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Abstract

In this paper, we study a fourth-dimensional human immunodeficiency virus (HIV)
model including an eclipse stage of infected cells and saturation infection. One feature
of this model is that an eclipse stage for the infected cells is included and cells in this
stage may revert to the uninfected class . The other feature is that system has nonlinear
incidence of infection of health CD4+T cells. For the analysis of nonlinear autonomous
differential equations with or without time delay, the stability of equilibria is important.
We will obtain sufficient conditions for the global stability of the equilibria system by
using Lyapunov direct method and the geometric approach to stability, based on the
generalization of the Poincare-Bendixson criterion for system of n ordinary differential
equations.

Keywords: HIV-1 infection, LaSalle invariant principle, Global stability,
Compound matrices, Lozinskĭı measure.

1 Introduction

From the advances in immunology over the past few decades, we are now able
to understand the dynamics of infections at the cellular level. In recent years,
considerable attention has been paid to study the dynamics of HIV-1 infection
model. Mathematical modeling combined with experimental measurements has

1E-mail address: hesaraki@sharif.edu
2E-mail address: sabzevari.mahtab@yahoo.com
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yielded important insights into HIV-1 pathogenesis [1, 2, 3, 4]. Many authors
use differential equations to study the dynamical properties of HIV-1 infection
models and obtained much knowledge about the HIV-1 infection [5]. In 2007,
Rong and coworkers, [6], studied an extension of the basic model of HIV-1 in-
fection. One main feature of their model is that an eclipse stage for the infected
cells is included and a portion of these cells is reverted to the uninfected class
and in 2011, Buonomo and Vargas-De-León obtained sufficient conditions for
global stability of this model [7].
Models used to study HIV-1 infection have involved the concentration of unin-
fected CD4+T cells x, productively infected cells y, infected cells in the eclipse
stage w and free virus v. It is given by the following set of differential equations
[7]:

ẋ =λ− βx(t)v(t)− µx(t) + δw(t),

ẏ =ϕw(t)− αy(t),

ẇ =βx(t)v(t)− (δ + η + ϕ)w(t),

v̇ =σy(t)− γv(t),

(1)

where parameters are described in Table 1 The cells in the eclipse stage are

Table 1: Parameters for system (1)

Parameter Description

λ Rate of which new CD4+T cells are generated

β Infection rate of uninfected CD4+T cells by virus

µ Natural death rate of uninfected CD4+T cells

δ Rate at which the CD4+T cells in the eclipse phase may revert to the

uninfected class

ϕ Rate at which infected CD4+T cells in the eclipse stage become productively

infected cells

η Death rate of infected cells in the eclipse stage

α Death rate of productively infected cells

σ Rate of production of virions by infected cells

γ Rate at which cleared from plasma

already infected and may be killed by immune cells or cytopathic effects [8].
Then it is reasonable to assume that the average life span of uninfected cells
(1/µ) should be greater than, or equal to, the life span of cells in the eclipse
stage (1/η).
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It is assumed in model (1) that the infection process is governed by the
mass-action principle, i.e. that the infection rate per host and per virus is a
constant. However, experiments reported in [9] strongly suggested that the in-
fection rate of microparasitic infections is an increasing function of the parasite
dose, and is usually sigmoidal in shape (see, for example, [10]), in fact the re-
lationship between virus and host cells is nonlinear. In principle, the rate of
infection should saturate at high virus. In [10], to place the model on more
sound biological grounds, Regoes et al. replaced the mass-action infection rate
with a dose-dependent infection rates.

Thus, it is reasonable to assume that the infection rate of modeling viral
infection in saturated mass action, βxvm/(1 + avn), where m,n, a > 0 are
constants. In this paper we assume m = n = 1, so the model is given by:

ẋ =λ− βx(t)v(t)

1 + av(t)
− µx(t) + δw(t),

ẏ =ϕw(t)− αy(t),

ẇ =
βx(t)v(t)

1 + av(t)
− (δ + η + ϕ)w(t),

v̇ =σy(t)− γv(t),

(2)

2 Well-posedness and equilibria of system (2)

By a standard argument for population models, one can show that for given
system (2) with initial conditions in R4

+ = {(x, y, w, v) ∈ R4 : x ≥ 0, y ≥ 0, w ≥
0, v ≥ 0} has a unique solution which exists for t ∈ (0,∞), remains positive
and bounded in the compact subset Θ ⊂ R4

+, where Θ = {(x, y, w, v) ∈ R4 :

0 ≤ x, y, w ≤ λ

ψ
, 0 ≤ v ≤ λσ

γψ
, ψ = min{α, µ, η}}, [7].

