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Abstract Numerical methods based on the conceptual framework of sym-
bolic analysis are important tools for the study of non-linear dynamical systems.
Implementations of these concepts have been applied successfully to many in-
vestigation tasks, like the localization of the chain recurrent set, attractors, and
their domains of attraction as well as the computation of the Morse spectrum
and verification of hyperbolicity. However, the field of application is still lim-
ited. Reason is that the construction of the symbolic image, which is the basic
task of every computation, can require a large amount of memory resources.
Hereby, the amount of required resources does not only depend on the dimen-
sion of the dynamical system and the performed investigation task but also on
the specific characteristics of the system’s dynamics. In this work, we propose
methods for the tuning of the construction process. The main idea is to use
higher function iterates in order to build the symbolic image. The application
of this technique allows a significant reduction of required memory resources so
that the investigation methods can be applied in a wider range of scenarios.
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1 Introduction

The theoretical concepts of symbolic analysis provide a unified framework for
the acquisition of information about the flow of a dynamical system without any
restrictions concerning the stability of specific invariant sets. The mathematical
theory was presented in a series of works by G. S. Osipenko [20, 21, 22, 26]. It
can be considered close to Cell-to-Cell mappings [13, 14] and multivalued map-
ping [19]. Tt is also related with symbolic dynamics [2, 4, 16, 30] and set-oriented
methods [6, 9]. The main idea is the construction of a directed graph which rep-
resents the structure of the state space for the investigated dynamical system.
This graph is called the symbolic image of the focused system and can be seen
as an approximation of the system flow. Each vertex of the graph is an area
of the discretized phase space, and a successive refinement is achieved by mul-
tilevel subdivision. From the computational point of view, the usage of such a
graph bears the big advantage that, once it is constructed, all investigations are
matters of graph analysis, e.g. each strongly connected part represents a com-
ponent of the chain recurrent set of the flow. More sophisticated computational
analysis of the symbolic image graph allows, among others, the localization of
the chain recurrent set [22], periodic orbits [21], invariant sets [15], attractors
and their basins [11, 12, 24, 27] as well as the computation of the Morse Spec-
trum [23, 25, 28] or verification of hyperbolicity. A comprehensive overview can
be found in [26].

Due to the fact that the construction of the symbolic image graph is the
basic task for any investigation based on symbolic analysis, an efficient im-
plementation of this construction process is crucial for the application of the
method. Adequate algorithms and data structures to achieve this task are
proposed in [10]. Also a software was developed which allows the practical
application of the numerical techniques. This software is part of the larger
non-commercial package AnT [3] and available for download, see [1].

The target of this work is to introduce tuning techniques which allow the
application of our investigation methods in scenarios where the construction
of a regular symbolic image graph is not or only to a limited extent possible.
Such a case happens, for instance, if the memory resources are exceeded and
the desired investigation can not be finished. The essence of our approaches
for tuning is that some aspects important in theory are neglected for the sake
of a successful practical application of the investigation method. The tunings
proposed in this work are motivated by empirical studies of our computations.
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Their application often leads to a more efficient and /or more precise calculation.

This work is structured as follows. In the following section we give a short
introduction into the basic concepts of symbolic analysis. Then we point out
the problems which occur in a practical application of the concepts. In Sec. 4
we propose the first possible tuning, the use of higher function iterates for
dynamical systems discrete in time. Afterwards, in Sec. 5, we outline related
tunings for systems continuous in time. In Sec. 6 we present a further technique,
the reconstruction of fragmented solutions. This technique can be applied in
combination with higher function iterates in order to improve the quality of the
computed results. In Sec. 7 two numerical case studies are presented to show
and verify the application of the proposed techniques in practice. In Sec. 8 we
give a conclusion about the methods presented in this work.

