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Abstract

We consider the unsteady free convection flow of an electrically conducting fluid near
a vertical plate undergoing impulsive motion. The fluid is assumed to be radiating, and
subjected to an externally applied magnetic field. Using the well-known Rosseland ap-
proximation for the radiative heat transfer, the boundary layer equations governing the
flow have been solved analytically. The solutions have been obtained corresponding to
constant temperature as well as constant heat flux conditions at the plate. There arise four
non-dimensional parameters, whose influence on the velocity profiles have been discussed.

1 Introduction

Hydromagnetic boundary layer flows are known to have applications in various
industrial and technological fields. Accordingly, a number of analytical studies
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has been carried out in the past to understand the dynamics of electrically
conducting viscous fluids. Omne of the key aspects of such flows stems from
the likely response of the boundary layer to externally applied forces due to
gravity and magnetic fields. Such forces are known to play dominant roles
in the flow control and design of equipments. In the case of unsteady free
convection flows of electrically conducting fluids near an infinite vertical plate,
several analytical investigations have been reported in the literature [1-5] to
account for the influence of viscous, bouyancy and magnetic forces, subject to
a variety of boundary conditions for velocity and surface temperature.

It is known that the inclusion of radiation effects, due to specific fluid prop-
erties, is not only essential but also quite important in applications such as high
temperature processing and space technology. In this regard, some studies have
been carried out in literature to take account of radiative heat transfer in the
fluid dynamical equations connecting velocity and temperature of a viscous fluid
[6-9]. These studies do not take into account the interaction between applied
magnetic field and radiation on the boundary layer flow of conducting viscous
fluids. In the present work, we have thus discussed developing free convection
flow of an electrically conducting and radiating fluid past an infinite vertical
rigid plate due to impulsive motion of the boundary. To facilitate the analytical
treatment of the governing equations, we have resorted to the usual Boussinesq
approximation for density variation, and Rosseland approximation [10, 11] for
the radiative heat transfer. In this paper, the solutions corresponding to two
cases of thermal conditions at the vertical plate have been obtained. The condi-
tions considered are: (i) uniform plate temperature, and (ii) constant heat flux
at the plate. The effects of radiation as well as other processes parametrised by
the Prandtl, Grashoff and Hartmann numbers, have been brought out in our
study.

2 (Governing equations

The flow situation corresponds to unsteady two-dimensional flow of an infinite
extent of incompressible, electrically conducting and radiating fluid past an
infinite vertical rigid plate which is assumed to be non-conducting. With respect
to an arbitrary origin O, the z'-axis is taken along the wall in the upward
direction, and the 1/-axis is taken normal to it into the fluid. The flow takes
place due to impulsive motion of the plate in its own plane, and it is assumed
that an external magnetic field of constant strength, B,, is applied in the y/'-
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direction. Our analysis in this work pertains to the case of magnetic field being
fixed relative to the fluid, rather than the plate. Under the assumptions of
Boussinesq and Rosseland approximations, the unsteady flow of a radiative
fluid will be governed by the equations

ou’ 0%/ o B2
o = Vay/Q +gB8(T' —T.) — Tyu' (1)
or  k 0T’ 16ar O T’?’a—Tl 5
ot pc, Oy?  3a oy’ oy’ 2)
» OY RPCp OY Yy

where v’ is the only non-zero velocity component in the 2’ direction, T" is the
fluid temperature, T the free-stream temperature, g the acceleration due to
gravity, 8 the volumetric coefficient, v the kinematic viscosity, p the density, k&
the thermal conductivity, ¢, the specific heat of the fluid at constant pressure,
o the electrical conductivity, ar the Stefan-Boltzmann constant, and ap is the
mean absorption coefficient. In the absence of radiation term, ¢.e., when the last
term on the right side of equation (2) is absent, the solutions of equations (1)
and (2) have been discussed in literature for different boundary conditions [1,
3-5]. On the other hand, in the absence of applied magnetic field, the effects of
radiation, under the present physical setting, have been discussed by Ganesan
et al. [9], for isothermal boundary conditions. Extending the above works, and
based on the analytical solutions of equations (1) and (2), we have studied here
the combined effects of thermal radiation, external magnetic field and the fluid
properties on the flow near the vertical plate.

We shall obtain analytical solutions of the free convection problem corre-
sponding to the following two cases:

Case (i) Bounding wall subject to impulsive motion and maintained at con-
stant temperature:

In this case, the initial and boundary conditions are
t'<0: «=0, T'="T., forall y >0
t'>0: «=U T =T, at y =0
=0, T"=T_ as ¢y — oo (3)

where U is the constant impulsive velocity and T} is the constant temperature
of the plate.

