
2, Xi =

∑∞
p=2X

(p+1)
i (x), X

(p+1)
i =

∑p+1
s=0X

(s,p−s+1)
i xs1x

p−s+1
2 .
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Assume that a formal almost identical change of variables

xi = yi + hi(y) (i = 1, 2), (3)

where y = (y1, y2), hi =
∑∞

p=2 h
(p)
i (y), transforms (1) in the system

ẏi = Pi(y) + Yi(y) (i = 1, 2), (4)

where Yi =
∑∞

p=2 Y
(p+1)
i (y), Y

(p+1)
i =

∑p+1
s=0 Y

(s,p−s+1)
i ys1y

p−s+1
2 .

By differentiating the change of variables (3) with respect to t along the trajectories
of systems (1) and (4), we obtain

2∑
j=1

(∂hi(y)

∂yj
Pj(y)− ∂Pi(y)

∂yj
hj(y)

)
= Xi(y + h) + Pi(h)−

2∑
j=1

∂hi(y)

∂yj
Yj(y)− Yi(y).

Then for any p ≥ 2 forms h
(p)
i , Y

(p+1)
i satisfy equations

(a1y
2
1 + 2b1y1y2 + c1y

2
2)
∂h

(p)
i

∂y1
+ (a2y

2
1 + 2b2y1y2 + c2y

2
2)
∂h

(p)
i

∂y2
−

−2(aiy1 + biy2)h
(p)
1 − 2(biy1 + ciy2)h

(p)
2 = Ŷ

(p+1)
i (i = 1, 2),

(5)

where Ŷ
(p+1)
i = Ỹ

(p+1)
i (y)− Y (p+1)

i (y), Ỹ
(p+1)
i (y) = {Xi(y+ h) +P (h)−

∑2
j=1 Yj ∂hi/∂yj}(p+1)

and depend on only h(r) and Y (r+1) with 2 ≤ r ≤ p− 1.

Hence when in (5) forms h
(p)
i and Y

(p+1)
i are sequentially defined for each p = 2, 3, . . . ,

forms Ỹ
(p+1)
i are already known.

Equating coefficients in ys1y
p+1−s
2 (s = 0, 1, . . . , p + 1), in equations (5) we obtain

the system of 2(p+ 2) equations with 2(p+ 1) unknown quantities:

a2(p− s+ 2)h
(s−2,p−s+2)
1 + (a1(s− 3) + 2b2(p− s+ 1))h

(s−1,p−s+1)
1 +

+(2b1(s− 1) + c2(p− s))h(s,p−s)1 + c1(s+ 1)h
(s+1,p−s−1)
1 −

−2b1h
(s−1,p−s+1)
2 − 2c1h

(s,p−s)
2 = Ŷ

(s,p−s+1)
1 ,

a2(p− s+ 2)h
(s−2,p−s+2)
2 + (a1(s− 1) + 2b2(p− s))h(s−1,p−s+1)

2 +

+(2b1s+ c2(p− s− 2))h
(s,p−s)
2 + c1(s+ 1)h

(s+1,p−s−1)
2 −

−2a2h
(s−1,p−s+1)
1 − 2b2h

(s,p−s)
1 = Ŷ

(s,p−s+1)
2 .

(6)

In what follows we assume that in system (6) coefficients of series Ŷi and hi are equal
to zero, if one of upper indices less than zero.

For any p ≥ 2 consistency conditions for (6) may be written in the form of np linear

equations connecting coefficients of homogeneous polynomials Y
(p+1)
i :

p+1∑
s=0

(cpsν1Y
(s,p−s+1)
1 + cpsν2Y

(s,p−s+1)
2 ) = c̃ (ν = 1, np, np ≥ 2), (7)

where in each equation c̃ =
∑p+1

s=0(cpsν1Ỹ
(s,p−s+1)
1 + cpsν2Ỹ

(s,p−s+1)
2 ).
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Definition 1 We will call equations (7) resonant ones.

The main goal of the method of the same name that we describe here is to obtain resonant
equations in explicit form, i.e. to calculate factors cpsνi .

However, solving the problem often faces considerable technical obstacles, being their com-
plexity depends on the number of nonzero coefficients in P1, P2.

Consequently, we have to simplify the quadratic unperturbed part of system (1) as much
as possible, reducing the system to so called canonical form (CF) by a linear invertible change
of variables.

In the special case that the system has the linear first approximation, the reducing it to
a CF means clearly the reducing the matrix of the linear part to a Jordan form. There is no
general accepted definition for CF in this case.

The principles of definition of canonical form will be formulated below, reasoning from
demands that arise when solving system (6) and alleviate the problem.

As was mentioned above it is the minimization of the number of nonzero coefficients in P1

and P2 that is the important criterion of simplifying system (6).

The question of considerable importance is which coefficients should be annulled in the
first place. So, for P1 it is the best way (if that is possible) to put c1 = 0, for P2 – a2 = 0.
It turns out that it is sufficient to eliminate 3 summands in left-side hands of system (6).

It is also clear that the more residual nonzero coefficients may be normalized by 1 the
simpler the solving (6) will be.

In specific cases one of polynomials in (1) (for example P2 ) may be transformed to
a polynomial that is equal to zero identically. Then consequent simplifications of P1 lead to
arising degenerate CF which are linearly equivalent to main CF and, as mentioned above, have
advantages and disadvantages.

In conclusion we remind some definition from [1] that will be necessary later on.

Definition 2 The coefficients of homogeneous polynomials Y
(p+1)
i in (4), entering at least

in one of resonant equations (7) will be called resonant coefficients, and the other – nonresonant

ones. The coefficients of homogeneous polynomials h
(p)
i which remain free when solving (6) will

be called resonant ones.

We correlate the matrix Υp = {υpνk}
np

ν,k=1, where υpνk = cpskνik
with an arbitrary set

of np coefficients Y
(sk,p+1−sk)
ik

of homogeneous polynomials Y
(p+1)
1 , Y

(p+1)
2 , where k = 1, np,

sk ∈ {0, . . . , p+ 1}, ik ∈ {1, 2}.

Definition 3 We call a set of np coefficients of homogeneous polynomials Y
(p+1)
i resonant

if det Υp 6= 0.

Thus for any p ≥ 2 resonant set is a minimal set of coefficients from Y
(p+1)
1 , Y

(p+1)
2 , such

that each of them is at least in one of equations (7), being resonant equations are uniquely decid-
able with respect to (7). In this case only different resonant coefficients may be in the resonant
set, otherwise in Υp there will be equal columns or a zero column.

Definition 4 We will call a system (4) generalized normal form (GNF), if for any p ≥ 2

all the coefficients of homogeneous polynomials Y
(p+1)
i are equal to zero, excepting perhaps

coefficients from a resonant set.
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This definition of GNF corresponds to the concept of generalized normal form of the first
order that was entered in [12].

Part II

Canonical form of a unperturbed
system

3 Linear equivalence of quadratic systems

3.1 Form and characteristic of quadratic systems

Consider a two-dimensional real unperturbed system (2)

ẋ = P (x) or ẋ = Aq[2](x) (P (x) 6≡ 0, A 6= 0),

where P =

(
P1(x)

P2(x)

)
=

(
a1x

2
1 + 2b1x1x2 + c1x

2
2

a2x
2
1 + 2b2x1x2 + c2x

2
2

)
, A =

(
a1 2b1 c1
a2 2b2 c2

)
, q[2](x) =

 x21
x1x2
x22

 .

Definition 5 For polynomials P1 and P2 their common factor with maximal nonzero
power l (l ∈ {1, 2}) will be called common factor P0 of the polynomials. If there is no
common factor for P1, P2 we will assume that l = 0 .

For the polynomial P consider a function R called resultant:

R =

∣∣∣∣∣∣∣∣∣
a1 2b1 c1 0

0 a1 2b1 c1
a2 2b2 c2 0

0 a2 2b2 c2

∣∣∣∣∣∣∣∣∣ = δ2ac − 4δabδbc, (8)

where δab = a1b2 − a2b1, δac = a1c2 − a2c1, δbc = b1c2 − b2c1.

Assertion 1 The polynomials P1, P2 in (2) have the common factor iff R = 0
(see [13, p. 59]).

3.2 Linear transformations of quadratic systems

Simplify a system (2) by a linear invertible change of variables

x1 = r1y1 + s1y2, x2 = r2y1 + s2y2 or x = Ly, (9)

where y =

(
y1
y2

)
, L =

(
r1 s1
r2 s2

)
, δ = δrs = detL 6= 0.
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Let (9) transform system (2) in the system

ẏ = P̃ (y) or ẏ = Ã q[2](y), (10)

where P̃ =

(
P̃1

P̃2

)
=

(
ã1y

2
1 + 2b̃1y1y2 + c̃1y

2
2

ã2y
2
1 + 2b̃2y1y2 + c̃2y

2
2

)
, Ã =

(
ã1 2b̃1 c̃1

ã2 2b̃2 c̃2

)
.

For (10) analogously to (2) we enter the resultant R̃ by the formula (8).

By differentiating equations (9) along the trajectories of systems (2) and (10), we obtain

P (Ly) = LP̃ (y) or

P̃ (y) = L−1P (Ly) = L−1Aq[2](Ly), (11)

where L−1 = δ−1

(
s2 −s1
−r2 r1

)
, L−1A = δ−1

(
δas 2δbs δcs
−δar −2δbr −δcr

)
.

Hence we have in (11) :

(
ã1y

2
1 + 2b̃1y1y2 + c̃1y

2
2

ã2y
2
1 + 2b̃2y1y2 + c̃2y

2
2

)
= δ−1

(
δas 2δbs δds
−δar −2δbr −δcr

)(r1y1 + s1y2)
2

(r1y1 + s1y2)(r2y1 + s2y2)

(r2y1 + s2y2)
2

 .

Equating coefficients of ys1y
2−s
2 (s = 0, 2), we have

δã1 = s2P1(r1, r2)− s1P2(r1, r2), −δã2 = r2P1(r1, r2)− r1P2(r1, r2),

δb̃1 = s2(a1r1s1 + b1δ∗ + c1r2s2)− s1(a2r1s1 + b2δ∗ + c2r2s2),

−δb̃2 = r2(a1r1s1 + b1δ∗ + c1r2s2)− r1(a2r1s1 + b2δ∗ + c2r2s2),

δc̃1 = s2P1(s1, s2)− s1P2(s1, s2), −δc̃2 = r2P1(s1, s2)− r1P2(s1, s2).

(12)

where δ∗ = r1s2 + r2s1.

Assertion 2 In the systems (2) and (10) either R, R̃ = 0, or RR̃ > 0, i. e. the sign of R
is invariant with respect to any linear invertible change of variables (9).

Actually it is easy to verify that R̃ = δ2R.

Remark 1 For brevity in what follows we will identify system (2) (and other systems
obtained from it) with the matrix A or polynomial P. The equations (9) will be identified
with the matrix L.

We set off two standard changes of variables from the changes (9) transforming (2) in
the system (10) :(

r1 0

0 s2

)
– normalizing, Ã =

(
a1r1 2b1s2 c1s

2
2r
−1
1

a2r
2
1s
−1
2 2b2r1 c2s2

)
; (13)

(
0 1

1 0

)
– renumbering, Ã =

(
c2 2b2 a2
c1 2b1 a1

)
. (14)

Electronic Journal. http://www.math.spbu.ru/diffjournal 55



Differential Equations and Control Processes, N 4, 2010

3.3 How to define a canonical form

Proposition 1 Without loss of generality we will further assume that in (2) the polynomial
P1(x) 6≡ 0, otherwise P2(x) 6≡ 0 and we can perform (14).

In system (2) we assign to any element of A or a coefficient of P1 or P2 an index equal
to the number that is on the place of the element in the matrix(

1 2 3

3 2 1

)
.

Definition 6 For the matrix A of system (2) the sum of indices of its nonzero elements
is said to be matrix index.

Definition 7 The system (2) is referred to as a canonical form (CF l) or, that is the same,
main CF l, if a linear invertible change of variables (9) does not transform (2) to a system that
is more preferable than the initial one according to the following principles of hierarchy:

1) The system is nondegenerate, i. e. P1, P2 6≡ 0, and, if possible, P1 ≡ P2.

2) The matrix A has the minimal number of nonzero elements.

3) The index of A is minimal.

4) The number of elements of A with module equal to 1 is maximal.

5) The arrangement of nonzero coefficients of P1 is the following:

5a) The order of the first nonzero coefficient in P1 is minimal.

5b) The order of the last nonzero coefficient in P1 is maximal.

6) Normalizing nonzero coefficients of the system:

6a) In P2 left nonzero element equals 1.

6b) In P1 the module of the right nonzero coefficient equals 1.

Remark 2 When defining CF l the principles 1 – 4 are basic. The principles 5 and 6
allows us to select so called main CF l among existing linear equivalent canonical forms, though
other such forms may be also selected as a first approximation in an arbitrary perturbed system
when reducing it to GNF.

Such reasonings lead to the concept of additional CF l.

Definition 8 The system (2) is said to be additional canonical form (ACF l) if it is
linearly equivalent to a main CF l, but the principle 5 and maybe principle 6 do not hold.
In this case ACF l obtained from any nonsymmetrical CF l

i by (14) will be denoted as CF lr
i .

4 Canonical forms of system (2) for l = 0

Consider the system (2)

(
P1

P2

)
=

(
a1x

2
1 + 2b1x1x2 + c1x

2
2

a2x
2
1 + 2b2x1x2 + c2x

2
2

)
, where homogeneous polynomials

P1, P2 6≡ 0 and do not have a common factor.

Then by definition 5 we have l = 0, and by the statement 1 the resultant entered in (8)
R = δ2ac − 4δabδbc 6= 0. Hence in particular a21 + a22 6= 0 and c21 + c22 6= 0.
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To write all the canonical forms to which system (2) may be transformed by a linear change
of variables (9), we have to formulate some conditions.

Consider two cubic polynomials

Q1(t) = t3 − ut2 + vt− 1, Q2(t) = t3 + (v2 − 2u)t2 + (u2 − 2v)t+ 1, (15)

where parameters u, v have the following restrictions:

uv 6= 0; 1, u 6= v, u2 + v 6= 0, u+ v2 6= 0. (16)

Assertion 3 The roots of Q1, Q2 satisfy one of two conditions:

∃ t′1, t′′1 ∈ R : Q1(t
′
1) = 0, Q1(t

′′
1) = 0, t′1 6= t′′1;

∃ ! t1 ∈ R : Q1(t1) = 0, ∀ t2 ∈ R : Q2(t2) = 0 ⇒ t2 6= t1 (t1, t2 6= 0, u).
(17)

Proof Suppose that conditions (17) are not fulfilled.

It means that Q1(t) has the unique real root t1 = −τ and this root is a root for Q2(t)
as well. Then the polynomials (15) have the form

Qi(t) = (t+ τ)(t2 + bit+ ci) = t3 + (τ + bi)t
2 + (τbi + ci)t+ τci (i = 1, 2).

So,


b1 = −u− τ
c1 = −τ−1

τb1 + c1 = v

and


b2 = v2 − τ − 2u

c2 = τ−1

τb2 + c2 = u2 − 2v

. From the second system we obtain

(u+ τ)2 = τ(v + τ−1)2. Hence τ > 0, otherwise u = −τ, v = −τ−1, that contradicts (16).