2 Construction and Investigation of the Symbolic Image

We consider a dynamical system generated by a continuous mapping
f:M— M

on a compact C'™° manifold M. For the purpose of simplification we assume
a dynamical system discrete in time. Anyhow, all definitions which base on
this assumption and which are introduced here can also be applied on systems
continuous in time if we introduce a shift operator along trajectories. A more
detailed description follows in Sec. 5. Note furthermore that the theoretical
results regarding symbolic analysis [26] are based on the assumption that the
underlying mapping is a homeomorphism. However, the parts of the theory
which are discussed here are also valid without any restrictions for continuous
mappings.

Let C = {M(1),..., M(n)} be a finite covering of closed sets for the domain
M. The sets M(i) are named boxes of the covering. For each box M (i) we
consider its image

f(M(2) ={y |y =f(x),x € M(i)}. (1)

Then we define the covering C'(i) consisting of boxes M (j) € C' whose intersec-
tions with £f(M (7)) are not empty :

Ci) ={M(j) : M(j) N E(M(i)) # 0}. (2)
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Let us construct a directed graph G which matches to each box M (i) the vertex
¢;. The vertices ¢; and ¢; (also denoted cells in the following) are connected
by the directed edge ¢; — ¢; if and only if M(j) is an image box of M (i), i.e.
M(j) € C(i). See also Fig. 1.

Ck Y,

e R R TR R i G

Ce

Cd

Figure 1: Construction of the symbolic image.

Definition 2.1. The graph G constructed as described above is called the sym-
bolic itmage of £ with respect to the covering C'.

We can consider the symbolic image as a finite approximation of the system
flow f. The precision of the approximation depends on the covering C'. By
variation of C' we can change the symbolic image of f.

Definition 2.2. An infinite in both directions (bi-infinite) sequence {c; } of
cells in the graph G is called an admissible path (or simply a path) if for each k
the graph G contains the edge c;, — ¢, .,. A path {c;.} is said to be p-periodic
if ¢i, = ciy,, for each k € Z.

There is a natural correspondence between the admissible paths on the
symbolic image GG and the periodic orbits of f. Roughly speaking, an admissible
path represents the trace of an orbit and vice versa.

Definition 2.3. A cell of a symbolic image is called recurrent if there is a peri-
odic path passing through it. Two recurrent cells ¢; and c; are called equivalent
if there is a periodic path containing both, c¢; and c;.

Denote the set of cells in G as V(G) and the set of recurrent cells as RV (G).

Obviously, we have the relation RV (G) C V(G). The set RV (G) decomposes
into classes of equivalent recurrent cells

H; = {c¢; | there is a periodic path containing ¢; and ¢;}. (3)
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Hence, the sets Hy, each representing a disjunct equivalence class, form together
the set

C:{Hk}, VHZ,HJGCHZQHJZQ), RV(G): U H,. (4)
HyeC

In graph theory, a class Hj, is called a set of strongly connected components of
the graph G. The boxes M(i) belonging to the cells RV (G) are a neighbor-
hood of the chain recurrent set [5] and the boxes belonging to a set Hy are a
neighborhood of a component of the chain recurrent set, see [26]. The chain
recurrent set contains all types of return trajectories, like periodic or recurrent
orbits. Each of these return trajectories is a component of the chain recurrent
set. For this reason, the detection of the recurrent cells RV (G) and ¢ are basic
tasks on a symbolic image graph and required as a first step for almost all other
investigation methods.

In order to get a better approximation of the vector field f, a multilevel
subdivision procedure will be applied, see also Dellnitz et al. [8, 7] for a similar
approach. We consider a covering C*, s > 0, and its symbolic image G*. A
selection S(G*) of cells which cover the areas of interest, for example S(G*) =
RV (G?), is chosen for subdivision. The boxes of the covering which correspond
to the cells of S(G?) will be subdivided into smaller units. These units define
a new, more precise covering C**! for which the next symbolic image G*™! can
be constructed. The former covering C* and the graph G* can then be deleted
in order to free memory space. In theory, this procedure is applied for s — oc.
In practice, however, subdivision can only be applied several times whereby the
approximation of the symbolic image becomes more precise for each subdivision.

