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1 Introduction and Preliminaries

Systems occur in various problems of applied nature, for instance, see ([1]-[3]
and [10]-[13]). Recently, Su [18] discussed a two-point boundary value problem
for a coupled system of fractional differential equations. Gafiychuk et al. [12]
analyzed the solutions of coupled nonlinear fractional reaction-diffusion equa-
tions.
Let L1(I) be the space of Lebesgue integrable functions defined on the interval
I = [0, 1]. Let E be a reflexive Banach space with the norm ||.|| and its dual
E∗ and denote by C[I, E] the Banach space of strongly continuous functions
x : I → E with sup-norm ||.||0.

The existence of weak solutions of the integral equations studied by many au-
thors such as [4], [5], [9] and [14]-[17].
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The existence of weak solutions to the Hammerstein integral equation

x(t) = h(t) +
∫ 1

0
k(t, s) f(s, x(s)) ds, t ∈ I

was proved by O’Regan [15] where x takes values in reflexive Banach spaces
and f is weakly-weakly continuous.
Recently, the existence of weak solution of the nonlinear fractional-order integral
equation

x(t) = g(t) + λ Iα f(t, x(t)), t ∈ I, 0 < α < 1 (1)

was proved in [17] where x takes values in reflexive Banach spaces and f is
weakly measurable in t and weakly sequentially continuous in x .

An existence result for (1), in the case E = R found in [8] where the real-
valued function f satisfies Carathéodory condition.
Also, The authors [9] proved the existence of solution x ∈ C[I, E] of the
Hammerstein integral equation

x(t) = a(t) +
∫ 1

0
k(t, s) f(s, x(s)) ds, t ∈ I,

where x takes values in reflexive Banach spaces and f is weakly measurable
in t and weakly sequentially continuous in x .
and the Urysohn integral equation

x(t) = a(t) +
∫ 1

0
u(t, s, x(s)) ds, t ∈ I,

where x takes values in reflexive Banach spaces and u is weakly measurable
in s and weakly sequentially continuous in x .

It well known that the existence of weak solutions of the Hammerstein integral
equation has been considered for the first time, by M. Cichon, I. Kubiaczyk [5].

In this paper, we study the existence of a weak solution for the coupled systems

x(t) = g1(t) +
∫ 1

0
k1(t, s) f1(s, y(s)) ds, t ∈ [0, 1],

(2)

y(t) = g2(t) +
∫ 1

0
k2(t, s) f2(s, x(s)) ds, t ∈ [0, 1].

and

x(t) = g1(t) +
∫ 1

0
u1(t, s, y(s)) ds, t ∈ [0, 1],

(3)

y(t) = g2(t) +
∫ 1

0
u2(t, s, x(s)) ds, t ∈ [0, 1].
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Now, we shall present some auxiliary results that will be need in this work. Let
E be a Banach space (need not be reflexive) and let x : I → E, then

(1) x(.) is said to be weakly continuous (measurable) at t0 ∈ I if for every
φ ∈ E∗, φ(x(.)) is continuous (measurable) at t0.

(2) A function h : E → E is said to be weakly sequentially continuous if h
maps weakly convergent sequences in E to weakly convergent sequences
in E.

If x is weakly continuous on I, then x is strongly measurable and hence
weakly measurable (see[7] and [6]). Note that in reflexive Banach space weakly
measurable functions are Pettis integrable if and only if φ(x(.)) is Lebesgue
integrable on I for every φ ∈ E∗ (see[7] pp. 78).
While it is not always possible to show that a given mapping between Ba-
nach spaces is weakly continuous, quite often its weak sequential continuity
and weakly sequentially continuous offers no problem. A ”sequential” concept
of continuity is more general than the continuity and moreover more useful (for
example the Lebesgue’s dominated convergence theorem is valid for sequence
but not for nets) so we shall state a fixed point theorem and some propositions
which will be used in the sequel (see[16]).

Theorem 1 Let E be a Banach space and let Q be a nonempty, bounded,
closed and convex subset of the space E and let T : Q → Q be a weakly
sequentially continuous and assume that TQ(t) is relatively weakly compact in
E for each t ∈ [0, 1] . Then, T has a fixed point in the set Q.