Uniqueness condition for the real root of Q1 implies the inequality b21 − 4c1 ≤ 0, that is
equivalent to the impossible inequality (u+ τ)2 + 4τ−1 ≤ 0, as τ > 0. �

The list of canonical forms of the system (2) for l = 0 :

CF0
3 =

(
1 u 0

0 0 1

)
, CF0

1 =

(
1 0 0

0 0 1

)
, CF0

2 =

(
0 0 1

1 0 0

)
, CF0

7 =

(
0 u 1

1 0 0

)
,

CF0
4 =

(
u 0 1

0 0 1

)
, CF0

5 =

(
u 0 σ

0 1 0

)
, CF0

6 =

(
u 0 1

1 0 0

)
,

CF0
8 =

(
u 1 0

0 1 v

)
, CF0

9 =

(
u 0 σ

0 1 v

)
, CF0

10 =

(
1/2 u −1

0 1 0

)
,

where u, v 6= 0, σ = ±1; in CF0
3 u ≥ 1, in CF0

4 u > 1/4, in CF0
5 u 6= ±1/2 for R > 0,

in CF0
9 u 6= 1/2 for R < 0, in CF0

10 0 < u < 21/2.

Remark 3 In CF0
1, CF0

2, CF0
3, CF0

6 and in CF0
7 R = 1, in CF0

4 R = u2, in CF0
5

R = uσ, in CF0
8 R = u2v2 − uv, in CF0

9 R = u2v2 + uσ, in CF0
10 R = −1/2.

Theorem 1 In case of l = 0 the canonical forms CF0
1 — CF0

10 are pairwise linearly
nonequivalent and system (2) is reduced to one of them by a linear invertible change of vari-
ables (9).
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Proof

1) R = δ2ac − 4δabδbc > 0.

We demonstrate at first that there is a change (9) that reduces (2) to a system (10) of the
form (

ã1 0 c̃1
ã2 0 c̃2

)
. (18)

1a) δab 6= 0. Then for r1 = t∗1t
∗, s1 = t∗2t

∗, r2, s2 = t∗, when t∗1 = (−δac +R1/2)(2δab)
−1,

t∗2 = (−δac − R1/2)(2δab)
−1, t∗ = R1/2(δab)

−1 (δ = t∗3), we obtain the system (18) in which
ãi = (−1)i(t∗3−iP2(t

∗
1, 1)− P1(t

∗
1, 1)), c̃i = (−1)i(t∗3−iP2(t

∗
2, 1)− P1(t

∗
2, 1)) (i = 1, 2).

1b) δab = 0, δbc 6= 0 (δac = 0).

1b1) a2 6= 0. Then for r1 = 1, s1 = −b2, r2 = 0, s2 = a2 we obtain the system (18),
where ã1 = a1 + b2, c̃1 = a1b

2
2 − 2b1a2b2 + a22c1 − b32 + a2b2c2, ã2 = 1, c̃2 = a2c2 − b22.

1b2) a2 = 0 (b2 = 0, a1, c2 6= 0). Then for r1 = a−11 , s1 = −(a1c2)
−1b1, r2 = 0,

s2 = c−12 we obtain (18) with ã1 = 1, c̃1 = (a1c1 − b21 + b1c2)c
−2
2 , ã2 = 0, c̃2 = 1.

1c) b1, b2 = 0 (δac 6= 0). Then in the system (18) ãi = ai, c̃i = ci (i = 1, 2).

Now a change of variables (9) reduces (18) to a system with coefficients

δ̃ă1 = s2(ã1r
2
1 + c̃1r

2
2)− s1(ã2r21 + c̃2r

2
2), −δ̃ă2 = r2(ã1r

2
1 + c̃1r

2
2)− r1(ã2r21 + c̃2r

2
2),

δ̃b̆1 = s2(ã1r1s1 + c̃1r2s2)− s1(ã2r1s1 + c̃2r2s2),

−δ̃b̆2 = r2(ã1r1s1 + c̃1r2s2)− r1(ã2r1s1 + c̃2r2s2),

δ̃c̆1 = s2(ã1s
2
1 + c̃1s

2
2)− s1(ã2s21 + c̃2s

2
2), −δ̃c̆2 = r2(ã1s

2
1 + c̃1s

2
2)− r1(ã2s21 + c̃2s

2
2).

(19)

For brevity we will further omit the symbol ˜ over coefficients of the system (18).

11) a1c2 = 0. Then a2c1 6= 0.

11
1) a1, c2 = 0. Then (19) for r1 = (a22c1)

−1/3, s1, r2 = 0, s2 = a2r
2
1 is CF0

2.

12
1) a1 = 0, c2 6= 0. Then (19) for r1 = 0, s1 = c1r

2
2, r2 = (a2c

2
1)
−1/3, s2 = 0 is CF0

6

with u = c2(a2c
2
1)
−1/3 6= 0. 13

1) a1 6= 0, c2 = 0. Then (19) for r1 = (a22c1)
−1/3, s1, r2 = 0,

r2 = a2r
2
1 is CF0

6 with u = a1(a
2
2c1)

−1/3 6= 0.

12) a1c2 6= 0.

11
2) a2, c1 = 0. Then (19) for r1 = a−11 , s1, r2 = 0, s2 = c−12 is CF0

1.

12
2) a2 = 0, c1 6= 0.

12
2a) 0 6= a1c1c

−2
2 ≤ 1/4. Then (19) for r1 = a−11 , s1 = (2a1)

−1(1 + (1 − 4a1c1c
−2
2 )1/2),

r2 = 0, s2 = c−12 is CF0
3 with u = 1 + (1− 4a1c1c

−2
2 )1/2 ≥ 1.

12
2b) a1c1c

−2
2 > 1/4. Then (19) for r1 = c1c

−2
2 , s1, r2 = 0, s2 = c−12 is CF0

4 with
u = a1c1c

−2
2 > 1/4.

13
2) a2 6= 0, c1 = 0.

13
2a) 0 6= a2c2a

−2
1 ≤ 1/4. Then system (19) for r1 = 0, s1 = a−11 , r2 = c−12 , s2 =

(2c2)
−1(1 + (1− 4a2c2a

−2
1 )1/2) is CF0

3 with u = 1 + (1− 4a2c2a
−2
1 )1/2 ≥ 1.

13
2b) a2c2a

−2
1 > 1/4. Then (19) for r1 = 0, s1 = a−11 , r2 = a2a

−2
1 , s2 = 0 is CF0

4 with
u = a2c2a

−2
1 > 1/4.

14
2) a2c1 6= 0.
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14
2a) a1c

1/3
1 = a

1/3
2 c2. Then the system (19) for r1 = a1(2a

2
1 − 2a2c2)

−1, s1 = a1|2a41 −
2a22c

2
2|−1/2sign (a2c2), r2 = a21(2a

2
1c2− 2a2c

2
2)
−1, s2 = −a21c−12 |2a41− 2a22c

2
2|−1/2sign (a2c2) – CF0

5

with u = (a21 + a2c2)(2a
2
1 − 2a2c2)

−1 6= 0;±1/2, σ = signu. At the same time a21 ± a2c2 6= 0,
else in (2) P2 = a−11 a2P1 and l = 3.

14
2b) a21 + a2c2 = 0. Then (19) for r1 = a1(a

3
1 + a22c1)

−2/3, s1 = (a31 + a22c1)
−1/3, s2 = 0,

r2 = a2(a
3
1 + a22c1)

−2/3 – CF0
7 with u = 2a1(a

3
1 + a22c1)

−1/3 6= 0, being a31 + a22c1 = −a2δac 6= 0.

14
2c) c22 + a1c1 = 0. Then (19) for r1 = c1(c

3
2 + c21a2)

−2/3, s1 = 0, r2 = c2(c
3
2 + c21a2)

−2/3,
s2 = (c32 + c21a2)

−1/3 – CF0
7 with u = 2c2(c

3
2 + c21a2)

−1/3 6= 0, being c32 + c21a2 = −c1δac 6= 0.

14
2d) a1c

1/3
1 6= a

1/3
2 c2, a21 + a2c2 6= 0, c22 + a1c1 6= 0. Then (19) for r1 = (a22c1)

−1/3,
s1, r2 = 0, s2 = (a2c

2
1)
−1/3 has the form

F0
1 =

(
u 0 1

1 0 v

)

with u = a1(a
2
2c1)

−1/3, v = c2(a2c
2
1)
−1/3 satisfying (16) and R = (uv − 1)2 > 0.

Thus, it is proved that under above mentioned conditions for u and v F0
1 with R > 0

and index 8 cannot be reduced to the system having more than two zeroes. Reduce F0
1 to CF0

8

with index 6, and if we will not succeed, then to CF0
9 with index 7.

An arbitrary change (9) brings F0
1 to the system with R̃ > 0 and coefficients

ã1 = −((s1 − us2)r21 + (vs1 − s2)r22)δ−1, ã2 = (r31 − ur21r2 + vr1r
2
2 − r32)δ−1,

b̃1 = −((s1 − us2)r1s1 + (vs1 − s2)r2s2)δ−1, b̃2 = ((r1 − ur2)r1s1 + (vr1 − r2)r2s2)δ−1,
c̃1 = −(s31 − us21s2 + vs1s

2
2 − s32)δ−1, c̃2 = ((r1 − ur2)s21 + (vr1 − r2)s22)δ−1.

Coefficients ã2, c̃1 in this system may be taken as zeros, if Q1(t) from (15) has two different
real roots, i. e. the condition (171) holds.

In this case, assuming in (9) r1 = t′1r2, s1 = t′′1s2, being the change remains invertible,
we have ã2 = 0 and c̃1 = 0, so there remains to fulfill a normalization.

Thus, F0
1 with u = u∗, v = v∗, satisfying (16) and (171), for selected r1, s1 and

r2 = (t′1 − t′′1)(2(t′21 t
′′
1 + v∗t

′
1 − u∗t

′
1t
′′
1 − 1))−1, s2 = (t′′1 − t′1)(2(t′1t

′′2
1 − u∗t

′
1t
′′
1 + v∗t

′′
1 − 1))−1

may be reduced to CF0
8 with u = (u∗t

′2
1 − t′21 t

′′
1 − v∗t

′′
1 + 1)(2(t′21 t

′′
1 + v∗t

′
1 − u∗t

′
1t
′′
1 − 1))−1,

v = (u∗t
′′2
1 − t′1t′′21 − v∗t′1 + 1)(2(t′1t

′′2
1 − u∗t′1t′′1 + v∗t

′′
1 − 1))−1, at that uv 6= 0, else R = 0.

Let the condition (172) fulfill instead of (171). Then ã22 + c̃21 6= 0.

Taking in (9) r1 = (tv − 1)(u− t)−1t−1r2, s1 = ts2, we obtain the system(
(tv − 1)t−1r2 0 t(t− u)r−12 s22

Q2(t)t
−2(t− u)−2r22s

−1
2 2(uv − 1)(t− u)−1r2 (tu+ v)s2

)
,

at that the change has to be invertible, i. e. (1− tv)(t− u)−1t−1 6= t or Q1(t) 6= 0.

In accordance with (172) we have Q1(t2) 6= 0. Hence ã2 = 0 for t = t2, i. e. F0
1 with

u = u∗, v = v∗ under conditions (16), (172), by the change (9) with t = t2 for selected
r1, s1 and r2 = (u∗ − t2)(2u∗v∗ − 2)−1, s2 = |2t2(u∗v∗ − 1)|−1/2 is reduced to CF0

9 with σ =
−sign (t2(u∗v∗−1)), u = (u∗− t2)(t2v∗−1)(2t2(u∗v∗−1))−1, v = (t2u∗+v∗)|2t2(u∗v∗−1)|−1/2.
In this case uv 6= 0, otherwise, if t2v∗−1 = 0, then Q2(t2) = t2(t−u)2 6= 0, and if t2u∗+v∗ = 0,
then Q2(−u−1∗ v∗) = (1− u∗v∗)(1− u−3∗ v3∗) 6= 0.
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2) R = δ2ac − 4δabδbc < 0. Then δabδbc > 0.

At first we will prove that there is a change (9) that brings (2) to a system (10) of the form(
ã1 2b̃1 c̃1

0 2b̃2 c̃2

)
(ã1b̃2 6= 0). (20)

2a) a2 6= 0. Then for r1 = r∗, s1 = 1, r2 = −1, s2 = 0, where r∗ is a real root
of the polynomial a2r

3
1 + (2b2 − a1)r21 + (c2 − 2b1)r1 − c1, we obtain system (20), where ã1 =

a2r
2
∗ + 2b2r∗ + c2, b̃1 = −a2r∗ − b2, c̃1 = a2, b̃2 = b1 + a1r∗ − b2r∗ − a2r2∗, c̃1 = a2r∗ − a1.
2b) a2 = 0. Then in (20) ãi = ai, b̃i = bi, c̃i = ci (i = 1, 2).

An arbitrary change (9) with r2 = 0 brings system (20) to the system(
ã1r1 2(ã1 − b̃2)s1 + 2b̃1s2 ((ã1 − 2b̃2)s

2
1 + (2b̃1 − c̃2)s1s2 + c̃1s

2
2)r
−1
1

0 2b̃2r1 2b̃2s1 + c̃2s2

)
. (21)

We further omit ˜ over the coefficients in (20) and mark coefficients in (21) by ˘ . 21)
(a1 − b2)c2 − 2b1b2 = 0 (i. e. we may take b̆1, c̆2 = 0). Then (21) for r1 = (2b2)

−1, s1 =
−|a1|1/2c2(−2|b2|R)−1/2sign b2, r2 = 0, s2 = |2a1b2|1/2(−R)−1/2 is a CF0

5 with σ = −signu,
u = a1(2b2)

−1 6= 0.

22) (a1 − b2)c2 − 2b1b2 6= 0. Let d∗ = (2b1 − c2)2 + 4c1(2b2 − a1).
21
2) d∗ ≥ 0, i. e. we may take c̆1 = 0. In this case b∗ = 2c1(a1 − b2) + b1(c2 − 2b1 +

d
1/2
∗ sign (c2−2b1)) 6= 0, else for r1 = a−11 , s1 = 2c1, r2 = 0, s2 = (c2−2b1+d

1/2
∗ sign (c2−2b1))

in system (21) R̆ = c̆22 ≥ 0, that is impossible. Therefore for r1 = (2b2)
−1, s1 = c1b

−1
∗ ,

r2 = 0, s2 = (2b∗)
−1(c2 − 2b1 + d

1/2
∗ sign (c2 − 2b1)) (21) is a CF0

8 with u = a1(2b2)
−1, v =

(2b∗)
−1(4c1b2 +c22−2b1c2 +c2d

1/2
∗ sign (c2−2b1)) and 0 < uv < 1, because R = uv(uv−1) < 0.

22
2) d∗ < 0.

22
2a) a1 6= b2. Then c∗ = 2b2((a1−b2)(a1c1+b1c2−c1b2)−a1b21) 6= 0, else for r1 = (2b2)

−1,
s1 = b1, r2 = 0, s2 = b2 − a1 in system (21) c̆1 = 0 , that is impossible for d∗ < 0.