3 Problems of a Practical Computation

The construction of a symbolic image G* of a subdivision step s, its subdivision
and the localization of recurrent cell sets are the basic steps of every investiga-
tion based on symbolic analysis. Appropriate algorithms and data structures
to achieve this task are proposed in [10]. Note hereby that the construction of a
symbolic image based on numerical calculations is always only an estimation of
the "real” symbolic image G*°. Besides the usual numerical errors which occur
by the computation of a vector field f(x) for x € M, another reason for this is
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the fact that the construction of the image

T(i) = f(M(i)) (5)
= {yly=fkx),xe M@} Cc M

for a box M (i) would involve the calculation of f(x) for every x € M (i). This
is, of course, beyond the limits of every finite numerical computation.

In the approach proposed in [10], the image T'(7) will be approximated by
a finite set of points. This technique was also used by [14, 7], and has proved
to be a good approach in practice. From each box M /(i) a representative set
of k points is selected, the so-called scan points S(i) = {x1,...,x;}. Then the
approximation T'(i) of the region T(I) in the state space is calculated by

T(i) = £(S(0) = {y; | y; = £(x;).x; € S(i)}. (6)

Performance analysis has shown that the computation time of algorithms
based on this approach are no major obstacle for the construction of the sym-
bolic image. Assuming n, is the number of cells belonging to a symbolic image
G*, i.e. ng = |[V(G*)|, all computations can be performed in O(nyg - log(ny),
see [10]. Instead, the crucial factor is the size of the input value ng or, in other
words, the memory resources required for a computation. Note that ng could
grow almost exponential for s — o0, i.e. during the subdivision process. Ideally,
this growth rate should only depend on the investigation task or, more precisely,
the dimension of those objects which are the subjects of investigation. However,
due to the complexity of the underlying dynamics, this is often not the case.
Instead, we observed that in many computations much more cells are selected
for subdivision than necessary. The major problem we come across is that not
only those cells are selected which correspond to boxes containing parts of the
solution, but also several more cells which correspond to boxes in the neighbor-
hood of the solution. Reason for this is a too coarse discretization of the phase
space. In the following, we will refer to this phenomenon as clustering. Due to
clustering, the growth rate of the number of cells in a symbolic image increases
during the subdivision process, and the accuracy of the computation shrinks.
Moreover, the analysis of computed data is more difficult.

Taking the theoretical point of view, the selection of too many cells for sub-
division does not matter. By successive application of the subdivision process
the discretization of the phase space gets finer. Eventually, those boxes which
do not contain a solution will be deleted and the solution is detected as pre-
cisely as one likes. However, taking the practical point of view, one has to deal
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with limited resources. That means that the number of applicable subdivisions
is limited by the memory space of the computation machine which only allows
the storage of a symbolic image graph of a limited size. Therefore, it is our
strong concern to avoid clustering, i.e. the selection of cells for subdivision
which do not contain a solution. This aim can only be achieved by a change
of paradigm. The target is not anymore the rigorous construction of the sym-
bolic image graph for a phase space discretization. We are not interested in
providing all existing edges between the cells as requested in the theoretical
approach, but rather more only those edges which are necessary for the de-
tection of the solution. By doing so, we are also aware of the fact that some
important information might get lost. However, empirical studies have shown
that computational investigations are mostly limited by performance resources
instead of an insufficient approximation of the symbolic image. A significant
reason for this is that the method is typically quite robust.

4 Use of Higher Iterated Functions

When dealing with dynamical systems discrete in time x,,,1 = f(x,), the points
y € T(I ), see Eq. 6, which represent the images of x, are calculated as direct
successors of the scan points: y = f(x). We propose now that in some cases it
is more suitable to use an iterated function of f and calculate the image points

by
y=f"(x), n>1 (7)

In other words, the symbolic image is not constructed for the function f but
for the n-th iterated function £". In the following, we will denote a symbolic
image constructed for f by G and for f " by G £l

Obviously, the symbolic image graph G with n > 1 differs from G;. More
precisely, G s might have less edges than G . However, G i s still useful for
investigations. In order to clarify this, we introduce some theorems about the
relations of £ and f with regard to invariant sets.