Case (ii) Bounding wall subject to impulsive motion and uniform heat flux:
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In this case, the initial and boundary conditions will be

t'<0: «=0, T'="T., forall y >0

o1’ q
t'>0: 4 =10, o7~k at y =0
=0, T'=T, as v = o0 (4)

where ¢ is the uniform heat flux per unit area at the plate.

3 Solutions

We shall obtain analytical solutions of equations (1) and (2) corresponding to
the physical situations as given in cases (i) and (ii) above, after transform-
ing the equations to non-dimensional forms. This would, in turn, facilitate
the introduction of certain well-known parameters relating the dynamical and
thermodynamical features of the fluid flow.

3.1 Case (i)

We first introduce the non-dimensional quantities

Uy’ u ; Ut T T -T.,
o U = — o = —
Y v U’ v T — T
_ UG _ vgB(Ty — T,
Pr = L Gl = I3
kag vo B2
R = & ) — Y 5
dagT® T U2 (5)

In the above, G; and R are, respectively, the buoyancy and radiation parame-
ters, 4/m is the Hartmann number and Pr is the Prandtl number.

Using the new variables given in equation (5), the governing partial dif-
ferential equations (1) and (2) can be easily shown to transform, respectively,
to

ou 0u

— = —+G{T - 6
5 B + Gy mu (6)
oT 3R+ 4 9°T

ot  3RPr 0y’ (7)
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while the initial and boundary conditions (3) will become

t<0: u=0, TT=0 for y >0
t>0: wu=1 T=1at y=0
vw—0, T—0 as y = o0 (8)

Using Laplace transforms and writing

T(y.5) = | T, et b, aly,s) = / Tuwnetdt (9)

we can first solve equation (7) with the corresponding initial and boundary
conditions, whereupon u(y, t) can be obtained from equations (6) and (8). The
detailed expressions for T(y, s), 4(y, s) and the algebraic manipulations to get
their inverses are not included here, for brevity. However, one can finally express
the solutions for temperature and velocity as

ﬁy) (10)

T(y,t) = erfc ( W

SR (1)

where

ui(y,t) = 0.5 [exp(—yv/m) erfc(¢1) + exp(yv/m) erfc(¢s)]

u(yt) = (Gi/m)erfe (05yVA/VE), us(y,t) = —(Gi/m)ui(y,?)
uq(y,t) = (0.5G1/m)exp(—at) [exp(—iby) erfc(¢s) + exp(iby) erfc(pq)]
us(y,t) = (O 5G1/m) exp(—at) [exp(—iby) erfc(¢s) + exp(iby) erfc(epg)]

¢ = —Vmt, ¢y = Y mt

2\/ 2Vt
qbg = W—Z\/m, d)4 —\/»‘I‘Z\/m
¢5 = y2\\/; at, ¢ = —§+2f
m : 3R Pr
a = ﬁ, b:Z\/a, )\:m, ()\#1)

and erfc(x) is the complementary error function defined by

erfc(z) = 1 —erf(z), erf(x / eXp dn
(z) (z) -7

Electronic Journal. http://www.neva.ru/journal 62



Differential Equations and Control Processes, N 4, 2004

In the absence of magnetic field (m = 0), it can be shown that the velocity
variable in a radiating medium near an isothermal plate can be expressed as

u(y,t) = erfe (ﬁ) + 1Ci1)\ [(0.5)\;1/2 + t)erfc (g{/f)

(052 Y RS
(0.5y —I—t)erfc(z\/%) y /A7 exp( 415)

2
+ y+/t/7 exp <—%>] (12)
Comparing equation (12) with equation (11), we observe that the presence of

magnetic field in the same flow field couples the solution considerably. It may,
however, be noted that equation (12) for m = 0 does not follow as a special

case of equation (11), and is therefore to be derived afresh from the governing
equations. Another special case for which equation (11) ceases to be valid is
when A\ = 1. The case A = 1 corresponds to R = (4/3)(Pr—1)7%, (Pr > 1),
and in this case the expression of w is

u(y,t) = (Gi/m)erfec (2%)

+0.5(1 — G1/m) [exp(—y+/m) erfc(¢r)
vexplyyim) ere(dn)] (13

3.2 Case (ii)

As in the case (i) above, we shall solve equations (1) and (2) by first non-
dimensionalising them, together with the set of conditions (4). Here, we define
the quantities