Proposition 1 A subset of a reflexive Banach space is weakly compact if and
only if it is closed in the weak topology and bounded in the norm topology.

Proposition 2 Let E be a normed space with y 6= 0. Then there exists a
φ ∈ E∗ with ||φ|| = 1 and ||y|| = φ(y).
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2 Hammerstein Coupled System

This section deals with the existence of weak solutions for the coupled system
of Hammerstein type(2).
Let E be a reflexive Banach space and D ⊂ E. Consider the following assump-
tions:

(1:) gi ∈ C[I, E], i = 1, 2;

(2:) fi : I ×D → E, i = 1, 2 satisfy the following:

(i) For each t ∈ I, fit = fi(t, .) are weakly sequentially continuous;

(ii) For each x ∈ D, fi(., x(.)) are weakly measurable on I ;

(iii) The weak closure of the range of fi(I × D) are weakly compact in
E
(or equivalently: there exist Mi such that ||fi(t, x)|| ≤ Mi

(t, x) ∈ I ×D;)

(3:) ki : I × I → R+ are integrable in s and continuous in t, the operators∫ 1

0
ki(t, s) y(s) ds

map L1(I) into L1(I) and
∫ 1
0 ki(t, s) < Ai.

Definition 1 By a weak solution for the coupled system (2), we mean the pair
of functions (x, y) ∈ C[I, E]× C[I, E] such that

φ(x(t)) = φ(g1(t)) +
∫ 1

0
k1(t, s) φ(f1(s, y(s))) ds, t ∈ [0, 1],

φ(y(t)) = φ(g2(t)) +
∫ 1

0
k2(t, s) φ(f2(s, x(s))) ds, t ∈ [0, 1]

for all φ ∈ E∗.

Theorem 2 Let the assumptions (1:)-(3:) be satisfied. Then the coupled sys-
tem (2) has at least one weak solution (x, y) ∈ C[I, E]× C[I, E].

Proof: Define the operators T1, T2 by

T1y(t) = g1(t) +
∫ 1

0
k1(t, s) f1(s, y(s)) ds, t ∈ I
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T2x(t) = g2(t) +
∫ 1

0
k2(t, s) f2(s, x(s)) ds, t ∈ I.

Then the coupled system (2) may be written as:

x(t) = T1y(t)

y(t) = T2x(t).

Define the operator T by

T (x, y)(t) = (T1y(t), T2x(t)).

For any y ∈ C[I, E], since f1(., y(.)) is weakly measurable on I
and ||f1(t, y)|| ≤ M1, then φ(f1(., y(.))) is Lebesgue integrable on
I ∀φ ∈ E∗ and since k1(t, .) is Lebesgue integrable on I, then we
have φ(k1(t, .) f1(., y(.))) = k1(t, .) φ(f1(., y(.))) is Lebesgue integrable on
I ∀φ ∈ E∗, then k1(t, .) f1(., y(.)) is Pettis integrable on I. Thus T1 is well
defined.
Now, we shall prove that T1 : C[I, E]→ C[I, E].
Let t1, t2 ∈ I and ( without loss of generality assume that
T1y(t2)− T1y(t1) 6= 0)

T1y(t2)− T1y(t1) = g1(t2) − g1(t1)

+
∫ 1

0
k1(t2, s) f1(s, y(s)) ds −

∫ 1

0
k1(t1, s) f1(s, y(s)) ds

= g1(t2) − g1(t1) +
∫ 1

0
[k1(t2, s) − k1(t1, s)] f1(s, y(s)) ds.

Therefore as a consequence of Proposition 2, we obtain

||T1y(t2)− T1y(t1)|| = φ(T1y(t2)− T1y(t1))

= φ(g1(t2) − g1(t1)) +
∫ 1

0
|k1(t2, s) − k1(t1, s)| φ(f1(s, y(s))) ds

= ||g1(t2) − g1(t1)|| +
∫ 1

0
|k1(t2, s) − k1(t1, s)| ||f1(s, y(s))|| ds

≤ ||g1(t2) − g1(t1)|| + M1

∫ 1

0
|k1(t2, s) − k1(t1, s)| ds.