For r1 = (2b2)
−1, s1 = b1|c∗|−1/2, r2 = 0, s2 = (b2 − a1)|c∗|−1/2 system (21) is CF0

9

with u = a1(2b2)
−1 6= 0; 1/2, v = (2b1b2 − (a1 − b2)c2)|c∗|−1/2 6= 0, σ = sign c∗. At that

R̆ = u(uv2 + σ) = R(a1 − b2)
2b−22 |4c∗|−1 < 0, hence |u|v2 < −sign (uc∗). It means that

σ = −signu and |u|v2 < 1.

22
2b) a1 = b2 (b̆1 6= 0). Then (21) for r1 = (2a1)

−1, s1 = −c2(−2R)−1/2sign (a1b1), r2 = 0,
s2 = 21/2a1(−R)−1/2sign (a1b1) is a CF0

10 with u = 23/2|a1b1|(−R)−1/2, at that 0 < u <
√

2,
because u2 − 2 = −2a21(4b

2
1 − 4b1c2 + c22 + 4a1c1)R

−1 = −2a21d∗R
−1 < 0. �

Remark 4 CF0
3 with u = u∗ < 1 by the change (9) with r1 = 1, s1 = 1 − u∗, r2 = 0,

s2 = 1 is also may be reduced to a CF0
3, with u = 2− u∗ > 1.

CF0
4 with u = u∗ ≤ 1/4 is not a canonical one according to principle 3. Using (9) with

r1 = u−1∗ , s1 = (1 + (1 − 4u∗)
1/2)(2u∗)

−1, r2 = 0, s2 = 1 we reduce it to a CF0
3 with

u = 1 + (1− 4u∗)
1/2 ≥ 1.

CF0
5 with |u| = 1/2, σ = signu (R = 1/2) is not a canonical form in accordance with

principle 2. In case of u = 1/2 CF0
5 is reduced to a CF0

1 by the change (9) with r1, s1 = 1,
r2 = 2−1/2, s2 = −2−1/2. For u = −1/2 CF0

5 is reduced to a CF0
2 by the change (9) with

r1, s1 = −1, −s2, r2 = 2−1/2.
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CF0
9 with u = u∗ = 1/2, σ = −1 (R = (v2 − 2)/4 < 0) is not a canonical one according

to principle 2. Applying (9) with r1 = 1, s1 = −21/2v(2−v2)−1/2, r2 = 0, s2 = 21/2(2−v2)−1/2
we reduce it to a CF0

5 with u = 1/2, σ = −1 (R = −1/2).

CF0
10 with u = u∗ 6∈ (0, 21/2) is not a canonical form because of principles 2 or 3.

For |u∗| = 21/2 by the change (9) with r1 = 1, s1 = 0, r2 = 2−1/2signu∗, s2 = signu∗
CF0

10 may be reduced to a CF0
9 with u = 1, σ = −1, v = 2−1/2 (R = −1/2).

For |u∗| > 21/2 using (9) with r1 = (u∗ + (u2∗ − 2)1/2)u−1∗ , s1 = (u∗ − (u2∗ − 2)1/2)u−1∗ ,
r2, s2 = u−1∗ CF0

10 is reduced to a CF0
8 with u = (u2∗ − 2 + u2∗(u

2
∗ − 2)1/2)u−1∗ (u2∗ − 2)−1/2 6= 0,

v = (−u2∗ + 2 + u2∗(u
2
∗ − 2)1/2)u−1∗ (u2∗ − 2)−1/2 6= 0, being uv = 2u−2∗ < 1. For −21/2 < u∗ < 0

CF0
10 by (9) with r1 = 1, s1, r2 = 0, s2 = −1 is also brought to a CF0

10, but with u = −u∗,
i. e. 0 < u < 21/2.

Remark 5 Forms F0
2 =

(
u∗ v∗ 1

1 0 0

)
with u∗v∗ 6= 0, R = 1, and F0

3 =

(
u∗ v∗ 1

0 0 1

)
with u∗v∗ 6= 0, R = u2∗ which are not given in the list are noncanonical ones according to
principle 2 or 3.

Form F0
2 for v3∗ − 4u∗v∗ − 8 = 0, v4∗ + 32v∗ < 0 by change (9) with r1 = 4v−2∗ , s1 = 0,

r2 = −2v−1∗ , s2 = 2v−1∗ is brought to a CF0
4 with u = −8v−3∗ > 1/4; for v3∗ − 4u∗v∗ − 8 = 0,

v4∗ + 32v∗ ≥ 0 by the change (9) with r1 = −v∗/2, s1 = 4v−1∗ (v2∗ ± (v4∗ + 32v∗)
1/2)(16 + v3∗ ±

v∗(v
4
∗ + 32v∗)

1/2)−1, r2 = v2∗/4, s2 = 32v−1∗ (16 + v3∗ ± v∗(v4∗ + 32v∗)
1/2)−1 is reduced to a CF0

3

with u = 16v−2∗ (∓(v4∗+32v∗)
1/2−v2∗)(16+v3∗±v∗(v4∗+32v∗)

1/2)−1 6= 0. For v3∗−4u∗v∗−8 6= 0,
if 4u∗ = v2∗, then F0

2 is reduced to a CF0
7 by the change (9) with r1 = 0, s1 = 1, r2 = 1,

s2 = −v∗/2 with u = v∗/2 6= 0; if 4u∗ 6= v2∗ then by the change (9) with r1 = 0, s1 =
4(v3∗ − 4u∗v∗ − 8)−2/3, r2 = −2(v3∗ − 4u∗v∗ − 8)−1/3, s2 = −2v∗(v

3
∗ − 4u∗v∗ − 8)−2/3 F0

2 is
reduced to a F0

1 with u = −v∗(v3∗ − 4u∗v∗ − 8)−1/3, v = (4u∗ − v2∗)(v3∗ − 4u∗v∗ − 8)−2/3, being
uv 6= 0; 1.

Form F0
3 for v2∗ − 2v∗− 4u∗ + 1 < 0 by the change (9) with r1 = (2v∗− v2∗ + 4u∗)(4u∗)

−1,
s1 = −(2u∗)

−1v∗, r2 = 0, s2 = 1 is brought to a CF0
4 with u = (2v∗ − v2∗ + 4u∗)/4 > 1/4.

But for v2∗ − 2v∗ − 4u∗ + 1 ≥ 0, if v2∗ − 2v∗ − 4u∗ 6= 0, by the change (9) with r1 = u−1∗ ,
s1 = (1− v∗ + (v2∗ − 2v∗ − 4u∗ + 1)1/2)(2u∗)

−1, r2 = 0, s2 = 1 F0
3 is reduced to a CF0

3 with
u = 1 + (v2∗ − 2v∗ − 4u∗ + 1)1/2 ≥ 1; if v2∗ − 2v∗ − 4u∗ = 0 ( v∗ 6= 2 ), then by the change (9)
with r1 = u−1∗ , s1 = −v∗(2u∗)−1, r2 = 0, s2 = 1 F0

3 is reduced to a CF0
1.

Remark 6 Forms F0
4 =

(
u∗ 0 1

1 v∗ 0

)
with u∗v∗ 6= 0, R = 1 + u∗v

2
∗ and F0

5 =

(
0 u 1

1 v 0

)
with uv 6= 0, R = 1− uv 6= 0 are noncanonical in accordance with principles 2, 3.

Form F0
4 with u∗ = u, v∗ = −2u for R > 0 by the change (9) with r1 = (R +

R1/2)(2u3)−1s22, s1 = −(1 +R1/2)(2u2)−1s2, r2 = (R+R1/2)(1 +R1/2)(4u4)−1s22 is brought to

the system with coefficients ã1, b̃1, b̃2, c̃2 = 0, ã2 = −R3/2(R1/2 + 1 + 2u3)(2u6)−1s32 6= 0, else

P̃2 ≡ 0, that is impossible. For s2 = −21/3u2R−1/2(R1/2 + 1 + 2u3)−1/3 the obtained system is
a CF0

2.

Form F0
4 with u∗ = u, v∗ = v 6= −2u for R > 0 by the change (9) with r1 = 2(R +

R1/2)(uv2)−1s22, s1 = (1 +R1/2)(uv)−1s2, r2 = (R+R1/2)(1 +R1/2)(uv)−2s22 is brought to the

system having ã2 = s∗(uv)−3s32, where s∗ = R((uv2−2u2v+4)(R1/2+1)+2uv2), b̃2, c̃2 = 0, be-

ing s∗ 6= 0, else P̃2 ≡ 0, that is impossible. For s2 = uvs
−1/3
∗ the obtained system is a F0

2 with

u∗ = u(2u+ v)(R +R1/2)s
−2/3
∗ 6= 0, v∗ = (2u+ v)(1 +R1/2)s

−1/3
∗ 6= 0.
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Form F0
4 with u∗ = u, v∗ = −2u for R < 0 by the change (9) with s1 = |2(u2 −

ut2 + t)|−1/2, r1 = (u + t2)(2(u2 − ut2 + t))−1, r2 = (1 − 2tu)(2(u2 − ut2 + t))−1, s2 =
t|2(u2− ut2 + t)|−1/2, where t is a real root of the cubic polynomial t3 + 6u2t2− 3ut+ 2u3 + 1,
is reduced to a F0

6 with u = −1/2, σ = sign(u2 − ut2 + t) = 1.

Form F0
4 with u∗ = u, v∗ = v 6= −2u for R < 0 by (9) with r1 = (u+t2)(vt2+2t−uv)−1,

s1 = |vt2 + 2t− uv|−1/2, r2 = (1 + tv)(vt2 + 2t− uv)−1, s2 = t|vt2 + 2t− uv|−1/2, where t is a
real root of the cubic polynomial t3 + (v−u)vt2 + (u+ 2v)t−u2v+ 1, is reduced to the system(

u∗ v∗ σ

0 1 0

)
(22)

with u∗ = (ut2 − t + u2 + uv)(vt2 + 2t − uv)−1 < 0, v∗ = (2u + v)|vt2 + 2t − uv|−1/2 6= 0,
σ = sign (vt2 + 2t− uv).

1) v2∗ + 4σ∗(1− u∗) ≥ 0. If 4σ∗u∗ − 2σ∗ − v2∗ − |v∗|(v2∗ + 4σ∗(1− u∗))1/2 6= 0 then system
(22) by (9) with r1 = 1, s1 = 2σ∗(4σ∗u∗ − 2σ∗ − v2∗ − |v∗|(v2∗ + 4σ∗(1 − u∗))1/2)−1, r2 = 0,
s2 = (−v∗ − (v2∗ + 4σ∗(1 − u∗))

1/2sign v∗)(4σ∗u∗ − 2σ∗ − v2∗ − |v∗|(v2∗ + 4σ∗(1 − u∗))
1/2)−1 is

reduced to a CF0
8 with u = u∗, v = 2σ∗(4σ∗u∗ − 2σ∗ − v2∗ − |v∗|(v2∗ + 4σ∗(1 − u∗))1/2)−1. If

4σ∗u∗ − 2σ∗ − v2∗ − |v∗|(v2∗ + 4σ∗(1− u∗))1/2 = 0 (for example σ∗ = 1, u∗ = 1, v∗ = ±1), then
system (22) by (9) with r1 = 1, s1 = u−1∗ , r2 = (−v∗ − (v2∗ + 4σ∗(1 − u∗))1/2sign v∗)(2σ∗)

−1,
r2 = 0 is reduced to a CF0

3 with u = u−1∗ .

2) v2∗ + 4σ∗(1 − u∗) < 0. Using (9) with r1 = 1, s1 = v∗|u∗v2∗ − σ∗(2u∗ − 1)2|−1/2,
r2 = 0, s2 = (1 − 2u∗)|u∗v2∗ − σ(2u∗ − 1)2|−1/2 we bring (22) to a CF0

9 with u = u∗, σ =
−sign (u∗v

2
∗ − σ∗(2u∗ − 1)2), v = v∗|u∗v2∗ − σ∗(2u∗ − 1)2|−1/2, being u∗v

2
∗ 6= σ∗(2u∗ − 1)2, else

v2∗ + 4σ∗(1− u∗) ≥ 0.

Form F0
5 for u 6= v by (9) with r1 = v(v − u2)s−2/3∗ , s1 = us

−1/3
∗ , r2 = u(u − v2)s−2/3∗ ,

s2 = −vs−1/3∗ , where s∗ = (uv − 1)(v − u)(u2 + uv + v2) 6= 0, is reduced to a F0
4 with

u∗ = uv(1− uv)s
−2/3
∗ , v∗ = (u3 − 2uv + v3)s

−2/3
∗ . In the case u = v = u∗ by (9) with r1, r2 =

−1/2, s1 = |2u∗ − 2|−1/2, s2 = −s1 a form F0
5 is brought to a CF0

5 with u = −(u∗ + 1)/2,
σ = sign (C∗ − 1).

In Theorem 1 all the linear invertible changes of variables (9) are given in explicit form.
Therefore the conditions that guarantee the reducing system (2) to an appropriate CF1

i may
be written by using coefficients of (2). For R = δ2ac − 4δabδbc > 0 assume

ã1 =


P1(t

∗
1, 1)− t∗2P2(t

∗
1, 1), if δab 6= 0,

a1 + b2, if δab = 0, δbc 6= 0, a2 6= 0,

1, if δab = 0, δbc 6= 0, a2 = 0,

a1, if b1, b2 = 0,

ã2 =


t∗1P2(t

∗
1, 1)− P1(t

∗
1, 1), if δab 6= 0,

1, if δab = 0, δbc 6= 0, a2 6= 0,

0, if δab = 0, δbc 6= 0, a2 = 0,

a2, if b1, b2 = 0,

c̃1 =



P1(t
∗
2, 1)− t∗2P2(t

∗
2, 1), if δab 6= 0,

a1b
2
2 − 2b1a2b2 + a22c1 − b32 + a2b2c2,

if δab = 0, δbc 6= 0, a2 6= 0,

(a1c1 − b21 + b1c2)c
−2
2 ,

if δab = 0, δbc 6= 0, a2 = 0,

c1, if b1, b2 = 0,

c̃2 =


t∗1P2(t

∗
2, 1)− P1(t

∗
2, 1), if δab 6= 0,

1, if δab = 0, δbc 6= 0, a2 6= 0,

1, if δab = 0, δbc 6= 0, a2 = 0,

c2, if b1, b2 = 0,

(23)
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where t∗1 = (−δac +R1/2)(2δab)
−1, t∗2 = (−δac −R1/2)(2δab)

−1, for R < 0 we assume

ã1 =

[
a2r

2
∗ + 2b2r∗ + c2, if a2 6= 0,

a1, if a2 = 0,

b̃1 =

[
−a2r∗ − b2, if a2 6= 0,

b1, if a2 = 0,
b̃2 =

[
b1 + a1r∗ − b2r∗ − a2r2∗, if a2 6= 0,

b2, if a2 = 0,

c̃1 =

[
a2, if a2 6= 0,

c1, if a2 = 0,
c̃2 =

[
a2r∗ − a1, if a2 6= 0,

c2, if a2 = 0,

(24)

where r∗ is a real root of the cubic polynomial a2r
3
1 + (2b2 − a1)r21 + (c2 − 2b1)r1 − c1.

