

THE EXACT CONTROLLABILITY PROBLEM FOR THE SECOND ORDER LINEAR HYPERBOLIC EQUATION

H.F. GULIYEV ${ }^{1}$, K.Sh. JABBAROVA ${ }^{2}$

Abstract

We consider a problem of exact controllability in the processes described by the second order linear hyperbolic equation with boundary control. Using Hilbert uniqueness method [1], we introduce an auxiliary boundary value problem. By means of this problem it is shown that after certain threshold time moment the considered system is controllable. Unlike [2] we consider nonhomogeneous hyperbolic equation. Note that different approaches have been applied to the solution of such kind of problems in, for instance, [3, 4].

Key words: controllability problem, linear hyperbolic equation, Hilbert uniqueness method.

1. Problem Statement

Let $\Omega \subset R^{n}$ be a bounded domain with smooth boundary $\Gamma, x=\left(x_{1}, \ldots x_{n}\right)$ be an arbitrary point of domain Ω. Let $T>0$ be a given number, $0 \leq t \leq T$, $Q=\Omega \times(0, T)$ be a cylinder, $S=\Gamma \times(0, T)$ be a lateral surface of the cylinder Q.

Let some process be described by the initial boundary value problem in Q for the hyperbolic equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)=f(x, t), \quad(x, t) \in Q \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
&\left.u\right|_{S}=v(x, t), \quad(x, t) \in S \tag{2}\\
&\left.u\right|_{t=0}= u_{0}(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=u_{1}(x), \quad x \in \Omega \tag{3}
\end{align*}
$$
\]

The exact controllability problem for (1)-(3) is formulated as follows:
Given T find a Hilbert space H, such that for each initial pair $\left\{u_{0}, u_{1}\right\} \in H$ there exists a control $v \in L^{2}(S)$ such that the solution of (1)-(3) satisfies the stabilization conditions

$$
\begin{equation*}
\left.u\right|_{t=T}=0,\left.\frac{\partial u}{\partial t}\right|_{t=T}=0, \quad x \in \Omega \tag{4}
\end{equation*}
$$

Note that the similar problem has been considered in [5], where the equation (1) contains additional terms, which are the solution and its first derivatives. However the coefficients of (1) in [5] do not depend on t. The technique of proofs in [5] is based on the results of the theory of pseudodifferential operators. As it is known this technique is enough complicated. We use the Hilbert uniqueness method introduced by Lions [1] and applied in [2] which is more practical and simple. We find the concrete value for the threshold time moment T_{0}, whereas in [5] the existence of T_{0} is shown theoretically.

2. Denotations and some assumptions

Let R^{n} be an n-dimensional Euclidean space and let be

$$
x^{0} \in R^{n}, m(x)=x-x^{0}=\left(x_{1}-x_{1}^{0}, \ldots, x_{n}-x_{n}^{0}\right), m_{k}(x)=x_{k}-x_{k}^{0}
$$

Let $R\left(x^{0}\right)$ be a radius of the minimal ball with center at x^{0}, containing Ω. By $\nu(x)$ we denote the unit exterior normal to Γ. Denote $\Gamma\left(x^{0}\right)=\{x \in \Gamma \mid(m(x), \nu(x))>0\}, \Gamma_{*}\left(x^{0}\right)=\{x \in \Gamma \mid(m(x), \nu(x)) \leq 0\}$, where $(m(x), \nu(x))$ is an inner product in R^{n},

$$
S\left(x^{0}\right)=\Gamma\left(x^{0}\right) \times(0, T), S_{*}\left(x^{0}\right)=\Gamma_{*}\left(x^{0}\right) \times(0, T), S=S\left(x^{0}\right) \cup S_{*}\left(x^{0}\right)
$$

Denote

$$
A(t) u \equiv-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)
$$

Assume that $a_{i j}(x, t)=a_{j i}(x, t)$, for all $(x, t) \in Q$ and for all $\xi \in$ $R^{n},(x, t) \in Q, \quad \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geq \alpha \sum_{i=1}^{n} \xi_{i}^{2}, \quad \alpha=$ const >0 and $a_{i j} \in C^{1}(\bar{Q})$, $i, j=1, \ldots, n$.

Let there exist a number $\delta, 0<\delta<1$ such that

$$
(1-\delta) \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j}-\frac{1}{2} \sum_{k=1}^{n} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{k}} a_{i j}(x, t) m_{k} \xi_{i} \xi_{j} \geq 0(\text { see }[6])
$$

for all $\xi \in R^{n}, \quad(x, t) \in Q$.
Assume that $f \in L^{2}(Q), u_{0} \in L^{2}(\Omega), u_{1} \in H^{-1}(\Omega)$. Here we use the denotations from [7].