As done above we can show that

||T2x(t2)− T2x(t1)|| ≤ ||g2(t2) − g2(t1)|| + M2

∫ 1

0
|k2(t2, s) − k2(t1, s)| ds.

Now, we shall prove that T : C[I, E]× C[I, E]→ C[I, E]× C[I, E]

Tu(t2) − Tu(t1) = T (x, y)(t2) − T (x, y)(t1)
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= (T1y(t2), T2x(t2)) − (T1y(t1), T2x(t1)) =

(T1y(t2) − T1y(t1), T2x(t2) − T2x(t1)),

then we have

|| Tu(t2) − Tu(t1) || ≤ ||T1y(t2) − T1y(t1)|| + ||T2x(t2) − T2x(t1)||

≤ ||g1(t2) − g1(t1)|| + M1

∫ 1

0
|k1(t2, s) − k1(t1, s)| ds

+ ||g2(t2) − g2(t1)|| + M2

∫ 1

0
|k2(t2, s) − k2(t1, s)| ds,

and

||T1 y(t)|| = φ(T1y(t)) = φ(g1(t)) +
∫ 1

0
k1(t, s) φ(f1(s, y(s))) ds

= ||g1|| +
∫ 1

0
k1(t, s) ||f1(s, y(s))|| ds

≤ ||g1|| + M1

∫ 1

0
k1(t, s) ds

≤ ||g1|| + A1 M1.

By a similar way as done above we can prove that

||T2x(t)|| ≤ ||g2|| + A2 M2.

Then, T1, T2 are well defined on the sets
Q1 = { y ∈ C[I, E] : ||y|| ≤ M1 }, M1 = ||g1|| + A1

and Q2 = { x ∈ C[I, E] : ||x|| ≤ M2 }, M2 = ||g2|| + A2 respectively.
Now, define the set Q by

Q = { u = (x, y) ∈ C[I, E]×C[I, E] : ||u|| ≤ ||g1||+A1 M1 + ||g2||+A2 M2 }.

Then, for any u ∈ Q we have

||Tu(t)|| = ||T (x, y)(t)|| = ||(T1y(t), T2x(t))|| ≤ ||T1y(t)|| + ||T2x(t)||

≤ ||g1|| + A1 M1 + ||g2|| + A2 M2.

i.e. ∀u ∈ Q⇒ Tu ∈ Q⇒ TQ ⊂ Q. Thus T : Q→ Q.

Then Q is nonempty, uniformly bounded and strongly equi-continuous subset
of C[I, E] × C[I, E]. Also, it can be shown that Q is convex and closed.
As a consequence of Proposition 1, then TQ is relatively weakly compact. It
remains to prove that T is weakly sequentially continuous.
Let {yn(t)} and {xn(t)} be two sequences in Q1, Q2 converge weakly
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to x(t), y(t) respectively ∀t ∈ I. Since f1(t, y(t)) and f2(t, x(t)) are
weakly sequentially continuous in the second argument, then f1(t, yn(t)) and
f2(t, xn(t)) converge weakly to f1(t, y(t)) and f2(t, x(t)) respectively and
hence φ(f1(t, yn(t))) and φ(f2(t, xn(t))) converge strongly to φ(f1(t, y(t)))
and φ(f2(t, x(t))) respectively.
Using assumption (iii)) and applying Lebesgue Dominated Convergence Theo-
rem for Pettis integral, then we get

φ(
∫ 1

0
k1(t, s) f1(s, yn(s)) ds) =

∫ 1

0
k1(t, s) φ(f1(s, yn(s))) ds

→
∫ 1

0
k1(t, s) φ(f1(s, y(s))) ds ∀φ ∈ E∗, t ∈ I,

and

φ(
∫ 1

0
k2(t, s) f2(s, xn(s)) ds) =

∫ 1

0
k2(t, s) φ(f2(s, xn(s))) ds

→
∫ 1

0
k2(t, s) φ(f2(s, x(s))) ds ∀φ ∈ E∗, t ∈ I.