Corollary 1 A system (2) in which R = δ2ac − 4δabδbc 6= 0, by the linear invertible change
of variables (9) is reduced to CF0

i (i = 1, 10), if the coefficients ai, bi, ci (i = 1, 2) satisfy
conditions:

CF0
1 : R > 0, ã1c̃2 6= 0, ã2, c̃1 = 0;

CF0
2 : R > 0, ã1, c̃2 = 0;

CF0
3 : 1) R > 0, 0 6= ã1c̃1c̃

−2
2 ≤ 1/4, ã2 = 0, then u = 1 + (1− 4ã1c̃1c̃

−2
2 )1/2 ≥ 1;

2) R > 0, 0 6= ã2c̃2ã
−2
1 ≤ 1/4, c̃1 = 0, then u = 1 + (1− 4ã2c̃2ã

−2
1 )1/2 ≥ 1;

CF0
4 : 1) R > 0, ã1c̃1c̃

−2
2 > 1/4, ã2 = 0, then u = ã1c̃1c̃

−2
2 > 1/4; 2) R > 0,

ã2c̃2ã
−2
1 > 1/4, c̃1 = 0, then u = ã2c̃2ã

−2
1 > 1/4;

CF0
5 : 1) R > 0, ã1c̃

1/3
1 = ã

1/3
2 c̃2 6= 0, then u = (ã21 + ã2c̃2)(2ã

2
1 − 2ã2c̃2)

−1 6= 0;±1/2,

σ = signu; 2) R < 0, (ã1 − b̃2)c̃2 − 2b̃1b̃2 = 0, then u = ã1(2b̃2)
−1 6= 0; σ = −signu;

CF0
6 : 1) R > 0, ã1 = 0, c̃2 6= 0, then u = c̃2(ã2c̃

2
1)
−1/3 6= 0; 2) R > 0, ã1 6= 0, c̃2 = 0,

then u = ã1(ã
2
2c̃1)

−1/3 6= 0;

CF0
7 : 1) R > 0, ã1ã2c̃1c̃2 6= 0, ã21 + ã2c̃2 = 0, then u = 2ã1(ã

3
1 + ã22c̃1)

−1/3 6= 0;
2) R > 0, ã1ã2c̃1c̃2 6= 0, c̃22 + ã1c̃1 = 0, then u = 2c̃2(c̃

3
2 + c̃21ã2)

−1/3 6= 0;

CF0
8 : 1) R > 0, ã1ã2c̃1c̃2 6= 0, ã1c̃

1/3
1 6= ã

1/3
2 c̃2, ã21 + ã2c̃2 6= 0, c̃22 + ã1c̃1 6= 0,

δãc̃ 6= 0, the condition (171) is fulfilled for polynomials Q1(t), Q2(t) from (15), being u =
u∗ = ã1(ã

2
2c̃1)

−1/3, v = v∗ = c̃2(ã2c̃
2
1)
−1/3, then in CF0

8 u = (u∗t
′2
1 − t′21 t′′1 − v∗t′′1 + 1)(2(t′21 t

′′
1 +

v∗t
′
1 − u∗t′1t′′1 − 1))−1 6= 0, v = (u∗t

′′2
1 − t′1t′′21 − v∗t′1 + 1)(2(t′1t

′′2
1 − u∗t′1t′′1 + v∗t

′′
1 − 1))−1 6= 0;

2) R < 0, (ã1− b̃2)c̃2−2b̃1b̃2 6= 0, d∗ = (2b̃1− c̃2)2+4c̃1(2b̃2− ã1) ≥ 0, then u = ã1(2b̃2)
−1 6= 0;

v = (4c̃1(ã1−b̃2)+2b̃1(c̃2−2b̃1+d
1/2
∗ sign (c̃2−2b̃1)))

−1(4c̃1b̃2+c̃
2
2−2b̃1c̃2+c̃2d

1/2
∗ sign (c̃2−2b̃1)) 6= 0;

CF0
9 : 1) R > 0, ã1ã2c̃1c̃2 6= 0, ã1c̃

1/3
1 6= ã

1/3
2 c̃2, ã

2
1 + ã2c̃2 6= 0, c̃22 + ã1c̃1 6= 0, δãc̃ 6= 0, the

condition (172) is fulfilled for polynomials Q1(t), Q2(t) from (15), with u = u∗ = ã1(ã
2
2c̃1)

−1/3,
v = v∗ = c̃2(ã2c̃

2
1)
−1/3, then in CF0

9 u = (t2 − u∗)(1 − t2v∗)(2t2(u∗v∗ − 1))−1 6= 0, v =

(u∗t2 + v∗)|2t2(u∗v∗− 1)|−1/2 6= 0, σ = −sign (t2(u∗v∗− 1)); 2) R < 0, (ã1− b̃2)c̃2− 2b̃1b̃2 6= 0,

d∗ = (2b̃1 − c̃2)
2 + 4c̃1(2b̃2 − ã1) < 0, ã1 6= b̃2, then u = ã1(2b̃2)

−1 6= 0; 1/2, σ = −signu,

v = (2b̃1b̃2 − (ã1 − b̃2)c̃2)|2b̃2((ã1 − b̃2)(ã1c̃1 + b̃1c̃2 − c̃1b̃2)− ã1b̃21)|−1/2 6= 0;

CF0
10 : R < 0, (ã1 − b̃2)c̃2 − 2b̃1b̃2 6= 0, d∗ = (2b̃1 − c̃2)2 + 4c̃1(2b̃2 − ã1) < 0, ã1 = b̃2,

then u = 23/2|ã1b̃1|(4δãb̃δb̃c̃ − δ2ãc̃)−1/2, at that 0 < u <
√

2.

Here for R > 0 coefficients of the matrix (18) ã1, c̃1, ã2, c̃2 are defined in (23), and for

R < 0 coefficients of the matrix (20) ã1, b̃1, c̃1, b̃2, c̃2 are defined in (24).
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5 Canonical forms for system (2) in case l = 1

5.1 Linear equivalence of systems for l = 1

A system (2) ẋ = P (x) for l = 1 may be written in the form(
P1

P2

)
= P0(x)

(
p1x1 + q1x2
p2x1 + q2x2

)
=
〈
(α, β), x

〉
Hx 6≡ 0 (δpq 6= 0), (25)

i. e. in (25) a common factor P0 = αx1 + βx2 6≡ 0, matrix H =

(
p1 q1
p2 q2

)
.

Hence eigenvalues of H are not equal to zero and have the form

λ1,2 = (p1 + q2 ±
√
D)/2, (26)

where D = (p1 + q2)
2 − 4δpq = (p1 − q2)2 + 4p2q1.

Proposition 2 For the purpose of normalizing one of nonzero coefficients of P0 in system
(25) may be taken 1. We assume that if α 6= 0, then α = 1, and if α = 0, then β = 1.

Let the change (9) x = Ly (detL = δ 6= 0) bring a system (2) of the form (25) to

a system (10) ẏ = P̃ (y). Let us take

(α̃, β̃) = (α, β)L, H̃ =

(
p̃1 q̃1
p̃2 q̃2

)
= L−1HL (δp̃q̃ = det H̃ = δpq), (27)

i. e. α̃ = αr1 + βr2, β̃ = αs1 + βs2, H̃ = δ−1

(
r1δps + r2δqs s1δps + s2δqs
−r1δpr − r2δqr −s1δpr − s2δqr

)
In addition, as matrix product is associative, we have:〈

(α, β), Ly
〉

=
〈
(α, β)L, y

〉
. (28)

Theorem 2 The system (10) obtained form a system (2) of the form (25) by change (9)
has the form (

P̃1

P̃2

)
= P̃0(y)

(
p̃1y1 + q̃1y2
p̃2y1 + q̃2y2

)
=
〈
(α̃, β̃), y

〉
H̃y (P̃0 6≡ 0), (29)

where coefficients of the polynomial P̃0 = α̃y1 + β̃y2 and matrix H̃ are introduced in (27).

So, the case l = 1 is invariant with respect to change (9).

Proof The formula (29) follows from equalities:

P̃ (y)
(11)
= L−1P (Ly)

(25)
= L−1

〈
(α, β), Ly

〉
HLy

(28)
=
〈
(α, β)L, y

〉
L−1HLy

(27)
=
〈
(α̃, β̃), y

〉
H̃y.

Note that the condition α̃2 + β̃2 = 0 is equivalent to α2 + β2 = 0, because δrs 6= 0. �
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5.2 Construction of canonical forms when l = 1

Without loss of generality we suppose that in (25) α 6= 0, as if α = 0 then by renumbering

(14) we have a system (29) of the form

(
P̃1

P̃2

)
= βy1

(
q2y1 + p2y2
q1y1 + p1y2

)
.

Now, following to Proposition 2 we take α = 1, i. e. the common factor in (25) is always
P0 = x1 + βx2.

To simplify (25) we take at first such a change (9) that reduces matrix H to a Jordan

form H̃ in (29).

It is evidently that the form of the change depends on the sign of the discriminant
D = (p1 + q2)

2 − 4δpq from the formula (26) for eigenvalues of matrix H λ1,2 6= 0.

Then in (29) with Jordan matrix H̃ we will perform an arbitrary change (9) choosing
its coefficients such that the obtained system be the simplest in the sense of definition 7 –
a canonical form (CF2).

We will mark all the elements of obtained system by the symbol ˘. Similarly to (27)
coefficients of P̆0 have the form

ᾰ = α̃r1 + β̃r2, β̆ = α̃s1 + β̃s2. (30)

The list of canonical forms of (2) in case of l = 1 :

CF1
1 =

(
u 0 0

0 1 0

)
, CF1

2 =

(
0 σ 0

1 0 0

)
,

CF1
3 =

(
u 1 0

0 1 0

)
, CF1

4 =

(
1 0 0

1 1 0

)
, CF1

5 =

(
u −1 0

1 0 0

)
,

where in CF1
1 u 6= 0, in CF1

2 σ = ±1, in CF1
3 0 < |u| < 1 or u = 1, in CF1

5 0 < u < 2.

Theorem 3 For l = 1 system (2) of the form (25) by a linear invertible change of variables
(9) is brought to one of 5 linearly nonequivalent CF1.

Proof

1) D > 0, i. e. in (26) λ1, λ2 6= 0, are real and different. More exactly,

λ1 = (p1 + q2 + σ∗
√
D)/2, λ2 = (p1 + q2 − σ∗

√
D)/2, λ∗ = p1 − q2 + σ∗

√
D,

where σ∗ = { sign (p1 − q2) for p1 6= q2; 1 for p1 = q2 }, then λ∗ 6= 0.

The change (9) with L =

(
λ∗ 2q1
2p2 −λ∗

)
reduces (25) to a system (29) of the form

(
α̃λ1 β̃λ1 0

0 α̃λ2 β̃λ2

)
with α̃ = 2βp2 + λ∗, β̃ = 2q1 − βλ∗, H̃ =

(
λ1 0

0 λ2

)
. (31)

Further an arbitrary change (9) brings (31) to the system

δ−1

(
ᾰ(λ1r1s2 − λ2r2s1) ᾰ(λ1 − λ2)s1s2 + β̆(λ1r1s2 − λ2r2s1) β̆(λ1 − λ2)s1s2
ᾰ(λ2 − λ1)r1r2 ᾰ(λ2r1s2 − λ1r2s1) + β̆(λ2 − λ1)r1r2 β̆(λ2r1s2 − λ1r2s1)

)
(32)
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with (ᾰ, β̆) from (30) and H̆ = δ−1

(
λ1r1s2 − λ2r2s1 (λ1 − λ2)s1s2
−(λ1 − λ2)r1r2 λ2r1s2 − λ1r2s1

)
.

11) α̃ = 0 (β̃ 6= 0). Then β̆ = 0 for s2 = 0 and system (32) has the form(
λ2β̃r2 0 0

(λ1 − λ2)β̃r1r2s−11 λ1β̃r2 0

)
. For r1 = 0, s1 = 1, r2 = (λ1)

−1β̃ this system is a CF1
1

with u = λ−11 λ2 6= 0, 1.

12) β̃ = 0 (α̃ 6= 0). Then β̆ = 0 for s1 = 0 and the system (32) has the form(
α̃λ1r1 0 0

α̃(λ2 − λ1)r1r2s−12 α̃λ2r1 0

)
. For r1 = (α̃λ2)

−1, r2 = 0, s2 = 1 this system is a CF1
1

with u = λ1λ
−1
2 6= 0, 1.

13) α̃, β̃ 6= 0. Then β̆ = 0 for s2 = −α̃β̃−1s1 and (32) has the form(
λ1α̃r1 + λ2β̃r2 (λ1 − λ2)α̃s1 0

(λ1 − λ2)β̃r1r2s−11 λ2α̃r1 + λ1β̃r2 0

)
. (33)

11
3) λ1 = −λ2, then in system (33) ă1 = −b̆2/2 = λ1(α̃r1 − β̃r2), hence for r1, s1 =

(2λ1α̃)−1, r2 = (2λ1β̃)−1 it is a CF1
2 with σ = 1.

12
3) λ1 6= −λ2, then system (33) for r1 = (λ2α̃)−1, s1 = ((λ1−λ2)α̃)−1, r2 = 0 is a CF1

3

with u = λ1λ
−1
2 6= 0,±1. For r1 = 0, s1 = ((λ1 − λ2)α̃)−1, r2 = (λ1β̃)−1 it is a CF1

3 with
u = λ−11 λ2 6= 0,±1.

Hence, choosing a required change one can always obtain 0 < |u| < 1.

2) D = 0, i. e. in (26) λ = λ1,2 = (p1+q2)/2 6= 0. 21) q1 6= 0. The change

(
0 2q1
2 q2 − p1

)
brings (25) to a system (29)of the form(

λα̃ λβ̃ 0

α̃ λα̃ + β̃ λβ̃

)
with α̃ = 2β, β̃ = βq2 − βp1 + 2q1, H̃ =

(
λ 0

1 λ

)
. (34)

21
1) β̃ = 0 (α̃ 6= 0). Then the normalizing (13) with r1 = (α̃λ)−1, s2 = α̃−1λ−2 brings

(34) to a CF1
4.

22
1) β̃ 6= 0. Then an arbitrary change (9) brings (34) to a system

δ−1

(
ᾰ(λδ − r1s1) β̆(λδ − r1s1)− ᾰs21 −β̆s21

ᾰr21 ᾰ(λδ + r1s1) + β̆r21 β̆(λδ + r1s1)

)
, (35)

where (ᾰ, β̆) are from (30), and H̆ = δ−1

(
λδ − r1s1 −s21

r21 λδ + r1s1

)
.

In the system (35) assume that β̆ = 0, for which purpose we take s2 = −α̃β̃−1s1, then (35)

has the form

(
(α̃λ+ β̃)r1 + β̃λr2 β̃s1 0

−β̃r21s−11 (α̃λ− β̃)r1 + β̃λr2 0

)
. For r1 = 0, s1 = β̃−1, r2 = (β̃λ)−1

this is a CF1
3 with u = 1.
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22) q1 = 0. Then in (26) λ = p1 = q2 6= 0.