Define now the basic reproduction number for the viral infection as

R◦ =
βλσϕ

αγµ(δ + η + ϕ)
,

The basic reproduction number describes the average number of newly infected
cells generated from one infected cell at the beginning of the infectious process.
Usually, R0 > 1 is a sufficient condition for the persistence of the infection in the
host cells, and this condition is also necessary for a large number of epidemic
models. The uninfected state always exists. If this state is the only state, then
it is globally asymptotically stable. If the infected steady state exists, then
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this state is globally asymptotically stable. These different cases depend on the
value of the basic reproduction number. The system (2) has the infection-free
equilibrium E0(λ/µ, 0, 0, 0) and if R0 > 1, this system admits unique infected
equilibrium, that is with positive components:

x∗ =
λ

µR0
(1 +

σϕw

λ
), y∗ =

ϕ

α
w∗, w∗ =

λ
(

1− 1
R0

)
(
η + ϕ+ λσϕ

γR0

) , v∗ =
σϕw∗

αγ

3 Global stability of virus-free equilibrium by means of

Lyapunov functions

In this section we show the global stability of the viral-free equilibrium by using
a Lyapunov approach can be established as follows:

Theorem 1. If R0 ≤ 1, then E0 is globally asymptotically stable in R4
+.

Proof. Define the global Lyapunov function L : {(x, y, w, v) ∈ R4
+ : x > 0} → R,

L(x, y, w, v) =(x− x◦ − x◦ ln
x

x◦
) +

δ

2(µ+ η + ϕ)x◦
[(x− x◦) + w]2

+
(δ + η + ϕ)

ϕ
y + w +

α(δ + η + ϕ)

σϕ
v +

aαγ(δ + η + ϕ)

σϕ

∫ t

0

v2

1 + av
(3)

Then L is C1 on the interior of R4
+, E◦ is the global minimum of L on R4

+, and
L(x◦, 0, 0, 0) = 0 where x◦ = (λ/µ). The derivative of (3) along the solution
curves of (2) is given by the equation:

L̇|(2) =
(x− x◦)

x
ẋ+

δ

(µ+ η + ϕ)x◦
[(x− x◦) + w](ẋ+ ẇ) +

(δ + η + ϕ)

ϕ
ẏ

+ ẇ +
α(δ + η + ϕ)

σϕ
v̇ +

aαγ(δ + η + ϕ)

σϕ

v2

1 + av
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that is,

L̇|(2) =
(x− x◦)

x

(
λ− µx− βxv

1 + av
+ δw

)
+

δ

(µ+ η + ϕ)x◦
[(x− x◦) + w]

× (λ− µx− (η + ϕ)w) +
(δ + η + ϕ)

ϕ
(ϕw − αy)

+

(
βxv

1 + av
− (δ + η + ϕ)w

)
+
α(δ + η + ϕ)

σϕ
(σy − γv)+

aαγ(δ + η + ϕ)

σϕ

v2

1 + av
.

Using λ = µx◦, we obtain

L̇|(2) =
(x− x◦)

x

(
−µ(x− x◦)− βxv

1 + av
+ δw

)
+

δ

(µ+ η + ϕ)x◦
[(x− x◦) + w]

× (−µ(x− x◦)− (η + ϕ)w) +
βxv

1 + av
− αγ(δ + η + ϕ)

σϕ
v

+
aαγ(δ + η + ϕ)

σϕ

v2

1 + av
.

notice that:

δw
(x− x◦)

x
= −δw(x− x◦)2

xx◦
+ δw

x◦

(x− x◦)
. (4)

Substituting (4), we have:

L̇|(2) =−
(
µx◦ +

δµ

(η + µ+ ϕ)
x+ δw

)
(x− x◦)2

xx◦
− δ(η + ϕ)w2

(η + µ+ ϕ)x◦

− αγ(δ + η + ϕ)

σϕ
(1− βσϕx◦

αγ(δ + η + ϕ)(1 + av)
)v

+
aαγ(δ + η + ϕ)

σϕ

v2

1 + av
.