Uy ! U2 kU(T =T
y = J U= %7 t= ) 0= ( OO)
v v vq
prey q96v*
P = G et
! B 2T e
kag vo B2
R = ——% ) — Y 14
dagT® T U2 (14)

It may be noted that in the above non-dimensionalisation, the Grashoff number
(G5 indicates a different physical mechanism as compared to the Grashoff number
(1 in Case (i). Using equation (14), the governing equations and the initial and
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boundary conditions become

ou 0u
00 3R+4 6%
A (16)
ot 3RPr Oy?
t<0: u=0, =0 for y>0
0
t>0: u=1, g—y——l at y =20 (17)

u—0, 8 >0 as y—>

Following the same solution method as before, we can obtain solutions similar

to the corresponding non-radiating free convection flow [12]. These are given

B(y,t) = 2 \/g exp <_Z—f> —y erfe (*2/3;) (18)

u(y,t) = ui(y,t) + ue(y, t) + ur(y, t) (19)

by

where
us(y, t)
ur(y,t)
F(y,t)
G(y, 1)

—(1_f§m/0 VE=n F(y,n) d

Gy t
1—A)\/ﬂ/o V=0 Gly,n) dn

(

Re [exp(by — at) erfc(¢y)]
Re [exp(by — at) erfc(¢g)]

and “Re” denotes the real part.

The special cases m = 0 and A = 1 for the heat flux boundary condition

can also be dealt with as in Case (i), and are not presented here.

4 Skin friction

The expressions for the shear stress at the boundary, in both cases, can be
obtained using 7 = —0u/dy evaluated at the boundary. Denoting them by 7
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and 7 for the cases (i) and (ii), respectively, we obtain

Gy A G1\ [exp(—mit)
T = - 7rt+ (1 m) [ e + /m erfvmt

_ Gi exp(—at) Re [Z\/ﬁ erfc(ivart) +ivad erfc(—i\/&)}

m
_ Gi exp(—at)

m~y/ 7t

[\/X exp(at) — exp(a)\t)] (20)

T = 7exp\(/%mt) ++/m {1 — erfcx/%}

L 26
(1 - V7

/O VE=T f(n) dn (21)
where

1) = <= (VA= exp(mi)

+iVa\ exp(—at) [erfc(i\/w) — erfc(i\/a)]

In the non-magnetic case, 7 and 7 are given by
1 2G, \/?
T = — — 22
1 /7t 14+ A e ( )

1 Gt
CVrt VAL V)

72

5 Results

In the unsteady free convection near a vertical plate considered here, it is obvi-
ous that the velocity variations in the boundary layer are coupled to the temper-
ature variations. In this section, we have presented graphically the variations
of velocity in the boundary layer, with special emphasis on the effects of the
governing non-dimensional parameters. The plots correspond to the variations
of the non-dimensional velocity u against the non-dimensional space variable y.
In the Figures 1-5, we have shown the effects of parameters — namely, R, ¢, m,
Pr and G — on the velocity distribution when the bounding vertical plate has
been kept at a uniform temperature [Case (i)]. Figure 1 shows the variation
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of velocity profiles with the radiation parameter R, for fixed values of other
parameters. It is apparent that the profiles are qualitatively similar, and are
less sensitive to higher values of R (> 5). Also, as R increases, i.e., as the radi-
ation effects decrease, the fluid velocity decreases in the boundary layer. This
must be expected, as radiation effects become significant for processes taking
place at high temperatures, and this in turn induces larger convection near the
boundary. In Figure 2, we have included the temporal profiles of the veloc-
ity. It can be noted that for small values of ¢ (< 0.1), the velocity decreases
steadily to its free-stream value. However, as t increases, the velocity attains
a maximum value before dropping monotonically to its free-stream value. In
the next figure (Fig. 3), the effect of the magnetic parameter m on the velocity
profiles has been shown. As has been generally observed in literature in the
case of non-radiating hydromagnetic free convection flows for the geometrical
configuration considered here, the applied magnetic field in our study has also
shown a stabilizing effect on the boundary layer flow. In order to gauge the
effect of fluid properties on the flow pattern, we have shown, in Figures 4 and
5, respectively, the influence of Prandtl and Grashoff numbers on the radiating
flow. These two parameters have opposite effects on the velocity variations. It
has been seen that the velocity decreases with increasing Prandtl number (Fig.
4), while it increases with Grashoff number (Fig. 5).