21
2) p2 = 0, i. e. in (25) H =

(
p1 0

0 p1

)
. An arbitrary change (9) reduces (25) to

the system

(
α̃p1 β̃p1 0

0 α̃p1 β̃p1

)
with α̃ = r1 + βr2, β̃ = s1 + βs2, H̃ = H. For r1 = p−11 ,

s1 = −β, r2 = 0, s2 = 1 this is a CF1
1 with u = 1.

22
2) p2 6= 0, i. e. in (25) H =

(
p1 0

p2 p1

)
. The normalizing (13) with r1 = 1, s2 = p2

reduces (25) to the system (34) from 21), being α̃ = 1, β̃ = βp2 and λ = p1.

3) D < 0, i. e. eigenvalues λ1, λ2 of H are complex conjugate and p2q1 < 0.

The change

(√
−D p1 − q2
0 2p2

)
reduces (25) to a system (29) of the form

(
α̃p∗ α̃q∗ + β̃p∗ β̃q∗

−α̃q∗ α̃p∗ − β̃q∗ β̃p∗

)
with α̃ =

√
−D 6= 0, β̃ = p1−q2+2βp2, H̃ =

(
p∗ q∗
−q∗ p∗

)
, (36)

where p∗ = (p1 + q2)/2 (= Reλ1), q∗ = −
√
−D/2 (= −Imλ1) < 0.

After that a change (9) brings (36) to the system

δ−1

(
ᾰ(p∗δ + q∗δ0) ᾰq∗s0 + β̆(p∗δ + q∗δ0) β̆q∗s0
−ᾰq∗r0 ᾰ(p∗δ − q∗δ0)− β̆q∗r0 β̆(p∗δ − q∗δ0)

)
, (37)

where (ᾰ, β̆) is from (30), matrix H̆ = δ−1

(
p∗δ + q∗δ0 q∗s0
−q∗r0 p∗δ − q∗δ0

)
with δ0 = r1s1 + r2s2,

r0 = r21 + r22, s0 = s21 + s22.

In 1zhord3w) β̆ = 0 for s1 = −α̃−1β̃s2 and (37) has the form(
(α̃p∗ − β̃q∗)r1 + (α̃q∗ + β̃p∗)r2 α̃−1(α̃2 + β̃2)q∗s2 0

−α̃(r21 + r22)q∗s
−1
2 (α̃p∗ + β̃q∗)r1 − (α̃q∗ − β̃p∗)r2 0

)
.

31) p∗ 6= 0. Then for r1 =
(α̃q∗ − β̃p∗) sign p∗

q∗(α̃2 + β̃2)(p2∗ + q2∗)
1/2
, r2 =

(α̃p∗ + β̃q∗)sign p∗

q∗(α̃2 + β̃2)(p2∗ + q2∗)
1/2
, s1 =

β̃

q∗(α̃2 + β̃2)
, s2 = − α̃

q∗(α̃2 + β̃2)
, this is a CF1

5 with u = 2|p∗|(p2∗ + q2∗)
−1/2 (0 < u < 2),

σ = −1.

32) p∗ = 0. Then by the same change we obtain a CF1
2 with σ = −1. �

Remark 7 CF1
3 for u = −1 is not a canonical form according to principle 2. By the

change (9) with r1, r2, s2 = 1, s1 = 0 it may be reduced to a CF1
2 with σ = 1. As is proved

in theorem, for |u| > 1 the system is also reduced to a CF1
3, but with 0 < |u| < 1.

Remark 8 CF1
5 for |u| ≥ 2 is not a canonical form according to principle 3. For u = u∗

and |u∗| = 2 by change (9) with r1 = u−1∗ , s1 = 0, r2 = 1 − u−1∗ , s2 = −1 it is reduced to
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a CF1
3 with u = u−1∗ . And for |u∗| > 2 by change (9) with r1 = 2(u∗± (u2∗− 4)1/2)−1, s1 = 0,

r2 = 1, s2 = −1 it is reduced to a CF1
3 with u = (u∗ ∓ (u2∗ − 4))(u∗ ± (u2∗ − 4)1/2)−1, being

0 < |u| < 1. The form CF1
5 with u = u∗ for −2 < u∗ < 0 by change (13) with r1 = −1,

s2 = 1 is also reduced to a CF1
5 with u = −u∗.

Remark 9 Forms F1
1 =

(
0 u∗ 0

1 1 0

)
and F1

2 =

(
u∗ 1 0

1 0 0

)
with the structure of CF1

5,

which are not listed, are not canonical forms according to principle 3.

The form F1
1 for u∗ ≥ −1/4 by change (9) with r1 = (1− (4u∗ + 1)1/2)(1 + 2u∗ − (4u∗ +

1)1/2)−1, s1 = 0, r2 = 2((4u∗ + 1)1/2 − 1 − 2u∗)
−1, s2 = u−1∗ is reduced to a CF1

3 with
u = 2u∗((4u∗ + 1)1/2 − 1 − 2u∗)

−1 6= 0; for u∗ < −1/4 by change (9) with r1 = −(−u∗)−1/2,
s1 = 0, r2 = (−u∗)−3/2, s2 = −u−1∗ is reduced to a system CF1

5 with u = −(−u∗)−1/2, being
−2 < u < 0.

The form F1
2 with u = u∗ by change (9) with r1 = ((u2∗+ 4)1/2−u∗)/2, s1 = 0, r2 = −1,

s2 = 1 is brought to a system CF1
3 with u = u∗((u

2
∗ + 4)1/2 − u∗)/2− 1 < 0.

Remark 10 The form F1
3 =

(
u 0 0

1 1 0

)
is a CF1

4 for u = 1, and for u 6= 1 it is

not a canonical form according to principle 2. By change (9) with r1, s2 = 1, s1 = 0,
r2 = (u− 1)−1 F1

3 is reduced to a CF1
1.

Remark 11 Every CF1
i (i = 1, 5) by renumbering (14) is brought to CF

1p
i in accordance

with definition 8.

In theorem (3) all the linear invertible changes (9) are given in explicit form. Therefore
the conditions assuring the reduction of system (2) to a corresponding CF1

i , may be written
using coefficients of (25).

Corollary 2 The system (25) in which p1q2 − p2q1 6= 0 by a linear invertible change (9)
is brought to a CF1

i (i = 1, 5), if the following parameters: the coefficient β of P0 (α = 1)
and elements p1, q1, p2, q2 of matrix H satisfy conditions:

CF1
1 : 1) D > 0, 2βp2 + p1 − q2 + σ∗

√
D = 0, then u = λ−11 λ2 6= 0, 1; 2) D > 0,

2q1 − β(p1 − q2 + σ∗
√
D) = 0, then u = λ1λ

−1
2 6= 0, 1; 3) D = 0, q1 = 0, p2 = 0, then u = 1;

CF1
2 : 1) D > 0, p1 + q2 = 0, 2βp2 + 2p1 + σ∗

√
D, 2q1 − β(2p1 + σ∗

√
D) 6= 0, then

σ = 1; 2) D < 0, p1 + q2 = 0, then σ = −1;

CF1
3 : 1) D > 0, p1 + q2 6= 0, 2βp2 + p1− q2 + σ∗

√
D 6= 0, 2q1− β(p1− q2 + σ∗

√
D) 6= 0,

then u = λ−11 λ2 for |λ1| > |λ2|, u = λ1λ
−1
2 for |λ1| < |λ2|, i. e. 0 < |u| < 1; 2) D = 0,

q1 6= 0, 2q1 − βp1 + βq2 6= 0, then u = 1; 3) D = 0, q1 = 0, p2 6= 0, β 6= 0, then u = 1;

CF1
4 : 1) D = 0, q1 6= 0, 2q1 − βp1 + βq2 = 0; 2) D = 0, q1 = 0, p2 6= 0, β = 0;

CF1
5 : D < 0, p1 + q2 6= 0, then u = |p1 + q2|(p1q2 − p2q1)−1/2, 0 < u < 2.

Here D = (p1−q2)2 +4p2q1, λ1 = (p1 +q2 +σ∗
√
D)/2 6= 0, λ2 = (p1 +q2−σ∗

√
D)/2 6= 0,

σ∗ = { sign (p1 − q2) for p1 6= q2; 1 for p1 = q2 }.
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6 Canonical forms of system (2) in case of l = 2

6.1 Linear equivalency of systems for l = 2

Assertion 4 For system (2) the following conditions are equivalent:

1) l = 2, 2) ∃ k : P2 ≡ kP1 (a2 = ka1, b2 = kb1, c2 = kc1), 3) δab, δac, δbc = 0.

Proof 1) ⇔ 2) by definition 5 and proposition 1 .

It is evidently that 2) ⇒ 3). Inversely, let 3) hold. Then, for instance, a1 6= 0. Let
k = a2/a1. Because of a1b2 − a2b1 = 0, b2 = kb1. In much the same way c2 = kc1. �

Assertion 5 For system (2) the condition P2(x) ≡ 0 is invariant with respect to any
change (9) with r2 = 0.

Proof Perform in the system (2)with P2 ≡ 0 a change (9). According to (12) in obtained
system we have (10)

Ã = δ−1

(
s2P1(r1, r2) s2(a1r1s1 + b1δ∗ + c1r2s2) s2P1(s1, s2)

−r2P1(r1, r2) −r2(a1r1s1 + b1δ∗ + c1r2s2) −r2P1(s1, s2)

)
. (38)

If P̃2 ≡ 0, then r2 = 0, because otherwise common factors of P̃1 and P̃2 vanish, i. e.
P̃1 ≡ 0. If r2 = 0, then in (38) P̃2 ≡ 0. �

Assertion 6 Any change (9) with r2 = −s2 6= 0 transforms system (2) with P2(x) ≡ 0

into the system (10) with P̃1 ≡ P̃2.

The assertion 6 immediately follows from (38).

In accordance with assertion 4 for l = 2 there is such k, that in (2) P2 = kP1. Hence
system (2) has one of two forms:

I) b1 ≥ a1c1 :

(
P1

P2

)
= (αx1 + βx2)

(
p1x1 + q1x2
kp1x1 + kq1x2

) (
α2 + β2 6= 0

p21 + q21 6= 0

)
, (39)

i. e. H =

(
p1 q1
kp1 kq1

)
has eigenvalues λ1 = p1 + kq1, λ2 = 0. Thus, (39) is the system (25)

from the case l = 1, with p2 = kp1, q2 = kq2 and detH = δpq = 0.

By following to proposition 2, we assume that in system (39), if α 6= 0, then α = 1
and P0 = x1 + βx2, and if α = 0, then β = 1 and P0 = x2.

II) b21 < a1c1 :

(
P1

P2

)
= (a1x

2
1 + 2b1x1x2 + c1x

2
2)

(
1

k

)
. (40)

Remark 12 The system (39) may be written in the form (40), but the form (39) is more
preferable as it allows us to use results obtained for (25).

Proposition 3 To eliminate an ambiguity appearing when factoring out the linear common
factor P0 from P in system (39) , we arrange for (if it is possible) to factor out such a linear
common factor that in matrix H the eigenvalue λ1 = p1 + kq1 6= 0.
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6.2 Construction of degenerate canonical forms for l = 2

Simplify system (39), following to the scheme of contraction for (25).

By theorem 2 a change (9) brings both system (25) and system (39) to (29) P̃ =〈
(α̃, β̃), y

〉
H̃y, where vector (α̃, β̃) and matrix H̃ are defined in (27), but δp̃q̃ = det H̃ = 0.

Take a change (9) such that in system (29) matrix H̃ become Jordan matrix, which is
possible due to formula (272) .

So, if λ1 = p1 + kq1 6= 0, then change (9) with L1 =

(
1 q1
k −p1

)
, and if λ1 = 0, then

q1 6= 0 and change (9) with L2 =

(
1 0

k q−11

)
transforms system (39) in systems (29) of two

following forms:

α̃ = α + βk, β̃ = αq1 − βp1, H̃ =

(
p1 + kq1 0

0 0

)
or Ã =

(
λ1α̃ λ1β̃ 0

0 0 0

)
;

α̃ = α + βk, β̃ = βq−11 , H̃ =

(
0 1

0 0

)
or Ã =

(
0 α̃ β̃

0 0 0

)
.

(41)

By this means the existence of zero eigenvalue λ2 of H resulted in P̃2 ≡ 0 in systems (41).

Further by change (9) we will simplify as much as possible and normalize systems (411)
and (412), such that the condition P2 ≡ 0 holds. Thereby we reduce the systems to the
canonical forms for which principle 1 is not satisfied.

Taking into account assertion 5 we note that an arbitrary change (9) with r2 = 0 brings
systems (411) and (412) to systems

λ1

(
α̃r1 2α̃s1 + β̃s2 (α̃s1 + β̃s2)s1r

−1
1

0 0 0

)
and

(
0 α̃s2 (α̃s1 + β̃s2)s2r

−1
1

0 0 0

)
. (42)

For l = 2 the concept of degenerate CF naturally comes into existence.

Definition 9 For l = 2 system (2) is said to be degenerate canonical form (DCF2), is it
is a CF2 with respect to definition 7, where principle 1 is substituted for the condition P2 ≡ 0.

Remark 13 A generalized normal form of a system, where DCF2 is the unperturbed part,
is a generalization of the Belitski normal form (see [7], [14]) for the case when the unperturbed
part is degenerate but is not linear.

The LIST of degenerate canonical forms of system (2) in case of l = 2 :

DCF2
1 =

(
1 0 0

0 0 0

)
, DCF2

2 =

(
0 1 0

0 0 0

)
, DCF2

3 =

(
0 0 1

0 0 0

)
,

DCF2
4 =

(
1 1 0

0 0 0

)
, DCF2

5 =

(
1 0 1

0 0 0

)
.

Theorem 4 For l = 2 system (2) of the form (39), (40) by a linear invertible change (9)
is reduced to one of 5 linearly nonequivalent DCF2.
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Proof I) System (2) has the form (39).

1) λ1 = p1 + kq1 6= 0. System (411) is obtained from (39), and system (421) is obtained
from (411).

11) β̃ = 0 (α̃ 6= 0). Then (421) for r1 = (λ1α̃)−1, s1 = 0, s2 = 1 is a DCF2
1.

12) α̃ = 0 (β̃ 6= 0). Then (421) for r1 = 1, s1 = 0, s2 = (λ1β̃)−1 is a DCF2
2.

13) α̃, β̃ 6= 0. Then (421) for r1 = (λ1α̃)−1, s1 = 0, s2 = (λ1β̃)−1 is a DCF2
4.

2) λ1 = p1 + kq1 = 0 (q1 6= 0). Systems (412) and (422) are obtained from (39).

21) α̃ = 0 (β̃ 6= 0). Then (422) for r1 = β̃, s1 = 0, s2 = 1 is a DCF2
3.

22) β̃ = 0 (α̃ 6= 0). Then in system (412) P̃1 = α̃x1x2. By proposition 3 the case 22) is
impossible. Such a situation applies to the case 1).

23) α̃, β̃ 6= 0. Then in (412) P̃1 = (α̃x1 + β̃x2)x2. By proposition 3 the case 23) is
impossible. Such a situation applies to the case 1).