By rewriting L̇|(2) in terms of basic reproduction number, we get

L̇|(2) =−
(
µx◦ +

δµ

(η + µ+ ϕ)
x+ δw

)
(x− x◦)2

xx◦
− δ(η + ϕ)w2

(η + µ+ ϕ)x◦

− αγ(δ + η + ϕ)

σϕ
(1−R0)

v

1 + av
.

Since x(t), y(t), v(t), z(t) are positive, it follows from R0 ≤ 1 that L̇|(2) ≤ 0,

L̇|(2) = 0 if and only if (x, y, v, z) = E0. By LaSalles invariance principle, E0 is
globally asymptotically stable.
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Corollary 1. If R0 ≤ 1, then the virus-free equilibrium E◦ of (1) is globally
asymptotically stable in Θ.

(a) (b)

(c) (d)

Figure 1: Numerical solution of system (2) with λ = 103, β = 2.4 · 10−8, µ = 0.01, δ = 0.01,
ϕ = 1.1, α = 1, η = 0.7 σ = 4000, γ = 23, a = 0.0001. x(0) = 106, y(0) = 0, w(0) = 0,
v(0) = 102. It is easy to verify that R0 = 0.2536632 < 1.

4 Global stability of the infected equilibrium by means

of the geometric approach

In this section, we will use the geometric approach to study the global stability
of the endemic equilibrium [11, 12, 13]. Due to technical difficulties, applica-
tions to four dimensional systems are still few in the literature, [14, 15]. Here
we follow the approach used in [15] for a SVEIR (the development of the math-
ematical model is based on subdividing a given SARS-affected community into
five compartments: susceptible, S, vaccinated, V , asymptomatic, E, symp-
tomatic, I, and recovered, R, individuals.) model of severe acute respiratory
syndrome (SARS) epidemic spread. As far as we know, all the applications
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available in the literature do not completely report all the involved theoretical
cases into details. Here we choose to explicitly report all of them, in order to
give an exhaustive framework to those interested in applying the method to
similar models. Consider the autonomous dynamical system:

ẋ = f(x), (5)

where f : D → Rn, D ⊂ Rn open set and simply connected and f ∈ C1(D).
Let x∗ be an equilibrium of (5), i.e.f(x∗) = 0.

Let Q(x) be an
(
n
2

)
×
(
n
2

)
matrix-valued function that is C1 on D and

consider:

A = QfQ
−1 +QMQ−1,

where the matrix Qf is

(qij(x))f = (∂qij/∂x)T .f(x) = ∇qij.f(x),

and the matrix M is the second additive compound matrix of the Jacobian
matrix J . Consider the Lozinskĭı measure µ of A with respect to a vector

norm || · || in R(n
2), that is:

µ = lim
h→◦+

||I + hA|| − 1

h

We will apply the following [12]:

Theorem 2. (See [12, corollary2.6].)Suppose

(a) D is simply connected,

(b) D1 is a compact absorbing subset in the interior of D,

(c) there exist ζ > ◦ and the Lozinskĭı measure µ(A) ≤ −ζ for all x ∈ D1,

(d) the system (2) has a unique equilibrium x∗.

Then x∗ is globally asymptotically stable.