The fluid flow features corresponding to the uniform heat flux condition
at the bounding vertical plate [Case (ii)] are seen to be qualitatively similar
to the Case (i) profiles. Accordingly, we have given only two plots showing,
respectively, in Figures 6 and 7, the effects of R and ¢. The curves in these
figures are self-explanatory.

Before concluding, we find it instructive to present an example illustrating
the comparative effects of the two types of thermal conditions at the plate, in a
special flow situation for which the Grashoff numbers are equal. This is shown
in our last figure (Fig. 8). It is seen that the fluid velocity corresponding to
the isothermal boundary condition case is significantly larger than that for the
unform heat flux case.
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Figure 1: Variation of velocity u [Case (i)]. Effect of R.
(Gy =10, m =05, Pr=0.7, { = 0.5)
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Figure 2: Variation of velocity u [Case (i)]. Effect of ¢.
(G1=10, m =05, Pr=0.7, R=5)
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Figure 3: Variation of velocity u [Case (i)]. Effect of m.
(G1 =10, Pr=0.7, R=5, { = 0.5)
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Figure 4: Variation of velocity u [Case (i)]. Effect of Pr.
(Gy =10, m=0.5, R=5,t=0.5)
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Figure 5: Variation of velocity u [Case (i)]. Effect of Gj.
(m =0.5,Pr=0.7, R=5, t =0.5)
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Velocity u
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Figure 6: Variation of velocity u [Case (ii)]. Effect of R.
(Gy =10, m = 0.5, Pr=0.7, { = 0.5)
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Figure 7: Variation of velocity u [Case (ii)]. Effect of ¢.
(Gy =10, m =05, Pr=0.7, R = 5)
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Figure 8: Velocity profiles with different thermal conditions at the boundary.
(Gi =Gy =10, Pr=0.7, t =0.5, m= 0.5, R=5)
Electronic Journal. http://www.neva.ru/journal 74



Differential Equations and Control Processes, N 4, 2004

References

[1] V. M. Soundalgekar: Free convection effects on Stokes problem for a vertical
plate, ASME J. Heat Transf., 99, 499-501, 1977.

[2] G. A. Georgantopoulos: Effects of free convection on the hydromagnetic

accelerated flow past a vertical porous limiting surface, Astrophys. Space
Sci., 65, 433442, 1979.

[3] V. M. Soundalgekar and M. R. Patil: Stokes problem for infinite vertical
plate with constant heat flux, Astrophys. Space Sci., 70, 179-182, 1980.

[4] A. Raptis and A. K. Singh: MHD free convection flow past an accelerated
vertical plate, Int. Comm. Heat Mass Transf., 10, 313-321, 1983.

[5] P. Chandran, N. C. Sacheti and A. K. Singh: On laminar boundary layer
flow of electrically conducting liquids near an accelerated vertical plate,
Phys. Chem. Lig., 40, 241-254, 2002.

[6] M. M. Ali, T. S. Chen and B. F. Armaly: Natural convection-radiation
interaction in boundary layer flow over horizontal surfaces, AIAA J., 22,
1797-1803, 1984.

[7] M. A. Hossain, M. A. Alim and D. A. S. Rees: The effect of radiation on
free convection from a porous vertical plate, Int. J. Heat Mass Transf., 42,
181-191, 1999.

[8] A. Raptis and C. Perdikis: Radiation and free convection flow past a moving
plate, Appl. Mech. Engng., 4, 817-821, 1999.

[9] P. Ganesan, P. Loganathan and V. M. Soundalgekar: Radiation effects on
flow past an impulsively started infinite vertical plate, Int. J. Appl. Mech.
Engng., 6, 719-730, 2001.

[10] R. Siegel and J. R. Howell: Thermal Radiation Heat Transfer. McGraw-
Hill, New York, 1972.

[11] M. Q. Brewster: Thermal Radiative Transfer and Properties. Wiley, New
York, 1992,

[12] P. Chandran and N. C. Sacheti: Transient motion of electrically conducting
fluids of different Prandtl numbers: Flow near a vertical boundary, Diff.
Eqgns. Control Process., 7, 77-87, 2003.

Electronic Journal. http://www.neva.ru/journal 75



Differential Equations and Control Processes, N 4, 2004

This research was supported by the Sultan Qaboos University Research Grant
No. IG/SCI/DOMS/02/04

Electronic Journal. http://www.neva.ru/journal 76