By $a(t ; \Phi, \Psi)$ we denote the following bilinear form:

$$
a(t ; \Phi, \Psi)=\sum_{i, j=1}^{n} \int_{\Omega} a_{i j} \frac{\partial \Phi}{\partial x_{i}} \frac{\partial \Psi}{\partial x_{j}} d x
$$

Let

$$
\begin{aligned}
\beta(t) & \equiv \max _{1 \leq i, j \leq n}\left\|\frac{\partial a_{i j}}{\partial t}\right\|_{C(\bar{\Omega})}, T_{0}=\frac{R\left(x^{0}\right)}{\delta} C_{\alpha} C_{1}^{2} \\
C_{\alpha} & =\max \left\{1, \frac{1}{\alpha}\right\}, C_{1}=\exp \left(\frac{n}{\alpha} \int_{0}^{T} \beta(t) d t\right)
\end{aligned}
$$

Below we show that for $T>T_{0}$ the system is controllable, therefore T_{0} is called a threshold time moment.

By a solution of problem (1)-(3), for the given control $v \in L^{2}(S)$ we mean a function $u=u(x, t)$ from $L^{2}(Q)$ satisfying the integral identity

$$
\begin{gathered}
\int_{Q} u\left[\frac{\partial^{2} g}{\partial t^{2}}+A(t) g\right] d x d t= \\
=\int_{Q} f g d x d t-\int_{S} v \frac{\partial g}{\partial \nu_{A}} d s+\left\langle u_{1}(x), g(x, 0)\right\rangle-\int_{\Omega} u_{0}(x) \frac{\partial g(x, 0)}{\partial t} d x \\
\forall g \in C^{2}(\bar{Q}), g(x, T)=\frac{\partial g(x, T)}{\partial t}=0,\left.g\right|_{S}=0
\end{gathered}
$$

Here $\langle.,$.$\rangle means the value of the functional from H^{-1}(\Omega)$ on the element from $H_{0}^{1}(\Omega)$,

$$
\frac{\partial}{\partial \nu_{A}} \equiv \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial}{\partial x_{j}} \cos \left(\nu, x_{i}\right)
$$

is co-normal with respect to A derivative, $\cos \left(\nu, x_{i}\right)$ is the i-th direction cosine of the exterior normal to the boundary Γ of the domain Ω.

Problem (1)-(3) has a unique weak solution $u(x, t)$, determined by means of transposition (see [8]). Note that such a solution possesses the following properties

$$
\left.u \in C\left([0, T] ; L^{2}(\Omega)\right), \frac{\partial u}{\partial t} \in C\left([0, T] ; H^{-1}(\Omega)\right) \quad \text { (see } \quad[9]\right)
$$

3. Main result

Theorem 3.1. Let $T>T_{0}$. Then for each pair $\left\{u_{0}, u_{1}\right\} \in L^{2}(\Omega) \times H^{-1}(\Omega)$ there exists a control $v \in L^{2}(S)$ such that the corresponding solution of problem (1)-(3) satisfies the conditions (4).

Proof. To prove the theorem we use Hilbert uniqueness method [1]. Let as take $\varphi_{0} \in H_{0}^{1}(\Omega), \varphi_{1} \in L^{2}(\Omega)$ and consider the problem

$$
\begin{gather*}
\frac{\partial^{2} \varphi}{\partial t^{2}}+A(t) \varphi=0 \text { in } Q \tag{5}\\
\left.\varphi\right|_{S}=0 \tag{6}\\
\left.\varphi\right|_{t=0}=\varphi_{0}(x),\left.\frac{\partial \varphi}{\partial t}\right|_{t=0}=\varphi_{1}(x) \text { in } \Omega . \tag{7}
\end{gather*}
$$

Then for the unique solution of problem (5)-(7) the condition $\frac{\partial \varphi}{\partial \nu} \in L^{2}(S)$ (see [9], [10]) is satisfied.