Definition 4.1. A set ) C M is said to be invariant if f(Q) = Q.

Proposition 4.1. If Q C M is an invariant set for £, then also for any £, n €
N, 7. e.
Q) =0=f"Q)=q.
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Proof. Obviously, if f(Q) = @ then f(f(Q)) = £(Q) = Q. We can conclude that
then also f"(Q) = fP=U(F(Q)) = fr Q) =--- = Q. O

Considering this result, we can conclude that all invariant sets of a dynam-
ical system generated by f can also be found in a dynamical system generated

by £,

Proposition 4.2. If Q' C M is an invariant set for £, n € N then Q =
U0§k<nf[k](Q') is an invariant set for £, i. e.

(@) =0'= | tH@)=e=1Q).

0<k<n

Proof. Note that by definition f%(x) = x and, hence, f%(Q") = @’. We split
the proof in two parts:

1L f(Q) CQ: Ifxc Q= x=fHMx) for some X' € Q' and some k < n
= f(x) = fF+1(x’). Obviously, fI**1(x’) € Q because if k + 1 < n then
fI(x) € Q, and if K+ 1 = n then fF(x) = fl(x') € Q' C Q.

2. Q C f(Q): We first state that f*/(Q') C f(Q) for each k < n because if
k =0 then fO(Q") = Q' = fI(Q") = f(f""1(Q")) C £f(Q), and if & > 0
then fH(Q) = F(EFU(Q")) C £(Q). Next we state that if x € Q = x €
f"(Q") for some k | n. It follows immediately that x € f*/(Q") C £(Q).

[]

Proposition 4.3. If Q' C M is an invariant set for £"), n € N then there is
an invariant set QQ for £ with Q' C Q, 1. e.

Q) =Q =302Q :f(Q) = Q.
Proof. The theorem is an immediate conclusion of Proposition 4.2. ]

An important conclusion of Proposition 4.3 is that a dynamical system
generated by f " still consists of the same invariant sets than the one generated
by f. Each invariant set @’ found for £l belongs to an invariant set @ of f.
Furthermore, according to Proposition 4.1, all sets () of f can be found in the
dynamical system of £

We note now that most investigations based on symbolic analysis aim to
detect specific types of invariant sets. For instance, the chain recurrent set is
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invariant as well as each component of it. If all invariant sets of f are preserved
in the dynamical system of £ then, obviously, they can also be detected in
G . However, note that the characteristics of the sets might change. Let us
look, for instance, on the periodic points of f. We denote by P(p) the set of all
points in M which are p-periodic. Obviously, each P(p) for p > 1 is an invariant
set. Consider now that the set P(6) of f is equivalent to the invariant set P(2)
of B but the points belonging to these sets have a different periodicity with
respect to f and £I¥. Hence, one has to be careful when analyzing the results
of Gy . However, although the periodicity might change, every periodic point
of f is also periodic for £, and no other periodic points than for f are found
for £l The same is true, for instance, for points belonging to quasiperiodic
trajectories.

Each edge in the graph Gy represents a longer part of a trajectory than in
G. In terms of tuning this is of interest because transient dynamics can then
be better distinguished from asymptotic ones. In a coarse discretization of the
phase space, less cells corresponding to boxes which do not contain a solution
are recurrent and selected for subdivision. Consequently, clustering can be
reduced and the growth rate of cells during the subdivision process is lower.
However, the tuning has also some drawbacks. First of all, the computation
time for the construction of G increases by factor n in comparison to Gy.
Furthermore, it is more likely that unstable parts of the solution, e.g. unstable
periodic or quasiperiodic points, might not be detected because the forward
iterates y = f["(x) diverge stronger from these objects than y = f(x). Last
but not least, taking the analytical point of view, one must be aware about the
change of characteristics regarding the invariant sets of Gy in Gy,