Then T is weakly sequentially continuous. Since all conditions of Theorem 1
are satisfied, then the operator T has at least one fixed point u ∈ Q which
competes the proof.

3 Urysohn Coupled System

This section deals with the existence of weak solutions for the coupled system
of Urysohn type(3).

Let E be a reflexive Banach space and D ⊂ E. Consider the following as-
sumptions:

(1∗:) gi ∈ C[I, E], i = 1, 2;

(2∗ :) ui : I × I ×D → E, i = 1, 2 satisfy the following:

(i∗) For each t, s ∈ I × I, ui(t, s, .) are weakly sequentially continuous;

(ii∗) For each x ∈ D and t ∈ I ui(t, ., x(.)) are weakly measurable on
I ;

(iii∗) For each x ∈ D and s ∈ I ui(., s, x(s)) are continuous on I ;
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(3∗ :) ||ui(t, s, x(s))|| ≤ ki(t, s), i = 1, 2 ki : I × I → R+ are integrable in s
and continuous in t , the operators∫ 1

0
ki(t, s) z(s) ds

maps L1(I) into L1(I) and
∫ 1
0 ki(t, s)ds < Ai, t ∈ I.

Definition 2 By a weak solution for the coupled system (3), we mean the pair
of functions (x, y) ∈ C[I, E]× C[I, E] such that

φ(x(t)) = φ(g1(t)) +
∫ 1

0
φ(u1(t, s, y(s))) ds, t ∈ [0, 1],

φ(y(t)) = φ(g2(t)) +
∫ 1

0
φ(u2(t, s, x(s))) ds, t ∈ [0, 1]

for all φ ∈ E∗.

Theorem 3 Let the assumptions (1∗ :)-(3∗ :) be satisfied. Then the coupled
system (3) has at least one weak solution (x, y) ∈ C[I, E]× C[I, E].

Proof:
Define the operators T1, T2 by

T1y(t) = g1(t) +
∫ 1

0
u1(t, s, y(s)) ds, t ∈ I

T2x(t) = g2(t) +
∫ 1

0
u2(t, s, x(s)) ds, t ∈ I.

Then the coupled system (3) may be written as:

x(t) = T1y(t)

y(t) = T2x(t).

Define the operator T by

T (x, y)(t) = (T1y(t), T2x(t)).

For any y ∈ C[I, E] and since u1(t, ., y(.)) is weakly measurable on I,
then φ(u1(t, ., y(.))) is strongly measurable on I ∀φ ∈ E∗ and since
||u1(t, s, y)|| ≤ k1(t, s), then φ(u1(t, ., y(.))) is Lebesgue integrable on
I ∀φ ∈ E∗ and hence u1(t, ., y(.)) Pettis integrable on I. Thus T1 is
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well defined.
Now, we shall prove that T1 : C[I, E]→ C[I, E].
Let t1, t2 ∈ I and ( without loss of generality assume that
T1y(t2)− T1y(t1) 6= 0)

T1y(t2)− T1y(t1) =

= g1(t2) − g1(t1) +
∫ 1

0
u1(t2, s, y(s)) ds −

∫ 1

0
u1(t1, s, y(s)) ds

= g1(t2) − g1(t1) +
∫ 1

0
[u1(t2, s, y(s)) − u1(t1, s, y(s)) ] ds

Therefore as a consequence of Proposition 2, we obtain

||T1y(t2)− T1y(t1)|| = φ(T1y(t2)− T1y(t1))

= φ(g1(t2) − g1(t1)) +
∫ 1

0
φ[u1(t2, s, y(s)) − u1(t1, s, y(s)) ] ds

≤ ||g1(t2) − g1(t1)|| +
∫ 1

0
||u1(t2, s, y(s)) − u1(t1, s, y(s))|| ds (4)

As done above we can show that

||T2x(t2)− T2x(t1)|| ≤

≤ ||g2(t2) − g2(t1)|| +
∫ 1

0
||u2(t2, s, x(s)) − u2(t1, s, x(s))|| ds.