II) System (2) has the form (40).

In accordance with (12) any change (9) brings (2) with P2 = kP1 to a system with
coefficients

ã1 = (s2 − ks1)P1(r1, r2)δ
−1, ã2 = (kr1 − r2)P1(r1, r2)δ

−1,

b̃1 = (s2 − ks1)(a1r1s1 + b1(r1s2 + r2s1) + c1r2s2)δ
−1,

b̃2 = (kr1 − r2)(a1r1s1 + b1(r1s2 + r2s1) + c1r2s2)δ
−1,

c̃1 = (s2 − ks1)P1(s1, s2)δ
−1, c̃2 = (kr1 − r2)P1(s1, s2)δ

−1.

For r2 = kr1 (δ = r1(s2 − ks1) 6= 0) the obtained system has the form(
(a1 + 2b1k + c1k

2)r1 2(a1s1 + kb1s1 + b1s2 + kc1s2) P1(s1, s2)r
−1
1

0 0 0

)
.

For r1 = (a1 + 2b1k + c1k
2)−1, s1 = −(b1 + kc1)(a1 + 2b1k + c1k

2)−1(a1c1 − b21)
−1/2,

s2 = (a1 + kb1)(a1 + 2b1k + c1k
2)−1(a1c1 − b21)−1/2 it is a DCF2

5. �

Remark 14 Forms DF2
1 =

(
0 1 1

0 0 0

)
and DF2

2 =

(
1 0 −1

0 0 0

)
with the structure

of DCF2
5, which are not in the list, are not canonical ones according to principles 2 and 3.

A form DF2
1 by change (9) with r1 = 1, s1 = −1, r2 = 0, s2 = 1 is reduced to a DCF2

2. A
form DF2

2 by change (9) with r1 = 1, s1 = 1/2, r2 = 0, s2 = −1/2 is reduced to a DCF2
4.

Corollary 3 I) A system (39) by a linear invertible change (9) may be brought to a DCF2
i

(i = 1, 4), if the following parameters: coefficients α, β of the common factor P0, elements
p1, q1 of H and the proportionality coefficient k satisfy the conditions:

DCF2
1 : 1) α = 1, q1 = βp1, kq1 6= −p1, 2) α = 0, β = 1, p1 = 0, kq1 6= 0;

DCF2
2 : 1) α = 1, βk = −1, kq1 6= −p1, 2) α = 0, β = 1, p1 6= 0, k = 0;

DCF2
3 : 1) α = 1, βk = −1, kq1 = −p1, 2) α = 0, β = 1, p1 = 0, k = 0;

DCF2
4 : 1) α = 1, βk 6= −1, kq1 6= −p1, q1 6= βp1, 2)α = 0, β = 1, p1 6= 0, k 6= 0, kq1 6= −p1.

II)System (40) by a linear invertible change (9) is brought to a DCF2
5.
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6.3 The construction of main and additional CF for l = 2

Generally speaking, with a view to further normalization of perturbed systems it is unsufficiently
to bring systems (41) and together with them systems (39) or (40) to a DCF2. Principle 1 has
to be hold for a total normalization. Hence we will transform every DCF2

i in a nondegenerate
CF2 by change(9).

Remark 15 A CF2 obtained from a DCF2
i has as a rule more nonzero elements, which

is a reasonable ”pay” for greater opportunities on the further normalization of perturbations.

Remark 16 A specifics of the case l = 2 is such that due to a proportionality
of coefficients in polynomials P1, P2 in systems (39) or (40) principle 1 in the definition
of canonical form is fully applied, i. e. namely for l = 2 the requirement P1 ≡ P2 (k = 1) is
actual. But principle 3 loses its value completely.

The LIST of canonical forms of system (2) in case of l = 2 :

CF2
1 =

(
1 0 0

1 0 0

)
, CF2

2 =

(
1 0 σ

1 0 σ

)
(σ = ±1), CF2

3 =

(
1 −2 1

1 −2 1

)
,

CF2
4 =

(
0 1 0

0 1 0

)
; ACF2

2 =

(
1 −1 0

1 −1 0

)
.

Theorem 5 Every DCF2
i (i = 1, 5) by a linear invertible change (9) is reduced to a CF2.

Proof By using the assertion 6 we will sequentially perform (9) for DCF2
1, . . . ,DCF2

5

with r2 = −s2 6= 0 and select the remaining coefficients such that to obtain a CF2. Let
δ1 = (r1 + s1)

−1.

A DCF2
1 is brought to a system with a1 = r21δ1, b1 = r1s1δ1, c1 = s21δ1 that for r1 = 1,

s1 = 0, r2 = −1, s2 = 1 is a CF2
1.

A DCF2
2 is brought to a system with a1 = −r1s2δ1, 2b1 = s2(r1− s1)δ1, c1 = s1s2δ1 that

for r1 = 1, s1 = 1, r2 = 2, s2 = −2 is a CF2
2 with σ = −1, and for r1 = 1, s1 = 0, r2 = 1,

s2 = −1 is a ACF2
2.

A DCF2
3 is reduced to a system with a1 = s22δ1, b1 = −s22δ1, c1 = s22δ1 that for r1 = 1,

s1 = 1, r2 = −21/2, s2 = 21/2 is a CF2
3.

A DCF2
4 is reduced to a system with a1 = r1(r1 − s2)δ1, 2b1 = (2r1s1 + r1s2 − s1s2)δ1,

c1 = s1(s1 + s2)δ1 which for r1 = 1, s1 = 0, r2 = −1, s2 = 1 is a CF2
4.

A DCF2
5 is reduced to a system with a1 = (r21 + s22)δ1, b1 = (r1s1− s22)δ1, c1 = (s21 + s22)δ1

which for r1 = 1, s1 = 1, r2 = −1 s2 = 1 is a CF2
2 with σ = 1. �

Remark 17 As was proved, DCF2
i are reduced to CF2

i for i = 1, 3, 4. Forms DCF2
2 and

DCF2
5 are reduced to a CF2

2 with σ = −1 and σ = 1 respectively.

Remark 18 The form F2
1 =

(
1 1 0

1 1 0

)
(not in the list) is not a canonical one in accordance

with principle 2. By the change (9) with r1 = 0, s1 = 1/2, r2 = 1, s2 = −1/2 it is reduced to
a DCF2

4.

Remark 19 Forms ACF2
2 and CF2

2 in which σ = −1 are connected by the change (9)
with r1, s1 = −2, r2 = −4, s2 = 0 , not a renumbering. At that a CF2

2 is the main one
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in accordance with principle 5b.

The COMPLETE LIST of the forms having 3,4 and 6 nonzero elements

CF0
1 =

(
1 0 0

0 0 1

)
2

, CF1
1 =

(
u 0 0

0 1 0

)
3

, CF2
1 =

(
1 0 0

1 0 0

)
4

,

CF 1r
1 =

(
0 1 0

0 0 u

)
3

, CF2
4 =

(
0 1 0

0 1 0

)
4

, CF1
2 =

(
0 σ 0

1 0 0

)
5

,

CF 2r
1 =

(
0 0 1

0 0 1

)
4

, CF 1r
2 =

(
0 0 1

0 σ 0

)
5

, CF0
2 =

(
0 0 1

1 0 0

)
6

;

CF0
3 =

(
1 u 0

0 0 1

)
4

, CF1
3 =

(
u 1 0

0 1 0

)
5

, CF1
5 =

(
u −1 0

1 0 0

)
6

,

CF0
4 =

(
u 0 1

0 0 1

)
5

, CF0
5 =

(
u 0 σ

0 1 0

)
6

, CF0
6 =

(
u 0 1

1 0 0

)
7

,

CF 1r
4 =

(
0 1 1

0 0 1

)
6

, F 1r
1 =

(
0 1 1

0 u 0

)
7

, CF0
7 =

(
0 u 1

1 0 0

)
8

;

CF 0r
3 =

(
1 0 0

0 u 1

)
4

, CF 1r
3 =

(
0 1 0

0 1 u

)
5

, CF 1r
5 =

(
0 0 1

0 −1 u

)
6

,

CF 0r
4 =

(
1 0 0

1 0 u

)
5

, CF 0r
5 =

(
0 1 0

σ 0 u

)
6

, CF 0r
6 =

(
0 0 1

1 0 u

)
7

,

CF1
4 =

(
1 0 0

1 1 0

)
6

, F1
1 =

(
0 u 0

1 1 0

)
7

, CF 0r
7 =

(
0 0 1

1 u 0

)
8

;

CF0
8 =

(
u 1 0

0 1 v

)
6

, CF 0r
9 =

(
v 1 0

σ 0 u

)
7

, ACF2
2 =

(
1 −1 0

1 −1 0

)
8

,

ACF0
9 =

(
u 0 σ

0 1 v

)
7

, CF2
2 =

(
1 0 σ

1 0 σ

)
8

, F0
4 =

(
u 0 1

1 v 0

)
9

,

ACF 2r
2 =

(
0 −1 1

0 −1 1

)
8

, F 0r
4 =

(
0 v 1

1 0 u

)
9

, F0
5 =

(
0 u 1

1 v 0

)
10

;

F0
3 =

(
u v 1

0 0 1

)
7

, CF0
10 =

(
1/2 u −1

0 1 0

)
8

, F0
2 =

(
u v 1

1 0 0

)
9

,

F 0r
3 =

(
1 0 0

1 v u

)
7

, CF 0r
10 =

(
0 1 0

−1 u 1/2

)
8

, F 0r
2 =

(
0 0 1

1 v u

)
9

;

CF2
3 =

(
1 −2 1

1 −2 1

)
12

,

here each matrix is marked by a subscript and symmetric forms are underlined.
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Part III

GNF of systems with degenerate CF
in unperturbed part

7 Normalization of systems with DCF2
1

Let in system (1) the unperturbed part P (x) by a linear invertible change be reduced to

the DCF2
1 =

(
1 0 0

0 0 0

)
. We assume at once that system (1) has the form

ẋ1 = x21 +X1(x1, x2), ẋ2 = X2(x1, x2). (43)

Then system (6) may be written as

(s− 3)h
(s−1,p+1−s)
1 = Ŷ

(s,p+1−s)
1 , (s− 1)h

(s−1,p+1−s)
2 = Ŷ

(s,p+1−s)
2 (s = 0, p+ 1; p ≥ 2). (44)

For solvability of system (44) it is necessary and sufficient the following relations were
fulfilled

Ŷ
(0,p+1)
1 = 0, Ŷ

(0,p+1)
2 = 0, Ŷ

(3,p−2)
1 = 0, Ŷ

(1,p)
2 = 0,

being there are no restrictions for coefficients h
(2,p−2)
1 and h

(0,p)
2 in change (9). By using denota-

tion introduced for equations (5) and (7) we rewrite obtained resonance relations via coefficients
of system (4):

Y
(0,p+1)
1 = c̃, Y

(3,p−2)
1 = c̃, Y

(0,p+1)
2 = c̃, Y

(1,p)
2 = c̃. (45)

Theorem 6 The system (43) is formally equivalent to a system (4) with the unperturbed

part P = (y21, 0) iff for any p ≥ 2 coefficients of homogeneous polynomials Y
(p+1)
i satisfy 4

resonance equations (45).

Corollary 4 The set consisting of Y
(0,p+1)
1 , Y

(3,p−2)
1 , Y

(0,p+1)
2 , Y

(1,p)
2 is the unique reso-

nant set.

Theorem 7 A system (43) by a formal change (9) may be reduced to a GNF (4), where

for any p ≥ 2 all the coefficients Y
(p+1)
i (i = 1, 2) are equal to zero, except possibly four

coefficients from a resonance set, i. e. any GNF has the form:

ẏ1 = y22 +
∞∑
p=2

(Y
(0,p+1)
1 yp+1

2 + Y
(3,p−2)
1 y31y

p−2
2 ), ẏ2 =

∞∑
p=2

(Y
(0,p+1)
2 yp+1

2 + Y
(1,p)
2 y1y

p
2).

Remark 20 Any GNF of system (43) has a rigid structure of orders of resonant terms,
which is a distinctive feature of resonant normal forms and as a rule is not fulfilled for generalized
ones.
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8 Normalization of systems with DCF2
2

Let in system (1) the unperturbed part P (x) by a linear invertible change be reduced to

the DCF2
2 =

(
0 1 0

0 0 0

)
. We assume at once that system (1) has the form

ẋ1 = x1x2 +X1(x1, x2), ẋ2 = X2(x1, x2). (46)

Then system (6) is written as the following

(s− 1)h
(s,p−s)
1 − h(s−1,p−s+1)

2 = Ŷ
(s,p+1−s)
1 , sh

(s,p−s)
2 = Ŷ

(s,p+1−s)
2 (s = 0, p+ 1; p ≥ 2). (47)

In the subsystem (472) for s = 0, p+ 1 we have

Ŷ
(0,p+1)
2 = 0, Ŷ

(p+1,0)
2 = 0,

being h
(0,p)
2 is free, and for s = 1, p we have h

(s,p−s)
2 = s−1Ŷ

(s,p−s+1)
2 .

In the subsystem (471) for s = 1 we obtain 0 · h(1,p−1)1 − h(0,p)2 = Ŷ
(1,p+1)
1 . This equation

is uniquely decidable by using h
(0,p)
2 , and h

(1,p−1)
1 remains free. For s = 0, 2, p system (471)

is decidable by using coefficients h
(s,p−s)
1 . For s = p+ 1 we have the relation

pŶ
(p+1,0)
1 + Ŷ

(p,1)
2 = 0.

By using denotations introduced for equations (5) and (7), we rewrite obtained resonant
relations via coefficients of system (4):

Y
(p+1,0)
2 = c̃, Y

(0,p+1)
2 = c̃, pY

(p+1,0)
1 + Y

(p,1)
2 = c̃. (48)

Theorem 8 A system (46) is formally equivalent to a system (4) with the unperturbed

part P = (y1y2, 0) iff for any p ≥ 2 coefficients of homogeneous polynomials Y
(p+1)
i satisfy

resonance equations (48).

Corollary 5 There are two resonance sets containing Y
(0,p+1)
2 , Y

(p+1,0)
2 and either Y

(p+1,0)
1

or Y
(p,1)
2 .

Theorem 9 A system (46) by a formal change (9) may be brought to a GNF (4), where for

any p ≥ 2 all the coefficients Y
(p+1)
i (i = 1, 2) are equal to zero, except possibly 3 coefficients

of one of two resonance sets, i. e. any GNF has one of two following structures:

ẏ1 = y22 +
∞∑
p=2

Y
(p+1,0)
1 yp+1

1 , ẏ2 =
∞∑
p=2

(Y
(0,p+1)
2 yp+1

2 + Y
(p+1,0)
2 yp+1

1 );

ẏ1 = y22, ẏ2 =
∞∑
p=2

(Y
(0,p+1)
2 yp+1

2 + Y
(p,1)
2 yp1y2 + Y

(p+1,0)
2 yp+1

1 ).
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9 Normalization of systems with DCF2
3

Let in a system (1) the unperturbed part P (x) by a linear invertible change be reduced to

the DCF2
3 =

(
0 0 1

0 0 0

)
. We assume at once that system (1) has the form

ẋ1 = x22 +X1(x1, x2), ẋ2 = X2(x1, x2). (49)

Then system (6) may be written in the form

(s+ 1)h
(s+1,p−s−1)
1 − 2h

(s,p−s)
2 = Ŷ

(s,p+1−s)
1 , (s+ 1)h

(s+1,p−s−1)
2 = Ŷ

(s,p+1−s)
2 (s = 0, p+ 1). (50)

In the subsystem (502) for s = p, p+ 1 we have relations

Ŷ
(p,1)
2 = 0, Ŷ

(p+1,0)
2 = 0,

and for s = 0, p− 1 we obtain h
(s+1,p−s−1)
2 = (s+ 1)−1Ŷ

(s,p+1−s)
2 , being h

(0,p)
2 is free.