Consider the following problem

$$
\begin{gather*}
\frac{\partial^{2} \psi}{\partial t^{2}}+A(t) \psi=f \text { in } Q, \tag{8}\\
\psi=\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial \nu} \text { on } S\left(x^{0}\right), \\
0 \quad \text { on } S_{*}\left(x^{0}\right),
\end{array}\right. \tag{9}\\
\left.\psi\right|_{t=T}=0,\left.\frac{\partial \psi}{\partial t}\right|_{t=T}=0 \text { in } \Omega . \tag{10}
\end{gather*}
$$

Problem (8)-(10) also possesses a unique weak solution $\psi(x, t)$ determined by means of transposition (see [8]), and moreover

$$
\begin{equation*}
\psi \in C\left([0, T] ; L^{2}(\Omega)\right), \frac{\partial \psi}{\partial t} \in C\left([0, T] ; H^{-1}(\Omega)\right)(\text { see }[9]) \tag{11}
\end{equation*}
$$

For $\varphi_{0} \in H_{0}^{1}(\Omega), \varphi_{1} \in L^{2}(\Omega)$ we solve problem (5)-(7) and obtain $\frac{\partial \varphi}{\partial \nu} \in$ $L^{2}(S)$. Then we solve problem (8)-(10) and show that (11) is valid. Therefore we determine the mapping

$$
\wedge: H_{0}^{1}(\Omega) \times L^{2}(\Omega) \rightarrow H^{-1}(\Omega) \times L^{2}(\Omega)
$$

given by the equality

$$
\begin{equation*}
\wedge\left\{\varphi_{0}, \varphi_{1}\right\}=\left\{\frac{\partial \psi(x, 0)}{\partial t},-\psi(x, 0)\right\} . \tag{12}
\end{equation*}
$$

Smoothing all the data of the problems (5)-(7) and (8)-(10), we obtain that the solutions of the smoothed problems belong at least to space $H^{2}(Q)$. Then multiplying the both hand sides of the smoothed equation (5) by the $\psi(x, t)$, solution of the smoothed problem (8)-(10), integrating on the domain Q, taking into account the boundary conditions (6),(7),(9),(10) and then passing to the limit with respect to the smoothing parameter, we obtain

$$
\begin{gather*}
\left\langle\frac{\partial \psi(x, 0)}{\partial t}, \varphi_{0}(x)\right\rangle-\int_{\Omega} \psi(x, 0) \varphi_{1}(x) d x= \\
=\int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s-\int_{Q} f(x, t) \varphi(x, t) d x d t . \tag{13}
\end{gather*}
$$

It follows from (12) and (13) that

$$
\begin{equation*}
\left\langle\wedge\left\{\varphi_{0}, \varphi_{1}\right\},\left\{\varphi_{0}, \varphi_{1}\right\}\right\rangle=\int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s-\int_{Q} f \varphi d x d t \tag{14}
\end{equation*}
$$

where $\left\langle\wedge\left\{\varphi_{0}, \varphi_{1}\right\},\left\{\varphi_{0}, \varphi_{1}\right\}\right\rangle$ means duality relation between $H^{-1}(\Omega) \times L^{2}(\Omega)$ and $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

In $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, consider the quadratic form

$$
\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{F}^{2}=\int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s .
$$

Let as show that there exist such constants $M_{1}, M_{2}>0$ that

$$
\begin{align*}
& \left(T-T_{0}\right) M_{1}\left\|\left\{\varphi_{0,}, \varphi_{1}\right\}\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} \leq \int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s \leq \tag{15}\\
& \leq M_{2}\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} .
\end{align*}
$$

In lemma 3.2 (section 3, [2]) it is proved that

$$
\begin{equation*}
\int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s \leq C\left\|\left\{\varphi_{0,}, \varphi_{1}\right\}\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} . \tag{16}
\end{equation*}
$$

And in lemma 3.3 (section 3, [2]) it is shown that

$$
\left(T-T_{0}\right) E_{0} \leq \frac{R\left(x^{0}\right) C_{1}}{2 \delta} \int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s
$$

or

$$
\begin{equation*}
\left(T-T_{0}\right) \frac{2 \delta E_{0}}{R\left(x^{0}\right) C_{1}} \leq \int_{S\left(x^{0}\right)} \sum_{i, j=1}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s \tag{17}
\end{equation*}
$$

Let as denote an energy integral corresponding to the equation (5) by

$$
E(t)=\frac{1}{2} \int_{\Omega}\left[\left|\frac{\partial \varphi(x, t)}{\partial t}\right|^{2}+\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial \varphi(x, t)}{\partial x_{i}} \frac{\partial \varphi(x, t)}{\partial x_{j}}\right] d x,
$$

similarly to [8]. Then

$$
E_{0}=E(0)=\frac{1}{2} \int_{\Omega}\left(\varphi_{1}^{2}(x)+\sum_{i, j=1}^{n} a_{i j}(x, 0) \frac{\partial \varphi_{0}(x)}{\partial x_{i}} \frac{\partial \varphi_{0}(x)}{\partial x_{j}}\right) d x .
$$