5 Discretization Time for Systems Continuous in Time

Only dynamical systems discrete in time have been discussed so far. If we are
dealing with systems continuous in time given by an ODE, i.e. x = F(¢,x),
t € R, some kind of mapping is required which transforms an orbit continuous
in time into one discrete in time. A shift operator along trajectories is needed.
In the implementation proposed in [10], a stroboscopic mapping is used as shift
operator. Such a mapping has the form f(x) = ¢(¢,x) with ¢(0,x) = x and is
applicable to differential equations which are autonomous. It can be calculated
by solving the equation

x(t) = F(x(1)) (8)
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for the time ¢ and initial conditions x(0) = x. We assume a fixed ¢ > 0. In that
case, ¢(t,x) is also called a time-t map. Such a time-t map is a restriction of ¢
to M x tZ and, hence, a discretization of the dynamical system continuous in
time.

Consider now that in the context of an implementation it is suitable to use
a small integration step size At for the applied integration method in order
to minimize numerical errors. Hence, we do not calculate ¢(t,x) explicitly.
Instead, we use an integration step size At = t/n with n € IN and iterate ¢ for
n times so that

o(t,x) = ¢(At - n,x) = ¢"(At, x).

This approach allows the numerical computation of time-t maps for any
precision, independently of the chosen discretization time ¢. In the following,
we use the notation f(x) = ¢(At,x) so that the time-t map for a t = At -n is
given by f"(x). Hence, the symbolic image is constructed assuming f " (x) as
the system function instead of f(x).

So we see that for dynamical systems continuous in time the iteration of the
function must be considered in a different context than the iteration of discrete
systems. The number of integration steps n, which determines for a fixed
integration step size At the discretization time ¢t = At-n, is an essential part of
the parameter setting. By variation of ¢ one changes the discretization of the
continuous trajectory starting from a point x € M (7). Taking the theoretical
point of view, the ideal approach is to vary the time ¢ for each scan point
x € M(i) in such a way that the image fl"l(x) = ¢["(x, At) = y lies in the
next neighboring box M (i') to which the continuous trajectory started at x
moves to. By doing so, the complete dynamics of the underlying system can be
preserved by the symbolic image graph. Of course, in that context one must
also consider and properly treat the case that a trajectory x(¢) might never
leave its initial box. This happens if the box contains an invariant set, whereby
it can be assumed for the box size shrinking to zero, that this invariant set is a
fixed point.

Unfortunately, empirical experience showed that this approach fails for
many practical applications. We observed that even for simple dynamical sys-
tems the symbolic image grows too much in each subdivision step because too
many cells which do not contain a solution are selected for subdivision. A way
to avoid this is to fix a reasonably large discretization time ¢ for all compu-
tations. Due to the fact, that longer forward iterates are computed, the same
effect happens as for the iteration of the system function, described in the last
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section. Transient dynamics can be better distinguished from asymptotic ones,
and less cells are selected for subdivision which do not contain a solution. This
is in most cases a necessity for a reasonable numerical simulation. Note that
the detection of stable parts of a solution is not affected by a high setting of .
However, unstable parts may not be detected because the trajectories started
close to them diverge. So it is after all still essential that the symbolic image
is constructed by the combination of many short forward iterates instead of a
few long ones. Otherwise, the distinctive features of this investigation method
can not be used. This means that ¢ must be set to a value so that the symbolic
image does not grow too big but that also the information about the whole
solution will persist. It is not guaranteed that such a setting exists for every
system in focus, and if it exists, there is not yet a general rule how to derive it.
Only user experience and heuristic testing can lead to the most proper setting
of t.

There are two ways to manipulate £. One is to increase or decrease the
number n of iteration steps. Hereby, the precision of the computed parts of the
trajectories does not change. Therefore it is the preferred way to control the size
of t. However, the performance time for the construction of the symbolic image
depends on n, and a high setting can significantly slow down the computation.
Therefore, one can also consider to change the size of the integration step At
instead of n. This can improve the performance of the calculation. Note that
the precision of the computed parts of the trajectories depends on At. But as
a consequence of the fact that the symbolic image graph is build from small
forward iterates, the numerical error which arises from an increase of At is by
far not as crucial as if long forward iterates would be computed.

