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Abstract

This paper considers the exponential stabilization problem for a class of linear sys-
tems with mixed time delays in both state and control. By using an improved Lyapunov-
Krasovskii functional and memoryless controller, new conditions for the exponential sta-
bilization of the system are derived in terms of linear matrix inequalities (LMIs). This
approach allows to compute simultaneously the two bounds that characterize the ex-
ponential stability rate of the solution. A numerical example is given to illustrate the
effectiveness of our result.
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1 Introduction

Time delays in control inputs are often encountered in many practical sys-
tems because of transmission of the measurement information. The existence
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of these delays may be the source of instability and serious deterioration in the
performance of the closed-loop systems. Therefore, the problem of stability and
stabilization of control systems with input delays has been received consider-
able attention from many researchers (see, e.g. [1, 3, 5, 6, 8, 12, 17, 19, 20, 22]
and references therein). The stability problem has been considered mostly for
linear time-invariant control systems with state and control delays. The lead
to memoryless controllers which means control law of the form u(t) = Kx(t)
([8, 13, 22]), or to more general controllers with memory that include, neverthe-
less, an instantaneous feedback term u(t) = Kx(t) +

∑m
i=1Kix(t− hi). Another

method to improve the control of linear time-invariant systems with input de-
lay is the reduction method proposed in [1], which reduces the system under
consideration to a delay-free ordinary system by certain state transformation.
Based on the reduction method, Moon et. al. [12] proposed a delay feedback
controller for the robust stability of linear uncertain systems with input delay.
By using an improved state transformation, Chen and Zheng [3], Yue [19], Yue
and Han [20], derived sufficient conditions for the robust stabilization of linear
uncertain systems with unknown input delay in terms of LMI’s but the system
is required to be global controllable.

Recently, special interest has been devoted to the exponential stability and
stabilization problem for linear time-delay systems [5, 6, 10, 11, 14, 15, 16,
18]. Based on linear matrix inequalities approach [2], a systematic procedure
for finding exponential stability conditions has been proposed in [11] for LTI
systems with constant delay. In [9, 15, 18], by using state transformation ξ(t) =
eλtx(t), delay-dependent conditions for robust exponential stability of linear
uncertain systems with constant delay were given in terms of LMIs. By also
using the state transformation method, [14] gives conditions for the exponential
stability of non-autonomous systems with constant delay in terms of solution
of Riccati-type differential equation, which is further improved in [16] by using
Razumikhin method.

In this paper, the results of [9]-[13], [18]-[20] will be extended to linear
systems with mixed delays in both state and control:

ẋ(t) = Ax(t) +Dx(t− τ) +E

∫ t

t−τ
x(s)ds+Bu(t) +Cu(t− r) + F

∫ t

t−r
u(s)ds.

By using an improved Lyapunov-Krasovskii functional, new delay-dependent
conditions for the exponential stabilization are derived in terms of linear ma-
trix inequalities. The conditions do not require any assumption about the
controllability of the nominal system, e.g., neither (A,B) nor (A+D,B) needs
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to be controllable. The approach also allows to compute simultaneously the
two bounds that characterize the exponential stability rate of the solution.

The paper is organized as follows. Section 2 presents notations, definitions
and some technical propositions needed for the proof of the main result. Delay-
dependent conditions for exponential stabilization and an illustrated example
are presented in Section 3. The paper ends with conclusions and cited refer-
ences.

2 Preliminaries

The following notations will be used throughout this paper. R+ denotes the
set of all non-negative real numbers; Rn denotes the n dimensional Euclidean
space with the Euclidean norm ‖.‖; Rn×r denotes the space of all matrices of
(n×r)-dimensions, Im denotes the identity matrix in Rm×m, λmax(A), (λmin(A),
resp.) denotes the maximal (the minimum, resp.) number of the real part of
eigenvalues of A, AT denotes the transpose of the matrix A, A ≥ 0(A > 0,
resp.) means A is semi-positive definite (positive definite, resp.), A ≥ B means
A−B ≥ 0.