¿From the coerciveness condition on the coefficients $a_{i j}(x, t)$ it follows that

$$
E_{0} \geq \frac{1}{2} \int_{\Omega}\left[\varphi_{1}^{2}(x)+\alpha \sum_{i=1}^{n}\left(\frac{\partial \varphi_{0}(x)}{\partial x}\right)^{2}\right] d x \geq M_{\alpha} \int_{\Omega}\left[\varphi_{1}^{2}(x)+\sum_{i=1}^{n}\left(\frac{\partial \varphi_{0}(x)}{\partial x}\right)^{2}\right] d x,
$$

where

$$
M_{\alpha}=\frac{1}{2} \min \{1, \alpha\} .
$$

Then

$$
E_{0} \geq M_{\alpha}\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2} .
$$

From (17) one can get

$$
\begin{equation*}
\left(T-T_{0}\right) \frac{2 \delta M_{\alpha}}{R\left(x^{0}\right) C_{1}}\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{\mathrm{H}_{0}^{1}(\Omega) \times L^{2}(\Omega)} \leq \int \sum_{i, j}^{n} a_{i j} \nu_{i} \nu_{j}\left(\frac{\partial \varphi}{\partial \nu}\right)^{2} d s \tag{18}
\end{equation*}
$$

Thus from (16) and (18) the validity of the inequalities (15) follows.
Inequalities (15) show that for $T>T_{0}$ the norm $\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{F}^{2}$ is equivalent (see [11]) to the norm in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ defined by the equality

$$
\left\|\left\{\varphi_{0}, \varphi_{1}\right\}\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2}=\int_{\Omega} \sum_{i=1}^{n}\left(\frac{\partial \varphi_{0}(x)}{\partial x_{i}}\right)^{2} d x+\int_{\Omega}\left(\varphi_{1}(x)\right)^{2} d x .
$$

Also the inequalities (15) show that $F=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ for $T>T_{0}$. Note that $F^{\prime}=H^{-1}(\Omega) \times L^{2}(\Omega)$ is a space conjugated to F, the operator \wedge is continuous by the norm $\|\cdot\|_{F}$.

Considering (5)-(7) we obtain the existence of such $M_{3}>0$ that

$$
\begin{equation*}
\|\varphi\|_{X} \leq M_{3}\left(\left\|\varphi_{0}\right\|_{H_{0}^{1}(\Omega)}+\left\|\varphi_{1}\right\|_{L^{2}(\Omega)}\right), \tag{19}
\end{equation*}
$$

where

$$
X=\left\{\varphi \mid \varphi \in C\left([0, T] ; H^{-1}(\Omega)\right), \frac{\partial \varphi}{\partial t} \in C\left([0, T] ; L^{2}(\Omega)\right)\right\}(\text { see }[8],[9])
$$

Since

$$
\left|\int_{Q} f \varphi d x d t\right| \leq\|f\|_{L^{2}(Q)} \cdot\|\varphi\|_{L^{2}(Q)}
$$

then by (19) it follows that there exists such $M_{4}>0$ that

$$
\begin{equation*}
-\int_{Q} f \varphi d x d t \geq-\|f\|_{L^{2}(Q)} \cdot\|\varphi\|_{L^{2}(Q)} \geq-M_{4}\left(\left\|\varphi_{0}\right\|_{H_{0}^{1}(\Omega)}+\left\|\varphi_{1}\right\|_{L^{2}(\Omega)}\right) . \tag{20}
\end{equation*}
$$

Then as one may obtain from (14),(15) and (20) the operator $\wedge: F \rightarrow F^{\prime}$ is coercive, therefore it is an isomorphism between F and conjugated F^{\prime}. This shows that for the given pair $\left\{u_{1}(x),-u_{0}(x)\right\} \in F^{\prime}=H^{-1}(\Omega) \times L^{2}(\Omega)$ there exists a unique pair $\left\{\varphi_{0}, \varphi_{1}\right\} \in F=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ satisfying

$$
\begin{equation*}
\wedge\left\{\varphi_{0}, \varphi_{1}\right\}=\left\{u_{1}(x),-u_{0}(x)\right\} . \tag{21}
\end{equation*}
$$

Then from (12) and (21)we obtain that the solution $\psi(x, t)$ of problem (8)-(10) satisfies to the conditions

$$
\psi(x, 0)=u_{0}(x), \frac{\partial \psi(x, 0)}{\partial t}=u_{1}(x) .
$$

Thus, the unique solution $\psi(x, t)$ of problem (8)-(10) corresponding to the control

$$
v=\left\{\begin{array}{cc}
\frac{\partial \varphi}{\partial \nu} & \text { on } S\left(x^{0}\right), \\
0 & \text { on } S_{*}\left(x^{0}\right)
\end{array}\right.
$$

coincides with the solution $u(x, t)$ of problem (1)-(3). It shows that $u(x, t)$ satisfies the stabilization conditions (4). The theorem 3.1 is proved.