6 Reconstruction of Fragmented Solutions

We have discussed the usage of higher iterated functions and large discretization
times for symbolic analysis. In many calculations, these options turned out to
be an adequate technique to tune investigation methods. However, it was also
mentioned that unstable parts of a solution might not be detected if the number
of iterations n or the time ¢ is chosen too large. In practice, we observed,
that for crucial settings of the parameters, some unstable invariant sets do
not completely disappear at once, but rather more fall apart. Some parts of
them are still recognized while others vanish, as it can be seen, for instance, in
Figs. 3.(a) — (d) for the Lorenz system.
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Such a phenomenon is a result of taking only a limited number of scan points
per box in combination with following a relatively long run of trajectories in
order to construct the edges of the symbolic image graph. This leads to a loss of
information about the structure of unstable invariant sets. It is not our intention
to give here a detailed analysis of this problem, but rather more a solution for
the reconstruction of such unstable objects. Nevertheless, one should keep in
mind that not every structure that looks like a disappearing unstable invariant
set is necessarily a fragment of the solution. In some cases, it turned out that
objects which seemed to be parts of unstable limit cycles belonged to non-cyclic
orbits. So after the application of this method of reconstruction, further tests
have to be applied to approve the correctness of obtained results.

The method, as introduced here, aims only on the reconstruction of the
chain recurrent set. For other investigations, slight changes might be necessary.
The reconstruction can be done by application of an extension to the symbolic
image construction algorithm. The basic idea here is to add and/or select all
cells belonging to boxes M (i) of the symbolic image G ¢, which will be passed by
the forward iterates f!(x), ..., f"~1(x) on its way from x to its image y = £
Therefore, first the symbolic image G will be constructed according to the
standard approach. Then the investigation method is applied in order to get the
set of recurrent cells RV (G ). Afterwards, the following extension must be
applied before the next subdivision. For every recurrent cell ¢; € RV (G ) its
corresponding box M (i) is detected. Then, for every scan point x € S(i) it has
to be checked, whether its target point f1"/(x) =y € T(i) lies in a selected cell
which is equivalent, i.e. belongs to the same set Hj € ( of equivalent recurrent
cells. If so, we locate for each value f¥/(x), k = 1,...,(n — 1), the box M (i)
with £¥ € M (i"). If the box M(i') and its corresponding cell c¢; do not exist
for a visited area, they will be added to the symbolic image. Furthermore, the
cell ¢; will be marked as recurrent, no matter if it already existed or was just

added.

If this extension is applied, the course of a trajectory, which connects re-
current cells, will be reconstructed. Note that the symbolic image can only
become more precise by this extension. If a source cell ¢; and its target cell ¢,
are recurrent and equivalent, then, consequently, all the cells corresponding to
boxes which are passed by the connecting trajectory are also recurrent. In fact,
if all numerically computed symbolic images of an investigation would have
been exact and no approximation, reconstruction would not change them. As
already mentioned, this operation might add new cells to the symbolic image.
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So it can still be applied in a stage of subdivision when the fragmented invariant
set has already fallen apart to a large extent. This can be seen in Fig. 3, where
unstable limit cycles of the Lorenz system will be reconstructed in the 10-th
subdivision step.

7 Numerical Case Studies

We present two numerical case studies in order to demonstrate the application
of the above mentioned tunings. As examples, we chose a system continuous
in time and one which is discrete in time. Both of them are 3-dimensional
and they require high computational resources. For this reason, it is necessary
to apply tuning methods. The used reference machine for all calculations was
an Asus L3000D laptop with an AMD Athlon XP-M 1400+ processor and 512MB
SDRAM.

7.1 Lorenz System

We consider the well-known dynamical system continuous in time introduced
by Lorenz in [18] and defined by

x(t) =Fr(x(t)), Fr:R>—= R x=(x,9,2)7

oy — ), (9)
Fr(x)=|2(r—2) -y,
xy — bz.