In the subsystem (501) for s = p, p+ 1 there are relations

Ŷ
(p+1,0)
1 = 0, Ŷ

(p,1)
1 + 2h

(p,0)
2 = 0,

where h
(p,0)
2 = p−1Ŷ

(p−1,2)
2 , i. e. the second relation has the form pŶ

(p,1)
1 + 2Ŷ

(p−1,2)
2 = 0.

Components h
(0,p)
1 and h

(0,p)
2 are free because they are not contained in system (50).

By using denotations introduced for equations (5) and (7), we rewrite obtained resonance
relations via coefficients of system (4):

Y
(p+1,0)
1 = c̃, Y

(p,1)
2 = c̃, Y

(p+1,0)
2 = c̃, pY

(p,1)
1 + 2Y

(p−1,2)
2 = c̃. (51)

Theorem 10 A system (49) is formally equivalent to a system (4) with the unperturbed

part P = (y22, 0) iff for any p ≥ 2 coefficients of homogeneous polynomials Y
(p+1)
i satisfy 4

resonant equations (51).

Corollary 6 There are two resonance sets containing Y
(p+1,0)
1 , Y

(p,1)
2 , Y

(p+1,0)
2 and either

Y
(p,1)
1 or Y

(p−1,2)
2 .

Theorem 11 A system (49) by a formal change (9) may be reduced to a GNF (4), where for

any p ≥ 2 all the coefficients Y
(p+1)
i (i = 1, 2) are equal to zero, except possibly 4 coefficients

from one of two resonance sets, i. e. any GNF has one of two structures:

ẏ1 = y22 +
∞∑
p=2

(Y
(p+1,0)
1 yp+1

1 + Y
(p,1)
1 yp1y2), ẏ2 =

∞∑
p=2

(Y
(p,1)
2 yp1y2 + Y

(p+1,0)
2 yp+1

1 );

ẏ1 = y22 +
∞∑
p=2

Y
(p+1,0)
1 yp+1

1 , ẏ2 =
∞∑
p=2

(Y
(p−1,2)
2 yp−11 y22 + Y

(p,1)
2 yp1y2 + Y

(p+1,0)
2 yp+1

1 ).
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10 Normalization of systems with DCF2
4

Let in a system (1) the unperturbed part P (x) by a linear invertible change be reduced to

the DCF2
4 =

(
1 1 0

0 0 0

)
. We assume at once that system (1) has the form

ẋ1 = x21 + x1x2 +X1(x1, x2), ẋ2 = X2(x1, x2). (52)

Then system (6) is written in the form

(s− 3)h
(s−1,p−s+1)
1 + (s− 1)h

(s,p−s)
1 − h(s−1,p−s+1)

2 = Ŷ
(s,p+1−s)
1 ,

(s− 1)h
(s−1,p−s+1)
2 + sh

(s,p−s)
2 = Ŷ

(s,p+1−s)
2 (s = 0, p+ 1; p ≥ 2).

(53)

In subsystem (532) for s = 0 we have the relation

Ŷ
(0,p+1)
2 = 0,

being h
(0,p)
2 is free. For s = 1, p from (532) coefficients h

(s,p−s)
2 = s−1

∑s
j=1(−1)s−jŶ

(j,p+1−j)
2

are uniquely determined.

The last equation in (532) has the form: ph
(p, 0)
2 = Ŷ

(p+1,0)
2 .

Substituting in the equation h
(p, 0)
2 , we obtain the second relation

p+1∑
j=1

(−1)jŶ
(j,p+1−j)
2 = 0.

Substituting h
(s,p−s)
2 from (532) in (531), we obtain the system

ash
(s−1,p−s+1)
1 + bsh

(s,p−s)
1 = Y̆

(s,p+1−s)
1 (s = 0, p+ 1), (54)

where as = s− 3, bs = s− 1, Y̆
(s,p+1−s)
1 = Ŷ

(s,p+1−s)
1 + h

(s−1,p−s+1)
2 .

Take last p− 1 equations of (54) and form a new subsystem

Θh1 = Y̆ ,

where Θ =



0 b3 0 . . . 0 0

0 a4 b4 . . . 0 0

0 0 a5 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . bp−1 0

0 0 0 . . . ap bp
0 0 0 . . . 0 ap+1


– bidiagonal (p − 1) - matrix, vectors

h1 = (h
(2,p−2)
1 , . . . , h

(p,0)
1 ), Y̆ = (Y̆

(3,p−2)
1 , . . . , Y̆

(p+1,0)
1 ).

By the Gauss method this system may be transformed in the system

Θgh1 = Yg, (55)

where Θg = diag {0, a4, . . . , ap+1}, vector Yg = (Y
(3,p−2)
g , . . . , Y

(p+1,0)
g ) has components

Y
(p+1,0)
g = Y̆

(p+1,0)
1 , Y

(s,p+1−s)
g = Y̆

(s,p+1−s)
1 − a−1s+1bsY

(s+1,p−s)
g .
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It is clear that Y
(s,p+1−s)
g = (s− 2)−1

∑p
j=s−1(−1)j−s+1(j − 1)Y̆

(j+1,p−j)
1 (s = p+ 1, 3).

For s = p+ 1, 4 system (55) is uniquely decidable with respect to coefficients

h
(p,0)
1 , . . . , h

(3,p−3)
1 , and its first equation (s = 3) has the form: 0 · h(2,p−2)1 = Y

(3,p−2)
g , and

the term h
(2,p−2)
1 is free.

Substituting into this equations expressions for Y
(3,p−2)
g , Y̆

(j+1,p−j)
1 , h

(j,p−j)
2 , we obtain:

p∑
j=2

(−1)j(j − 1)Ŷ
(j+1,p−j)
1 +

p∑
j=2

(−1)j
j − 1

j

j∑
k=1

(−1)j−kŶ
(k,p+1−k)
2 = 0

or the resonance relation
p∑
j=2

(−1)j(j − 1)Ŷ
(j+1,p−j)
1 +

p∑
j=1

(−1)j
p−1∑
k=j−1

k

k + 1
Ŷ

(j,p+1−j)
2 = 0.

First 3 equations of (54) have the form:

−h(0,p)1 = Ŷ
(0,p+1)
1 , −2h

(0,p)
1 = Ŷ

(1,p)
1 + h

(0,p)
2 , −h(1,p−1)1 + h

(2,p−2)
1 = Ŷ

(2,p+1)
1 + h

(1,p−1)
2 .

We uniquely find h
(0,p)
1 from the first equation and using free h

(0,p)
2 uniquely decide the

second equation. In the third equation either h
(1,p−1)
1 or h

(2,p−2)
1 is free. Using introduced

denotations for (5) and (7) we rewrite obtained resonance relations via coefficients of (4):

Y
(0,p+1)
2 = c̃,

p+1∑
j=1

(−1)jY
(j,p+1−j)
2 = c̃,

p∑
j=2

(−1)j(j − 1)Y
(j+1,p−j)
1 +

p∑
j=1

(−1)j
p−1∑
k=j−1

k

k + 1
Y

(j,p+1−j)
2 = c̃.

(56)

Theorem 12 A system (52) is formally equivalent to (4) with the unperturbed part P =

(y21 + y1y2, 0) iff for any p ≥ 2 coefficients of homogeneous polynomials Y
(p+1)
i (i = 1, 2)

satisfy 3 resonance equations (56).

Corollary 7 Any resonance set contains 3 coefficients:

1) the coefficient Y
(0,p+1)
2 , 2) any coefficient of Y

(s,p+1−s)
2 (1 ≤ s ≤ p+ 1),

3) any coefficient of Y
(s,p+1−s)
1 (3 ≤ s ≤ p+1) or any coefficient of Y

(s,p+1−s)
2 (1 ≤ s ≤ p+1)

which is differ from the coefficient selected in 2), except Y
(1,p)
2 and Y

(2,p−1)
2 which can not be

in a resonance set simultaneously , because for them det Υp = 0.

Theorem 13 A system (52) by a formal change (9) may be transformed in GNF (4),

where for any p ≥ 2 all the coefficients Y
(p+1)
i (i = 1, 2) are equal to zero, except possibly 3

coefficients from a resonance set.

Example 1 A system (52) by a formal change (9) may be reduced to GNF (4), where in
the first equation there is no perturbation term:

ẏ1 = y21 + y1y2, ẏ2 =
∞∑
p=2

(Y
(0,p+1)
2 yp+1

2 + Y
(1,p)
2 y1y

p
2 + Y

(3,p−2)
2 y31y

p−2
2 ).

It should be noted that there is no GNF in which we could annul ys2 (s ≤ 3), because any

resonant set contains either Y
(s,p+1−s)
1 or Y

(s,p+1−s)
2 with s ≥ 3.
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11 Normalization of systems with DCF2
5

Let in a system (1) the unperturbed part P (x) by a linear invertible change be reduced to

the DCF2
5 =

(
1 0 1

0 0 0

)
. We assume at once that the system (1) has the form

ẋ1 = x21 + x22 +X1(x1, x2), ẋ2 = X2(x1, x2). (57)

Then system (6) is written in the form

(s− 3)h
(s−1,p+1−s)
1 + (s+ 1)h

(s+1,p−1−s)
1 − 2h

(s,p−s)
2 = Ŷ

(s,p+1−s)
1 ,

(s− 1)h
(s−1,p+1−s)
2 + (s+ 1)h

(s+1,p−1−s)
2 = Ŷ

(s,p+1−s)
2 (s = 0, p+ 1; p ≥ 2).

(58)

Depending on the parity of the index s system (58) decomposes in two independent
subsystems. Hence it is conveniently to consider following expansions:

p = 2r + µ (r ≥ 1, µ ∈ {0, 1}), s = 2τ + µ+ ν (−(ν + µ)/2 ≤ τ ≤ r, ν ∈ {0, 1}).

As a consequence of it, for any r ≥ 1, µ ∈ {0, 1} system (58) has the form:

(2τ + µ+ ν − 3)h
(2τ+µ+ν−1,2(r−τ)+1−ν)
1 + (2τ + µ+ ν + 1)h

(2τ+µ+ν+1,2(r−τ)−1−ν)
1 −

−2h
(2τ+µ+ν,2(r−τ)−ν)
2 = Ŷ

(2τ+µ+ν,2(r−τ)+1−ν)
1 ,

(2τ + µ+ ν − 1)h
(2τ+µ+ν−1,2(r−τ)+1−ν)
2 + (2τ + µ+ ν + 1)h

(2τ+µ+ν+1,2(r−τ)−1−ν)
2 =

= Ŷ
(2τ+µ+ν,2(r−τ)+1−ν)
2 .

(58µ)

Taking in (58µ1) ν = 1 and in (58µ2) ν = 0, and then vice versa, for any p = 2r+µ from
system (58µ) we obtain two independent systems

(2τ + µ− 2)h
(2τ+µ,2(r−τ))
1 + (2τ + µ+ 2)h

(2τ+µ+2,2(r−τ)−2)
1 − 2h

(2τ+µ+1,2(r−τ)−1)
2 =

= Ŷ
(2τ+µ+1,2(r−τ))
1 (−(1 + µ)/2 ≤ τ ≤ r),

(2τ + µ− 1)h
(2τ+µ−1,2(r−τ)+1)
2 + (2τ + µ+ 1)h

(2τ+µ+1,2(r−τ)−1)
2 = Ŷ

(2τ+µ,2(r−τ)+1)
2

(0 ≤ τ ≤ r);

(59)

(2τ + µ− 3)h
(2τ+µ−1,2(r−τ)+1)
1 + (2τ + µ+ 1)h

(2τ+µ+1,2(r−τ)−1)
1 − 2h

(2τ+µ,2(r−τ))
2 =

= Ŷ
(2τ+µ,2(r−τ)+1)
1 (0 ≤ τ ≤ r),

(2τ + µ)h
(2τ+µ,2(r−τ))
2 + (2τ + µ+ 2)h

(2τ+µ+2,2(r−τ)−2)
2 = Ŷ

(2τ+µ+1,2(r−τ))
2

(−(1 + µ)/2 ≤ τ ≤ r).

(60)

1) Investigation of system (59) for µ = 0 and system (60) for µ = 1.

A system (59) for µ = 0 and a system (60) for µ = 1 have the form

(2τ − 2)h
(2τ,2(r−τ)+µ)
1 + (2τ + 2)h

(2τ+2,2(r−τ)−2+µ)
1 − 2h

(2τ+1,2(r−τ)−1+µ)
2 = Ŷ

(2τ+1,2(r−τ)+µ)
1

(0 ≤ τ ≤ r),

(2(τ + µ)− 1)h
(2(τ+µ)−1,2(r−τ)+1−µ)
2 + (2(τ + µ) + 1)h

(2(τ+µ)+1,2(r−τ)−1−µ)
2 =

= Ŷ
(2(τ+µ),2(r−τ)+1−µ)
2 (−µ ≤ τ ≤ r).

(61)

Electronic Journal. http://www.math.spbu.ru/diffjournal 79



Differential Equations and Control Processes, N 4, 2010

For τ = −µ, r − 1 coefficients

h
(2(τ+µ)+1,2(r−τ)−1−µ)
2 =

1

2(τ + µ) + 1

τ+µ∑
j=0

(−1)τ−j+µŶ
(2j,2(r−j)+1+µ)
2

are uniquely determined from (612).

The last equation in (612) has the form: (2(r + µ)− 1)h
(2(r+µ)−1,1−µ)
2 = Ŷ

(2(r+µ),1−µ)
2 .

By substituting h
(2(r+µ)−1,1−µ)
2 into this equation we obtain the resonance relation

r+µ∑
j=0

(−1)jŶ
(2j,2(r−j)+1+µ)
2 = 0. (62)

By substituting h
(2τ+1,2(r−τ)−1+µ)
2 from (612) into (611) we have the system

aτh
(2τ,2(r−τ)+µ)
1 + bτh

(2τ+2,2(r−τ)−2+µ)
1 = Y̆

(2τ+1,2(r−τ)+µ)
1 (τ = 0, r), (63)

where aτ = 2τ − 2, bτ = 2τ + 2, Y̆
(2τ+1,2(r−τ)+µ)
1 = Ŷ

(2τ+1,2(r−τ)+µ)
1 + 2h

(2τ+1,2(r−τ)−1+µ)
2 .