Consider a class of linear systems with mixed delays in state and control of
the form

ẋ(t) = Ax(t) +Dx(t− τ) + E

∫ t

t−τ
x(s)ds+Bu(t)

+ Cu(t− r) + F

∫ t

t−r
u(s)ds, t ∈ R+,

x(t) = φ(t), t ∈ [−h, 0], h = max{τ, r},

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, τ, r are time delays; φ(t) ∈
C([−h, 0], Rn) is the initial function with the norm ‖φ‖h = sup−h≤s≤0 ‖φ(s)‖;
A,B,C,D,E, F are given real constant matrices with appropriate dimensions.

The unforced system (i.e. without control) is of the form

ẋ(t) = Ax(t) +Dx(t− τ) + E

∫ t

t−τ
x(s)ds. (2)

In this paper, a memoryless state feedback controller

u(t) = Kx(t), t ∈ R+,

is employed to stabilize system (1). Then, the closed-loop system of (1) is given
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by

ẋ(t) = [A+BK]x(t) +Dx(t− τ) + CKx(t− r)

+ E

∫ t

t−τ
x(s)ds+ F

∫ t

t−r
Kx(s)ds.

(3)

Definition 2.1 For given α > 0. System (2) is said to be α-exponentially
stable if there exists N ≥ 1 such that every solution x(t, φ) of (2) satisfies

‖x(t, φ)‖ ≤ Ne−αt‖φ‖h, t ≥ 0.

System (1) is α-exponentially stabilizable if there exists a state feedback con-
troller u(t) = Kx(t) such that the closed-loop system (3) is α-exponentially
stable.

The objective of this paper is to design the memoryless feedback control
law that makes system (1) is exponential stabilizable. For this purpose, the
following technical propositions are first introduced.

Proposition 2.1 (Schur complement Theorem [2]) For any constant matrices
X, Y, Z, where X = XT , Y = Y T > 0. Then X − ZTY −1Z < 0 if and only if[

X ZT

Z Y

]
< 0 or

[
Y Z

ZT X

]
< 0.

Proposition 2.2 (Matrix Cauchy inequality) For any symmetric positive defi-
nite matrix M ∈ Rn×n and x, y ∈ Rn, we have

2〈x, y〉 ≤ 〈Mx, x〉+ 〈M−1y, y〉.

Proposition 2.3 ([4]) For any symmetric positive definite matrix W ∈ Rn×n,
scalar ν ≥ 0, and vector function ω : [0, ν] → Rn such that the integrals con-
cerned are well defined, then(∫ ν

0
ω(s)ds

)T
W

(∫ ν

0
ω(s)ds

)
≤ ν

∫ ν

0
ωT (s)Wω(s)ds.
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3 Main result

For α > 0, τ > 0, r > 0, symmetric positive definite matrices P,Q,R ∈ Rn×n

and matrix Y ∈ Rm×n we denote

G = BY + Y TBT + e2αr (CCT + rFF T
)
,

Ω = AP + PAT +G+Q+ τR,

U =
[
DP EP Y T

]
, µ = (1 + r)−1,

H = diag

[
e−2ατQ,

1

τ
e−2ατR, µIm

]
,

M(P,Q,R) =

[
Ω U

UT −H

]
, N (P ) =

[
P 0

0 0

]
.

The main result is stated in the following theorem.

Theorem 3.1 Given α > 0. System (1) is α-exponentially stabilizable if there
exist symmetric positive definite matrices P,Q,R and matrix Y satisfy the fol-
lowing LMI

M(P,Q,R) + 2αN (P ) < 0. (4)

The state feedback controller is given by

u(t) = Y P−1x(t), t ≥ 0.

Moreover, every solution x(t, φ) of the closed-loop system satisfies

‖x(t, φ)‖ ≤
√
α2

α1
e−αt‖φ‖h, t ≥ 0,

where

α2 = λ−1
min(P ) +

[
τλmax(Q) +

1

2
τ 2λmax(R) +

(
1 +

1

2
r2
)
λmax(Y TY )

]
λ−2

min(P ),

α1 = λ−1
max(P ).