We use the standard parameter values o = 10, b = 8/3 and investigate the
Lorenz system at two values of the parameter r, namely r; ~ 14.6 and ry ~ 20.
As shown in [29], for these settings exist an unstable fixed point P = (0,0,0)7
and two stable ones C; and (), each of them accompanied by an unstable limit
cycle. The value r; is chosen close to the so-called homoclinic explosion which
occurs at r &~ 13.926, where the unstable manifolds of P return to the origin.
Furthermore, at parameter value ro, the both unstable limit cycles around C4
and Cy are situated close to each other and to C and (5.

In order to reproduce these results with methods of symbolic analysis,
we compute the chain recurrent set. We define for r; and ro the domain

spaces M7 = [—35.0;35.0] x [—35.0;35.0] x [0.0;30.0] and My = [—20.0;20.0] x
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(a) 1 =14.6 (b) o =20

Figure 2: Lorenz system: Computation of an outer covering of the chain recurrent set at

positions 1 = 14.6 and ry = 20.

[—20.0;20.0] x [0.0;30.0] as the area of investigation. The division of these
spaces is initially set to 4 x 4 x 2 and 2 x 2 x 2 boxes. In the following subdivi-
sion stages each box is divided into 2 x 2 x 2 smaller boxes. The integration step
At is set to 0.001, and the number of iteration steps to ny = 100, ny = 200. In
order to compute the integration step ¢(At,x), the Runge-Kutta method was
applied.

Figs. 2(a) and 2(b) show the results of the calculations for the parameters
r1 and ro. Remarkably, one can see that the limit cycles for r; still touch
each other, which is due to some numerical inaccuracy, while for ro the cycles
shrinked closer around C} and (3. The computations took 30 minutes for r
and 2 hours for ry. Ten subdivision steps were computed, and the symbolic
images contained up to 1400000 cells. Hereby, the high computation time is
mainly due to the relative high setting of the iteration time ¢. Furthermore, the
unstable fixed point P can not be computed by this setting. However, if ¢ would
be set to a lower value, the limit cycles could not be detected at all because too
many cells would be selected for subdivision and the memory resources would
be exceeded after a few subdivisions.

Several subdivision steps for the parameter setting r1 = 14.6 are illustrated
by the Figs. 3(a—f). We see that the principal shape of the cycles becomes
visible in the fifth subdivision step, while the distinction into fixed points and
cycles is visible in the sixth subdivision. Note that if £ would be set to a smaller
value, this distinction could not be computed by our methods. Too many cells
would be considered recurrent and the size of the symbolic image would be
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(e) tenth subdivision step (f) completion of the fragmented limit cycle

Figure 3: Lorenz system: Reconstruction of unstable limit cycles at parameter r; = 14.6 with
a large discretization time. The limit cycles fall apart and vanish by time (red), but will be
completed (green).
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too big for further calculations after the sixth or seventh subdivision step. In
Figs. 3(c—e) we see the computations for the next subdivision steps. Although
the high setting of ¢ allows the computation of the distinct invariant sets, a side
effect is that parts of the unstable limit cycles get lost. For this reason, the
method for reconstruction of the fragmented solutions must be applied. The
results are shown in Fig. 3(f). We see that the final computation produces a
precise outer covering of the unstable limit cycles.

7.2 Food Chain Model

Next we analyze a discrete system of mathematical biology. The 3-dimensional
dynamical model describes a discrete food chain model, studied by Lindstrom
in [17]. The system is defined by

x(n +1) = fare(x(n)),

fie ' R* = R®, x=(z,y,2)" (10)
pox e’
1 4+ z max(e7¥, g(2)g(y))
fdfc(x) - —z ’
zxy e g(y)g(pey 2)
Ho Yy =
1—e* .
with  g(s) = , if s #0,
1, if s=0.

We only focus on the following parameter setting: po = 3.4001, 43 = 1 and
Mo = 4.