In Section 2, we discussed about the existence of equilibria and we knew that
if R0 > 1, then there exists a unique infected equilibrium E∗. Furthermore,the
characteristic equation of system (2) at the virus-free equilibrium E◦ is of the
form:

(s+µ)[s3+(δ+η+ϕ+α+γ)s2+((α+γ)(δ+η+ϕ)+αγ)s+αγ(δ+η+ϕ)(1−R0)],
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by using of Routh-Hurwitz criterion, if R0 > 1, then the virus-free equilibrium
E◦ is unstable. The instability of E◦, together with E◦ ∈ ∂Θ, imply the uniform
persistence of the state variables, [16], i.e. there exists a constant ε > 0 such
that:

lim inf
t→∞

xi > ε, for xi = x, y, w, v,

where the xi’s indicate the state variables of system (2). The uniform per-
sistence, together with boundedness of Θ, is equivalent to the existence of a
compact set in the interior of Θ which is absorbing for (2), see [17]. Hence
Theorem 2 may be applied, with D = Θ.

According to [18], the Lozinskĭı measure in Theorem 2 can be evaluated as:

µ(A) = inf{c : D+||z|| ≤ c||z||, for all solutions of z′ = Az},

where D+ is the right-hand derivative. In order to use Theorem 2 and get
the global asymptotic stability, it is necessary to find a norm || · || such that
µ(A) < 0 for all x in the interior of D.

The Jacobian matrix J of (2) is given by:

J =


− βv

1 + av
− µ 0 δ − βx

(1 + av)2

0 −α ϕ 0
βv

1 + av
0 −(δ + η + ϕ)

βx

(1 + av)2

0 σ 0 −γ

 .

the second additive compound matrix of J is given by:

M =



M11 ϕ 0 −δ βx

(1 + av)2
0

0 M22
βx

(1 + av)2
0 0

βx

(1 + av)2

σ 0 M33 0 0 δ

− βv

1 + av
0 0 M44

βx

(1 + av)2
0

0 0 0 0 M55 ϕ

0 0
βv

(1 + av)
−σ 0 M66


M11 = − βv

1 + av
− µ− α; M22 = − βv

1 + av
− µ− (δ + η + ϕ);
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M33 = − βv

1 + av
− µ− γ; M44 = −α− (δ + η + ϕ);

M11 = −α− γ; M66 = −(δ + η + ϕ)− γ;

Consider now the matrix Q , where:

q11 = q22 = q34 = 1/w; q43 = q55 = q66 = 1/v

and all the other entries qij are zero.

Then we obtain the matrix A = QfQ
−1+QMQ−1, whereQf is the derivative

of Q in the direction of the vector field f . More precisely, we have:

QfQ
−1 = −diag(ẇ/w, ẇ/w, ẇ/w, v̇/v, v̇/v, v̇/v)

QMQ−1 =



M11 ϕ −δ 0 β
xv

w(1 + av)2
0

0 M22 0 β
xv

w(1 + av)2
0 β

xv

w(1 + av)2

− βv

1 + av
0 M44 0 β

xv

w(1 + av)2
0

σ
w

v
0 0 M33 0 δ

0 0 0 0 M55 ϕ

0 0 −σw
v

βv

1 + av
0 M66


(6)

Hence, according to:

ẇ

w
= β

xv

w(1 + av)2
− (δ + η + ϕ);

v̇

v
= σ

y

v
− γ,

we have the matrix A, where:

A11 =− βv

1 + av
− µ− α− β xv

w(1 + av)2
+ (δ + η + ϕ);

A22 =− βv

1 + av
− µ− β xv

w(1 + av)2
;

A33 =− α− β xv

w(1 + av)2
; A44 = − βv

1 + av
− µ− σy

v
;

A55 =− α− σy
v

; A66 = −(δ + η + ϕ)− σy
v

;
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and all the other entries are as in the matrix (6). We consider the following
norm on R6:

||z|| = max{U1, U2}, (7)

where z ∈ R6, with components zi, i = 1, ..., 6, and U1(z1, z2, z3) is defined as:
max{|z1|, |z2|+ |z3|} if sgn(z1) = sgn(z2) = sgn(z3),

max{|z2|, |z1|+ |z3|} if sgn(z1) = sgn(z2) = −sgn(z3),

max{|z1|, |z2|, |z3|} if sgn(z1) = −sgn(z2) = sgn(z3),

max{|z1|+ |z3|, |z2|+ |z3|} if −sgn(z1) = sgn(z2) = sgn(z3),

and U2(z4, z5, z6) is defined as:


|z4|+ |z5|+ |z6| if sgn(z4) = sgn(z5) = sgn(z6),

max{|z4|+ |z5|, |z4|+ |z6|} if sgn(z4) = sgn(z5) = −sgn(z6),

max{|z5|, |z4|+ |z6|} if sgn(z4) = −sgn(z5) = sgn(z6),

max{|z4|+ |z6|, |z5|+ |z6|} if −sgn(z4) = sgn(z5) = sgn(z6),

We will use the following inequalities:

|z1|, |z2|, |z3|, |z2 + z3| ≤ U1.