Select last r equations in system (63)and form a subsystem

Θh1 = Y̆ ,

where Θ =



0 b1 0 . . . 0 0

0 a2 b2 . . . 0 0

0 0 a3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . ar−1 br−1
0 0 0 . . . 0 ar


– bidiagonal (r × r) - matrix, vectors h1 =

(h
(2,2r−2+µ)
1 , . . . , h

(2r,µ)
1 ), Y̆ = (Y̆

(3,2r−2+µ)
1 , . . . , Y̆

(2r+1,µ)
1 ).

By the Gauss method this system may be transformed in the system

Θgh1 = Yg, (64)

where Θg = diag {0, a2, . . . , ar}, vector Yg = (Y
(3,2r−2+µ)
g , . . . , Y

(2r+1,µ)
g ) has compo-

nents Y
(2r+1,µ)
g = Y̆

(2r+1,µ)
1 , Y

(2τ+1,2(r−τ)+µ)
g = Y̆

(2τ+1,2(r−τ)+µ)
1 − a−1τ+1bτY

(2τ+3,2(r−τ)−2+µ)
g

(τ = r − 1, 1).

It is clear that Y
(2τ+1,2(r−τ)+µ)
g = τ−1

∑r
j=τ (−1)j−τjY̆

(2j+1,2(r−j)+µ)
1 (τ = r, 1).

For τ = r, 2 system (64) is uniquely decidable with respect to coefficients

h
(4,2r−4+µ)
1 , . . . , h

(2r,µ)
1 , and its first equation has the form 0 · h(2,2r−2+µ)1 = Y

(3,2r−2+µ)
g , be-

ing h
(2,2r−2+µ)
1 is free. Substituting in this equation formulas for Y

(3,p−2+µ)
g , Y̆

(2j+1,2(r−j)+µ)
1 ,

h
(2j+1,2(r−j)−1+µ)
2 , we obtain:

r∑
j=1

(−1)j−1jŶ
(2j+1,2(r−j)+µ)
1 + 2

r−1+µ∑
j=1

j

2j + 1

j∑
k=0

(−1)k+1Ŷ
(2k,2(r−k)+1+µ)
2 = 0

Electronic Journal. http://www.math.spbu.ru/diffjournal 80



Differential Equations and Control Processes, N 4, 2010

or the resonance relation

r∑
j=1

(−1)j−1jŶ
(2j+1,2(r−j)+µ)
1 + 2

r−1+µ∑
j=0

(−1)j+1Ŷ
(2j,2(r−j)+1+µ)
2

r−1∑
k=j

k

2k + 1
= 0. (65)

The first equation in (63) has the form:

−2h
(0,2r+µ)
1 + 2h

(2,2r−2+µ)
1 = Y̆

(1,2r+µ)
1 .

It is evidently decidable and the coefficient h
(0,2r+µ)
1 (or h

(2,2r−2+µ)
1 ) is free.

2) Investigation of system (59) for µ = 1 and system (60) for µ = 0.

The system (60) for µ = 0 and the system (59) for µ = 1 have the form

(2(τ + µ)− 3)h
(2(τ+µ)−1,2(r−τ)+1−µ)
1 + (2(τ + µ) + 1)h

(2(τ+µ)+1,2(r−τ)−1−µ)
1 −

−2h
(2(τ+µ),2(r−τ)−µ)
2 = Ŷ

(2(τ+µ),2(r−τ)+1−µ)
1 (−µ ≤ τ ≤ r),

2τh
(2τ,2(r−τ)+µ)
2 + (2τ + 2)h

(2τ+2,2(r−τ)−2+µ)
2 = Ŷ

(2τ+1,2(r−τ)+µ)
2 (0 ≤ τ ≤ r).

(66)

For τ = 0, r − 1 from the subsystem (662) coefficients h
(2τ+2,2(r−τ)−2+µ)
2 = (2τ + 2)−1×∑τ

j=0(−1)τ−jŶ
(2j+1,2(r−j)+µ)
2 are uniquely found and the coefficient h

(0,2r+µ)
2 is free.

The last equation in (662) has the form: 2rh
(2r,µ)
2 = Ŷ

(2r+1,µ)
2 .

Substituting in it obtained h
(2r,µ)
2 , we have the resonance relation

r∑
j=0

(−1)jŶ
(2j+1,2(r−j)+µ)
2 = 0. (67)

Further we substitute h
(2τ+2,2(r−τ)−2+µ)
2 from (662) in (661) and obtain the system

aτh
(2(τ+µ)−1,2(r−τ)+1−µ)
1 + bτh

(2(τ+µ)+1,2(r−τ)−1−µ)
1 = Y̆

(2(τ+µ),2(r−τ)+1−µ)
1 (τ = −µ, r), (68)

where aτ = 2(τ + µ) − 3, bτ = 2(τ + µ) + 1, Y̆
(2(τ+µ),2(r−τ)+1−µ)
1 = Ŷ

(2(τ+µ),2(r−τ)+1−µ)
1 +

2h
(2(τ+µ),2(r−τ)−µ)
2 .

Take last r + µ equations of system (68)and form the subsystem

Θh1 = Y̆ ,

where Θ =



a1−µ b1−µ 0 . . . 0 0

0 a2−µ b2−µ . . . 0 0

0 0 a3−µ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . ar−1 br−1
0 0 0 . . . 0 ar


– bidiagonal (r+µ) - matrix, vectors h1 =

(h
(1,2r−1+µ)
1 , . . . , h

(2(r+µ)−1,1−µ)
1 ), Y̆ = (Y̆

(2,2r−1+µ)
1 , . . . , Y̆

(2(r+µ),1−µ)
1 ).
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This system is uniquely decidable because the coefficients on principal diagonal satisfy
conditions aτ = 2(τ + µ)− 3 6= 0 (τ = 1− µ, r).

The first equation in (68) (τ = −µ) has the form: h
(1,2r−1+µ)
1 = Ŷ

(0,2r+1+µ)
1 + 2h

(0,2r+µ)
2

and is uniquely decidable by using the free coefficient h
(0,2r+µ)
2 .

By using denotations introduced for equations (5) and (7), we rewrite obtained resonance
relations (65), (62), (67) for µ = 0 and µ = 1 via coefficients of system (4):

r∑
j=1

(−1)j−1jY
(2j+1,2(r−j))
1 + 2

r−1∑
j=0

(−1)j+1Y
(2j,2(r−j)+1)
2

r−1∑
k=j

k

2k + 1
= c̃,

r∑
j=0

(−1)jY
(2j,2(r−j)+1)
2 = c̃;

r∑
j=0

(−1)jY
(2j+1,2(r−j))
2 = c̃ (µ = 0);

(69)

r∑
j=1

(−1)j−1jY
(2j+1,2(r−j)+1)
1 + 2

r∑
j=0

(−1)j+1Y
(2j,2(r−j)+2)
2

r∑
k=j

k

2k + 1
= c̃,

r+1∑
j=0

(−1)jY
(2j,2(r−j)+2)
2 = c̃;

r∑
j=0

(−1)jY
(2j+1,2(r−j)+1)
2 = c̃ (µ = 1).

(70)

Theorem 14 A system (57) is formally equivalent to a system (4) with the unperturbed
part P (y21 + y22, 0) iff for any p = 2r + µ (r ≥ 1, µ ∈ {0, 1}) coefficients of homogeneous

polynomials Y
(p+1)
i (i = 1, 2) satisfy 3 resonance relations, namely:

1) for p = 2r (r ≥ 1, µ = 0) coefficients Y
(2τ+1,2(r−τ))
1 (1 ≤ τ ≤ r), Y

(2τ,2(r−τ)+1)
2

(0 ≤ τ ≤ r) satisfy equations (691), (692), and coefficients Y
(2τ+1,2(r−τ))
2 (0 ≤ τ ≤ r) satisfy

equation (693);

2) for p = 2r + 1 (r ≥ 1, µ = 1) coefficients Y
(2τ+1,2(r−τ)+1)
1 (1 ≤ τ ≤ r), Y

(2τ,2(r−τ)+2)
2

(0 ≤ τ ≤ r + 1) satisfy equations (701), (702), coefficients Y
(2τ+1,2(r−τ)+1)
2 (0 ≤ τ ≤ r)

satisfy equation (703).

Corollary 8 Any resonance set contains 3 coefficients.

For p = 2r (r ≥ 1, µ = 0) these coefficients are the following:

1) any one of Y
(2τ,2(r−τ)+1)
2 (0 ≤ τ ≤ r); 2) any one of Y

(2τ+1,2(r−τ))
2 (0 ≤ τ ≤ r);

3) any one of Y
(2τ+1,2(r−τ))
1 (1 ≤ τ ≤ r) or any one of Y

(2τ,2(r−τ)+1)
2 (0 ≤ τ ≤ r) which is

differ from the coefficient selected in 1), except the pair Y
(0,2r+1)
2 and Y

(2,2r−1)
2 that can not be

in the resonance set simultaneously, because for them det Υp = 0.

For p = 2r + 1 (r ≥ 1, µ = 1) the resonance set contains the following coefficients:

1) any one of Y
(2τ,2(r−τ)+2)
2 (0 ≤ τ ≤ r + 1); 2) any one of Y

(2τ+1,2(r−τ)+1)
2 (0 ≤ τ ≤ r);

3) any one of Y
(2τ+1,2(r−τ)+1)
1 (1 ≤ τ ≤ r) or any one of Y

(2τ,2(r−τ)+2)
2 (0 ≤ τ ≤ r+ 1) which

is differ from the coefficient selected in 1), except the pair Y
(0,2r+2)
2 and Y

(2,2r)
2 that can not

be in the resonance set simultaneously, because for them det Υp = 0.

Theorem 15 An arbitrary system (57) by a formal change (9) may be transformed in

a GNF (4), where for any p ≥ 2 all the coefficients Y
(p+1)
i (i = 1, 2) equal zero, except

possibly 3 coefficients from a resonance set described in corollary 8.
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Example 2 A system (57) by a formal change (9) may be reduced to a GNF (4) that is
linear in y2 :

ẏ1 = y21 + y1y2 +
∞∑
r=1

(Y
(2r+1,0)
1 + Y

(2r+1,1)
1 y2)y

2r+1
1 ,

ẏ2 =
∞∑
r=1

(Y
(2r+1,0)
2 y1 + Y

(2r+2,0)
2 y21 + Y

(2r,1)
2 y2 + Y

(2r+1,1)
2 y1y2)y

2r
1 .

Part IV

Conclusion

As was mentioned in part I, normalization of a real system (1) ẋi = Pi(x) + Xi(x), where

Pi = aix
2
1 + 2bix1x2 + cix

2
2 is the unperturbed part, Xi =

∑∞
p=2X

(p+1)
i (x) – the perturbation,

X
(r)
i is a homogeneous polynomial by the order r (i = 1, 2), is naturally divides into 2 phase.

I) On the first phase by using linear invertible changes (9) we simplify the unperturbed
part of system (1), i. e. the vector of homogeneous quadratic polynomial P = (P1, P2).

In part II the set of systems (2) is divided into 19 linearly nonequivalent classes. For
each class canonical form (see definition 7) is the simplest representative, being the form is an
analogue to a Jordan matrix for linear systems.

Depending on the order l of the common factor of polynomials P1 and P2 (see definition
5) the set of canonical forms is divided into 3 subsets.

It is turned out that if P1 and P2 do not have a common factor (l = 0), (and
according to assertion 1 this is equivalent to the fact that corresponding them resultant
R 6= 0 ), then system (2) may be brought to one of 10 canonical forms: CF0

1 – CF0
10.

If P1 and P2 have a common factor of the first order, then system (2) is reduced to one
of 5 canonical forms: CF1

1 – CF1
5. At last, if P1 and P2 are proportional (l = 2), then

system (2) is reduced to one of 4 canonical forms: CF2
1 – CF2

4.

We consider two questions in detail.

1) The renumbering (14) brings any CFli (of course, if the form is not invariant with respect
to this change) to an additional canonical form CF lr

i (see definition 8) for which principle 5
from the definition of CF is not hold.

And for l = 2 there exists another variant of additional CF: ACF2
2 in accordance with re-

mark 19 is obtained from a CF2
2 with σ = −1 by a linear change differing from the renumbering

and has its own ACF 2r
2 .

2) In case of l = 2 if we divide CF2
2 into two forms depending on the sign of σ, then every

of 5 CF2 is linearly equivalent to its degenerate CF (see definition 9). The advantage of DCF2

is that it has the index lesser than corresponding CF2 . That easily allows us to investigate
GNF of systems (1) with DCF2 in unperturbed part. But the absence of P2 does not allow us
to annul some summands in the perturbation, which is possible for nondegenerate CF if there
are technical tools.
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II) The second phase implies that for a system (1) with the unperturbed part CFl or
DCF2 to obtain all the generalized normal forms ( see definition 4) in explicit form by almost
identical change of variables (3).

In part III this problem has been solved for systems with DCF2
1, . . . ,DCF2

5 in unperturbed
part.

Since before this article the classification of canonical forms introduced in [2, § 2],
where principles 5 and 6 of the definition of canonical forms were not clearly formulated,
we consider results for other CFli or their close analogs.

In case of l = 0 systems (1) with the following 4 forms: with CF0
1 =

(
1 0 0

0 0 1

)
–

in [2, § 6], with CF0
2 =

(
0 0 1

1 0 0

)
– in [4, § 11], with CF0∗

4 =

(
1 0 u∗
0 0 1

)
differing

from CF0
4 =

(
u 0 1

0 0 1

)
by a normalization – in [2, § 6], with CF0

5 =

(
u 0 σ

0 1 0

)
, where

σ = −signu (R < 0), – in [5, § 12] (unfortunately, CF0
5 with R > 0 have not been revealed

yet) were investigated previously.

In case of l = 1 systems (1) with the following 4 forms: with CF1
1 =

(
u 0 0

0 1 0

)
–

in [2, § 5], with CF1
2 =

(
0 σ 0

1 0 0

)
– in [3, § 8], with CF1

3 =

(
u 1 0

0 1 0

)
, including u = −1,

– in [3, § 7], with CF1
4 =

(
1 0 0

1 1 0

)
– in [4, § 9] were investigated previously.

Thus, on one of cases two sets of formally equivalent GNF have been obtained. In the first
set the unperturbed part is presented by a CF1

2 with σ = 1, and in the second one – by a form
CF1

3, but with u = −1, and in accordance with remark 7 these CF are linearly equivalent.

In case of l = 2 systems (1) with the following 3 forms: with CF2
1 =

(
1 0 0

1 0 0

)
–

in [2, § 4], with ACF2∗
2 =

(
−1 −1 0

1 1 0

)
differing from ACF2

2 =

(
1 −1 0

1 −1 0

)
by

a normalization – in [4, § 10], with CF2
4 =

(
0 1 0

0 1 0

)
– in [2, § 3].

In this situation in 3 cases two sets of formally equivalent GNF were obtained. By theorem 5
DCF2

i is linear equivalent to a CF2
i (i = 1, 3, 4), DCF2

2 is equivalent to a CF2
2 with σ = −1

(and ACF2
2), and DCF2

5 is equivalent CF2
2 with σ = 1.

We also note that system (1) investigated in [4, § 10] is up to the present the unique system
in which the unperturbed part has 4 nonzero summands (ACF2∗

2 ).
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