(5)

Proof. Denote X = P−1, Q̄ = XQX, R̄ = XRX and K = Y X. Consider the
following Lyapunov-Krasovskii functional

V (xt) = V1 + V2 + V3 + V4 + V5,
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where

V1 = xT (t)Xx(t),

V2 =

∫ 0

−τ
e2αsxT (t+ s)Q̄x(t+ s)ds,

V3 =

∫ 0

−τ

∫ 0

s

e2αξxT (t+ ξ)R̄x(t+ ξ)dξds,

V4 =

∫ 0

−r
e2αsxT (t+ s)KTKx(t+ s)ds,

V5 =

∫ 0

−r

∫ 0

s

e2αξxT (t+ ξ)KTKx(t+ ξ)dξds.

It’s easy to verify that

α1‖x(t)‖2 ≤ V (xt) ≤ α2‖xt‖2
h, t ≥ 0, (6)

where α1, α2 are defined in (5).

Taking derivative of V1 along solutions of the closed-loop system (3), we get

V̇1 = xT (t)
[
ATX +XA+X(BY + Y TBT )X

]
x(t)

+ 2xT (t)XDx(t− τ) + 2xT (t)XCu(t− r)

+ 2xT (t)XE

∫ t

t−τ
x(s)ds+ 2xT (t)XF

∫ t

t−r
u(s)ds.

(7)

Applying Proposition 2.2 and 2.3 gives

2xT (t)XDx(t− τ) ≤ e2ατxT (t)XDQ̄−1DTXx(t) + e−2ατxT (t− τ)Q̄x(t− τ),

2xT (t)XCu(t− r) ≤ e2αrxT (t)XCCTXx(t) + e−2αr‖u(t− r)‖2.

2xT (t)XE

∫ t

t−τ
x(s)ds ≤ τe2ατxT (t)XER̄−1ETXx(t)

+
1

τ
e−2ατ

(∫ t

t−τ
x(s)ds

)T
R̄

(∫ t

t−τ
x(s)ds

)
≤ τe2ατxT (t)XER̄−1ETXx(t)

+ e−2ατ
∫ t

t−τ
xT (s)R̄x(s)ds,

(8)
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2xT (t)XF

∫ t

t−r
u(s)ds ≤ re2αrxT (t)XFF TXx(t)

+
1

r
e−2αr

(∫ t

t−r
u(s)ds

)T (∫ t

t−r
u(s)ds

)
≤ re2αrxT (t)XFF TXx(t)

+ e−2αr
∫ t

t−r
‖u(s)‖2ds.

(9)

Therefore, from (7) to (9) we have

V̇1 ≤ xT (t)
[
ATX +XA+X(BY + Y TBT )X

]
x(t)

+ e2ατxT (t)XDQ̄−1DTXx(t) + e−2ατxT (t− τ)Q̄x(t− τ)

+ e2αrxT (t)XCCTXx(t) + e−2αr‖u(t− r)‖2

+ τe2ατxT (t)XER̄−1ETXx(t) + e−2ατ
∫ t

t−τ
xT (s)R̄x(s)ds

+ re2αrxT (t)XFF TXx(t) + e−2αr
∫ t

t−r
‖u(s)‖2ds.

(10)

Next, taking derivative of V, i = 2, 3, 4, 5, along solutions of the closed-loop
system respectively, we obtain

V̇2 = xT (t)Q̄x(t)− e−2ατxT (t− τ)Q̄x(t− τ)− 2αV2,

V̇3 = τxT (t)R̄x(t)−
∫ 0

−τ
e2αsxT (t+ s)R̄x(t+ s)ds− 2αV3

≤ τxT (t)R̄x(t)− e−2ατ
∫ t

t−τ
xT (s)R̄x(s)ds− 2αV3,

V̇4 = xT (t)KTKx(t)− e−2αrxT (t− r)KTKx(t− r)− 2αV4

= xT (t)XY TY Xx(t)− e−2αr‖u(t− r)‖2 − 2αV4,

V̇5 = rxT (t)KTKx(t)−
∫ 0

−r
e2αsxT (t+ s)KTKx(t+ s)− 2αV5

≤ rxT (t)XY TY Xx(t)− e−2αr
∫ t

t−r
‖u(s)‖2ds− 2αV5.