and

|zi|, |zi + zj|, |z4 + z5 + z6| ≤ U2; i = 4, 5, 6; i 6= j

Set:

θ =
λ

ψε

where ε is the constant of uniform persistence. We state the following theorem:

Theorem 3. If R0 > 1, then system (2) admits a unique infected equilibrium.
It is globally asymptotically stable provided that

η + 2ϕ+ 2δ < µ < α, (8)

and

2σθ + ν < η, (9)

for some positive constant .
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Proof. The proof is based on the estimate of the right derivative D+||z|| of
the norm (7). This involves sixteen different cases according to the different
orthants and the definition of the norm (7) within each orthant.

Case 1: U1 > U2, z1, z2, z3 > 0, and |z1| > |z2|+ |z3|. Then:

||z|| = |z1|, (10)

so that:

D+||z|| =z′1
=A11z1 + A12z2 + A13z3 + A15z5

≤
[
− βv

1 + av
− µ− α− β xv

w(1 + av)2
+ (δ + η + ϕ)

]
|z1|+ ϕ|z2|

− δ|z3|+ β
xv

w(1 + av)2
|z5|.

Using |z2| < |z1|, −δ|z3| < 0, |z5| < U2 < |z1|, and (10), it follows:

D+||z|| ≤ [−(µ+ α) + (η + δ + 2ϕ)]||z||.

Taking into account of (8), we get

D+||z|| ≤ −α||z||.

Case 2: U1 > U2, z1, z2, z3 > 0, and |z1| < |z2|+ |z3|. Then:

||z|| = |z2|+ |z3|, (11)

so that:

D+||z|| =z′2 + z′3
=A31z1 + A22z2 + A23z3 + A24z4 + A35z5 + A26z6

≤− βv

1 + av
|z1|+

(
− βv

1 + av
− µ− β xv

w(1 + av)2

)
|z2|

−
(
α + β

xv

w(1 + av)2

)
|z3|+ β

xv

w(1 + av)2
|z4 + z5 + z6|.

Using now |z4 + z5 + z6| < U2 < |z2|+ |z3|,−
βv

1 + av
(|z1|+ |z2|) ≤ 0, and taking

into account of and (11), we get:

D+||z|| ≤ −min(α, µ)||z||.
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From (8):

D+||z|| ≤ −µ||z||.

Case3: U1 > U2, z1 < 0, z2, z3 > 0, and |z1| > |z2|, Then:

||z|| = |z1|+ |z3|, (12)

so that:

D+||z|| =− z′1 + z′3

≤
[
− βv

1 + av
− µ− α− β xv

w(1 + av)2
+ (δ + η + ϕ)

]
|z1| − ϕ|z2|

+ δ|z3| − β
xv

w(1 + av)2
|z5|+

βv

1 + av
|z1| −

(
α + β

xv

w(1 + av)2

)
|z3|

+ β
xv

w(1 + av)2
|z5|.

Using −ϕ|z2| < ϕ|z2| < ϕ|z1| together with (12), we have:

D+||z|| ≤ (−α + δ)||z||,

now using (8) and (9), we get:

D+||z|| ≤ −ν||z||

Case4: U1 > U2, z2, z3 > 0, z1 < 0, and |z1| < |z2|.Then

||z|| = |z2|+ |z3|, (13)

so that

D+||z|| =z′2 + z′3

≤ βv

1 + av
|z1| −

(
βv

1 + av
+ µ+ β

xv

w(1 + av)2

)
|z2|

−
(
α + β

xv

w(1 + av)2

)
|z3|+ β

xv

w(1 + av)2
|z4 + z5 + z6|.