In the theorem 3.1 it is assumed that $T>T_{0}$. It may be shown that for a certain class of functions $a_{i j}(x, t)$ this inequality has a solution. For example, if $a_{i j}(x, t), i, j=\overline{1, n}$ do not depend on t, then $\beta(t) \equiv 0$, therefore $C_{1}=1$. Then the inequality $T>T_{0}$ turns to $T>\frac{R\left(x^{0}\right)}{\delta} C_{\alpha}$.

Remark 3.1. In the paper, some inaccuracies of the paper [2] are corrected, namely, on page 478 of that paper, in formula (5) for the value of the constant T_{0} the multiplier 2 is unnecessary, the value of the constant C_{1} is not shown. In formula (10) on page 479, instead of

$$
\psi= \begin{cases}a_{i j} \nu_{i} \nu_{j} \frac{\partial \varphi}{\partial \nu} & \text { on } S\left(x^{0}\right) \\ 0 & \text { on } S_{*}\left(x^{0}\right)\end{cases}
$$

should be

$$
\psi= \begin{cases}\frac{\partial \varphi}{\partial \nu} & \text { on } S\left(x^{0}\right) \\ 0 & \text { on } S_{*}\left(x^{0}\right)\end{cases}
$$

4. Proof of the formula for C_{1}

Let

$$
E(t)=\frac{1}{2} \int_{\Omega}\left[\left|\frac{\partial \varphi(x, t)}{\partial t}\right|^{2}+\sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial \varphi(x, t)}{\partial x_{i}} \frac{\partial \varphi(x, t)}{\partial x_{j}}\right] d x
$$

be an energy integral corresponding to the equation (5). Using the equality ([8], page 297)

$$
2 E(t)=2 E_{0}+\int_{0}^{t} \sum_{i, j=1}^{n} \frac{\partial a_{i j}(x, t)}{\partial t} \frac{\partial \varphi(x, t)}{\partial x_{i}} \frac{\partial \varphi(x, t)}{\partial x_{j}} d x
$$

and coerciveness condition on the coefficients $a_{i j}(x, t), i, j=\overline{1, n}$ we obtain

$$
E(t) \leq E_{0}+\frac{n}{\alpha} \int_{0}^{t} \beta(s) E(s) d s
$$

¿From this considering Gronwall's lemma one can get

$$
E(t) \leq C_{1} E_{0}, \forall t \in[0, T],
$$

where

$$
C_{1}=\exp \left(\frac{n}{\alpha} \int_{0}^{T} \beta(t) d t\right) .
$$

REFERENCES

1. Lions J.L., Exact Controllability - Stabilization and Perturbations for distributed systems. J. Von Neumann Lecture, Boston 1986, SIAM Review, March, 1988, pp.1-68.
2. Apolaya R.F., Exact controllability for temporally wave equation. Portugaliae Matematica, Vol. 51 Fasc., 4-1994, pp.475-488.
3. Avdonin S.A., Ivanov S.A., Joo I., Exponential series in the problems of initial and pointwise control of a rectangular vibrating membrane. Stud. Sci. Math. Hung., Vol.30, No.3-4,1995, pp.243-259.
4. Vancostenoble Judith, Exact controllability of a damped wave equation with distributed controls. Acta Math. Hung., Vol.89, No.1-2, 2000, pp.71-92.
5.Emanuilov O.Yu., Boundary controllability of hyperbolic equations. Siberian Mathematical Journal, Vol.41, No.4, 2000, pp.785-799.
5. Komornik V., Exact controllability in short time for the wave equation. Ann. Inst. Henri Poincare, Vol.6, No.2, 1989, pp.153-164.
6. Lions J.L., Optimal control of systems described by partial equations. M.: Mir, 1972 (Russian).
7. Lions J.L., Magenes E., Non-homogeneous boundary value problems and their apllications. M.: Mir, 1971 (Russian).
8. Lasiecka I., Lions J. L. and Triggiani R., Non-homogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures et Appl., Vol.65, 1986, pp.149-192.
9. Lions J.L., Control of singular distributed systems. M.: Nauka, 1987 (Russian).
10. Mikhailov V.P., Partial differential equations. M.: Nauka, 1983 (Russian).

[^0]: ${ }^{1}$ Baku State University, 23, Z.Khalilov str., AZ1148, Baku, Azerbaijan, e-mail: hkuliyev@rambler.ru
 ${ }^{2}$ Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9, F.Agayev str., AZ1141, Baku, Azerbaijan