(11)
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Combining (10) and (11) we get

V̇ (xt) + 2αV (xt) ≤ xT (t)
(
ATX +XA+ 2αX

)
x(t)

+ xT (t)X
[
BY + Y TBT + (1 + r)Y TY +Q+ τR

]
Xx(t)

+ e2ατxT (t)X
(
DQ̄−1DT + τER̄−1ET

)
Xx(t)

+ e2αrxT (t)X
(
CCT + rFF T

)
Xx(t)

= ηT (t)
(
AP + PAT + 2αP +G+Q+ τR

)
η(t) + ηT (t)Φη(t),

= ηT (t)
(

Ω + 2αP + Φ
)
η(t),

(12)

where η(t) = Xx(t),Φ = UH−1UT .

By schur complement theorem (Proposition 2.1), (4) implies that

Ω + 2αP + UH−1UT < 0.

Therefore, it follows from (12)

V̇ (xt) + 2αV (xt) ≤ 0, ∀t ≥ 0,

and hence
V (xt) ≤ V (φ)e−2αt ≤ α2‖φ‖2

he
−2αt, t ≥ 0.

Taking (6) into account we finally obtain

‖x(t, φ)‖ ≤
√
α2

α1
e−αt‖φ‖h, t ≥ 0,

where α1, α2 are defined by (5). The proof is complete.

Remark 3.1 For given α > 0, the exponential stabilization condition is given
in terms of LMIs, which can be solve by various efficient convex algorithms
[2]. By iteratively solving the LMI given in Theorem 3.1 with respect to h, one
can find the maximum upper bound of the delays that guarantees exponential
stabilization of system (1) with decay rate α.

Remark 3.2 The linear control systems with input delay considered in previous
works (e.g. [1, 3, 8, 12, 19, 20, 22]) are special cases of the system (1), where
D = E = 0, F = 0.

Numerical example. Consider the following control system:

ẋ(t) = Ax(t) +Dx(t− τ) + E

∫ t

t−τ
x(s)ds

+Bu(t) + Cu(t− r) + F

∫ t

t−r
u(s)ds,

(13)
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where τ = 1, r = 1 and

(A,D,E,B,C, F ) =

([
−4 1

0 −5

]
,

[
1 1

0 1

]
,

[
−1 1

1 −1

]
,

[
1

0

]
,

[
1

1

]
,

[
1

1

])
.

By the Kalman rank condition [21], neither system (A,B) nor (A + D,B) is
controllable system. However, for α = 0.5, LMI (4) is feasible using LMI toolbox
of Matlab. Therefore the control system (13) is exponentially stabilizable with
decay rate α = 0.5. The LMI (4) in Theorem 3.1 is satisfied with

P =

[
39.0742 −5.7013

−5.7013 35.9471

]
, Q =

[
59.6758 29.5378

29.5378 90.8470

]
,

R =

[
80.9893 −56.5626

−56.5626 85.4023

]
, Y =

[
−1.2705 1.2689

]
.

The state feedback controller which makes system (13) is exponentially stabi-
lizable with decay rate α = 0.5 is given by u(t) = Kx(t), t ≥ 0, where

K =
[
−0.0280 0.0309

]
.

By computation we find that, every solution x(t, φ) of the closed-loop system
satisfies

‖x(t, φ)‖ ≤ 3.0577e−0.5t‖φ‖1, t ≥ 0.

The time-simulation response of the solution of system (13) with initial condi-
tion φ(t) = (5, 5)T , t ∈ [−1, 0] is shown by Figure 1.

0 5 10 15 20
−2

−1

0

1

2

3

4

5

time 

x(
t)

Fig. 1 Time-simulation response of solution
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4 Conclusion

This paper has proposed new conditions for the exponential stabilization of
linear systems with mixed delays in both state and control. Based on an im-
proved Lyapunov-Krasovskii functional, the delay-dependent exponential sta-
bility conditions are derived in terms of linear matrix inequalities which allows
to compute simultaneously the two bounds that characterize the exponential
stability of the solution. A numerical example is given to show the effectiveness
of the obtained result.
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