Using |z4 + z5 + z6| < U2 < |z2|+ |z3| and in view of |z1| < |z2|, (13), it follows:

D+||z|| ≤ −min(α, µ)||z||.

Now using (8):

D+||z|| ≤ −µ||z||.
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Case5: U1 > U2, z1, z2 > 0, z3 < 0 and |z2| > |z1|+ |z3|.Then:

||z|| = |z2|, (14)

so that:

D+||z|| =z′2

≤−
(

βv

1 + av
+ µ+ β

xv

w(1 + av)2

)
|z2|+ β

xv

w(1 + av)2
|z4 + z6|.

Using |z4 + z6| ≤ U2 < |z2| and (14), it follows:

D+||z|| ≤ −µ||z||.

Case6: U1 > U2, z1, z2 > 0, z3 < 0, |z2| < |z1|+ |z3|. Then

||z|| = |z1|+ |z3|, (15)

so that:

D+||z|| =z′1 − z′3

≤
[
− βv

1 + av
− µ− α− β xv

w(1 + av)2
+ (δ + η + ϕ)

]
|z1|+ ϕ|z2|

+δ|z3|+ β
xv

w(1 + av)2
|z5|+

βv

1 + av
|z1| − (α + β

xv

w(1 + av)2
)|z3|

− β xv

w(1 + av)2
|z5|.

Using ϕ|z2| < ϕ(|z1|+ |z3|) and taking into account of (15), we have:

D+||z|| ≤ (−α + δ)||z||,

now using (8) and (9), we get:

D+||z|| ≤ −ν||z||.

The remaining ten cases are omitted for brevity (a complete analysis for a
similar problem may be found in [19]). Their combination allow to obtain the
following estimate:

D+||z|| ≤ −ν||z||,

so that the global stability follows according to Theorem 2.
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(a) (b)

(c) (d)

Figure 2: Numerical solution of system (2) with λ = 104, β = 2.4 · 10−8, µ = 0.01, δ = 0.01,
ϕ = 1.1, α = 1, η = 0.7 σ = 4000, γ = 23, a = 0.0001. x(0) = 106, y(0) = 0, w(0) = 0,
v(0) = 102. It is easy to verify that R0 = 2.5366322 > 1 and inequality (8) fails to hold.

5 Conclusions

in this paper, we have studied the global dynamics of an HIV-1 infection model
including an eclipse stage of infected cells. By using the Lyapunov direct
method we see that if the basic reproduction number R0 is less than unity,
the infection-free equilibrium is globally asymptotically stable, and by the Li
and Muldowney’s geometric approach to global stability we see that if the ba-
sic reproduction number R0 is greater than unity, the infected equilibrium is
globally asymptotically stable provided that inequality (8) and (9), in fact we
show that R0 play important roles in the global stabilites of the two equilibria.

As for the sufficient conditions (8) and (9), we note that (8) is satisfied if
the average life span of productively infected cells, 1/α, is less than the average
life span of uninfected cells,1/µ; and the average life span of uninfected cells is
less than the average residence time in the infected stage in the eclipse state,
1/(δ+ η+ϕ). For η sufficiently large (i.e., a sufficiently short average life span
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(a) (b)

(c) (d)

Figure 3: Numerical solution of system (2) with λ = 104, β = 2.4 · 10−8, µ = 0.04, δ = 0.001,
ϕ = .01, α = 1, η = 0.007 σ = 40000, γ = 23, a = 0.0001. x(0) = 106, y(0) = 0, w(0) = 0,
v(0) = 102. It is easy to verify that R0 = 5.7971014 > 1 and inequality (8) holds.

of cells in the eclipse state), inequality (9) holds and Theorem 2 holds.

We know that the range of parameter values guaranteeing the global stabil-
ity of the infected equilibrium is larger than that indicated by our conditions.

As a final consequence, we emphasize that the sufficient conditions here
obtained may be, in principle, improved. For example, by different choices of
the matrixQ and of the vector norm (7) we can get to better sufficient conditions
than those found here, in the sense that the restrictions on the parameters may
be weakened.
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