Now, we shall prove that T : C[I, E]× C[I, E]→ C[I, E]× C[I, E]

Tv(t2) − Tv(t1) = T (x, y)(t2) − T (x, y)(t1), v(t) = (x, y)(t)

= (T1y(t2), T2x(t2)) − (T1y(t1), T2x(t1)) =

= (T1y(t2) − T1y(t1), T2x(t2) − T2x(t1)),

then we have

|| Tv(t2) − Tv(t1) || ≤ ||T1y(t2) − T1y(t1)|| + ||T2x(t2) − T2x(t1)||

≤ ||g1(t2) − g1(t1)|| +
∫ 1

0
||u1(t2, s, y(s)) − u1(t1, s, y(s))|| ds

+ ||g2(t2) − g2(t1)|| +
∫ 1

0
||u2(t2, s, x(s)) − u2(t1, s, x(s))|| ds,

and

||T1 y(t)|| = φ(T1y(t)) = φ(g1(t)) +
∫ 1

0
φ(u1(t, s, y(s))) ds

= φ(g1(t)) +
∫ 1

0
||u1(t, s, y(s))|| ds ≤ ||g1|| +

∫ 1

0
k1(t, s) ds
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≤ ||g1|| + A1.

By a similar way as done above we can prove that

||T2x(t)|| ≤ ||g2|| + A2.

Then, T1, T2 are well defined on the sets
Q1 = { y ∈ C[I, E] : ||y|| ≤ M1 }, M1 = ||g1|| + A1

and Q2 = { x ∈ C[I, E] : ||x|| ≤ M2 }, M2 = ||g2|| + A2 respectively.
Now, let the set Q be defined as

Q = { v = (x, y) ∈ C[I, E]× C[I, E] : ||v|| ≤ ||g1|| + A1 + ||g2|| + A2 }.

Then, for any v ∈ Q we have

||Tv(t)|| = ||T (x, y)(t)|| = ||(T1y(t), T2x(t))|| ≤ ||T1y(t)|| + ||T2x(t)||

≤ ||g1|| + A1 + ||g2|| + A2.

i.e. ∀v ∈ Q⇒ Tv ∈ Q⇒ TQ ⊂ Q. Thus T : Q→ Q.
Then Q is nonempty, uniformly bounded and strongly equi-continuous subset
of C[I, E] × C[I, E]. Also, it can be shown that Q is convex and closed.
As a consequence of Proposition 1, then TQ is relatively weakly compact. It
remains to prove that T is weakly sequentially continuous.
Let {yn(t)} and {xn(t)} be two sequences in Q1, Q2 converge weakly
to x(t), y(t) respectively ∀t ∈ I. Since u1(t, s, y(s)) and u2(t, , s, x(s))
are weakly sequentially continuous in the third argument, then u1(t, s, yn(s))
and u2(t, s, xn(s)) converge weakly to u1(t, s, y(s)) and u2(t, s, x(s)) respec-
tively and hence φ(u1(t, s, yn(s))) and φ(u2(t, , s, xn(s))) converge strongly
to φ(u1(t, s, y(s))) and φ(u2(t, s, x(s))) respectively.
Using assumption (iii∗)) and applying Lebesgue Dominated Convergence The-
orem for Pettis integral, then we get

φ(
∫ 1

0
u1(t, s, yn(s)) ds) =

∫ 1

0
φ(u1(t, s, yn(s))) ds

→
∫ 1

0
φ(u1(t, s, y(s))) ds ∀φ ∈ E∗, t ∈ I

and
φ(

∫ 1

0
u2(t, s, xn(s)) ds) =

∫ 1

0
φ(u2(t, s, xn(s))) ds

→
∫ 1

0
φ(u2(t, s, x(s))) ds ∀φ ∈ E∗, t ∈ I.

Then T is weakly sequentially continuous.
Since all conditions of Theorem 1 are satisfied, then the operator T has at
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least one fixed point v = (x, y) ∈ Q , which completes the proof.
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