The analytic results of Lindstrom showed, that Eq. 10 possesses at most
four fixed points. However, our main intention is not the localization of some
fixed points but rather more the computation of the complete chain recurrent
set within the area M = [—1.0; 4.0] x [—1.0; 4.0] x [0.0; 1.6]. It is not possible
to get an appropriate approximation of the chain recurrent set by means of
usual symbolic image construction. The tuning techniques must be applied to
get satisfiable results. By doing so, the equilibrium points, and maybe some
other information, get lost in the symbolic image after several subdivision steps.
On the other hand, two invariant manifolds can be detected which belong to
different components of the chain recurrent set, see Fig. 4. By application of
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2055

(a) (b)

Figure 4: Discrete food chain model: Two different views of the outer covering of the chain
recurrent set. The attractor (red), an unstable quasiperiodic cycle (green) and the unstable
fixed points (blue) are shown. The fourth fixed point at (0,0) can not be seen.

forward iteration, it can be verified that both of them consist of quasiperiodic
trajectories, and that one is a stable invariant set, namely an attractor (red),
while the other is an unstable invariant set (green). Hereby, the unstable entity
is not a repeller but of saddle type. Such a calculation takes around one hour
and the symbolic image grows up to ~ 1 100 000 cells. The long calculation time
is mainly caused by the application of the tuning-techniques. Note that the
localization of the unstable quasiperiodic manifold is, from the computational
point of view, a nontrivial task. To the authors’ knowledge, no other numerical
computation method is able to detect this entity. This is, among others, due
to the fact, that the system described by Eq. 10 is only piecewise-smooth,
has no explicit inverse, and possesses dynamics which are, in general, difficult
to handle. Only by application of the tuning methods, the results can be
computed.

In order to get a better impression how the construction process works,
Fig. 5 shows the results of several subdivision steps. Hereby, 17 scan points
per box are taken. The rough position of the attractor can be located after
the second subdivision of the domain space M into 200 x 200 x 32 regions,
see Fig. 5(a), then, in the third subdivision, see Fig. 5(b), the principal shape
of the attractor becomes visible. But only after the fourth subdivision into
1200 x 1200 x 192 regions, see Fig. 5(c), the symbolic image splits into two
different sets of equivalent recurrent cells, which correspond to the stable and
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(a) second subdivision step (b) third subdivision step

(¢) fourth subdivision step

Figure 5: Discrete food chain model: Numerically calculated fixed points and three subdivision
steps of the symbolic image construction. The outer covering of the chain recurrent set (green)
as well as the attractor (red) are shown. Note that in this example the attractor was computed
by forward iterates.
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unstable invariant manifolds. In order to achieve these results, it is necessary
to compute the symbolic image graph for the iterated function f“% in the third
subdivision and for £ in the fourth subdivision step. Otherwise, the principal
shape of the cone, see Fig. 5(a), would persist during further subdivisions.
Additionally, reconstruction of the fragmented parts must be applied in order
to avoid that the cycles vanish. The final result, see Fig. 4, is computed after
the sixth subdivision. Note that in the subdivisions 5 and 6, also the function
£140] i5 used and reconstruction of the cycles applied.

8 Conclusion

Several tunings for the practical application of symbolic analysis were proposed.
We introduced the application of higher function iterates and the reconstruc-
tion of fragmented solutions in order to improve the numerical computations.
Furthermore, the usage of these methods for dynamical systems continuous in
time was discussed. Hereby, we stated that a rough approximation of the sys-
tem flow is often sufficient for the investigation task. Indeed, a too precise
simulation of the system flow can often hardly be computed and does not pro-
vide better results. The techniques we proposed are not in accordance with the
original concepts of symbolic analysis. Nevertheless, they proved to be helpful
in case the application of the original method fails or provides a solution of low
precision due to clustering. Depending on the dynamics and dimension of the
underlying system, the application of the tuning techniques can be a necessity
in order to achieve appropriate results. Two numerical case studies were given
in order to illustrate the application of the tunings.

The tunings we proposed show also that the capabilities of the investigation
methods based on symbolic analysis depend to a large part on the solution of
those problems which occur in the implementation and practical application
of the theoretical concepts. This field of research is still wide open, and we
believe that there is a large, yet undiscovered, potential for the development
and application of further tuning methods.
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