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Abstract.

The present paper describes mobile carrier transport in semiconductor de-
vices with constant densities of ionized impurities. For this purpose we use
one-dimensional system of partial differential equations.The work considers the
proofs of: global existence of solutions of systems of such kind, their bifurcations
and their stability under corresponding assumptions.
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1. Introduction

This article inteds to extend the theoryof L.Recke [1]. In his paper he considers a
simple mathematical model decribing mobile carrier transport in semiconductor
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devices. Two functions E(x) and n(x) describle electric feld strength and density
of mobile electrons and satisty under 0 < x < 1 the system

(D(|E|)(n′ + nE))
′
= 0, (1)

E ′ = f − n,

and boudary conditions

E(0) = E(1) = E0, D(|E(0)|) (n′(0) + n(0)E(0)) = j0. (2)

Here the constant f > 0 represents a homogeneons density of ionized impu-
rutues, D(|E|) is the diffusion coefficient, j0 is the electron currien density for
x = 0. For sake of definiteness we shall presume E0 > 0. The article [1] proposes

j0 = D(E0)E0f. (3)

Under such conditions the problem (1)–(3) has a trivial solution E(x) =
E0, n(x) = f . If K(E0) < 0 ( where K(E0) = 1 + D′(E0)E0D

−1(E0)) then
there exists a denumerable set of points fk(E0) = −K(E0)

−1
(
E2

0/4 + π2k2
)
,

k = 1, 2, . . . , in the neighborhood of which appear small bifurcational solutions
of the problem (1)–(3) [1]. In this paper we prove that the condition K(E0) < 0
implies that the diffusion coefficient D as a function of fieldstrength has N–
shaped form and contains an interval (E1, E2), in which this function has a
negative derivative and D(E0) +E0D

′(E0) < 0, i.e. so called condition of nega-
tive differential conductivity (NDC) is valid. In section 1 we prove that NDC–
condition is necessary and sufficient for the existance of bifurcational solutions
of the problem (1)–(3). Then in section 2 the extendability of all bifurcational
solutions on the parameter f is demonstrated. The corresponding bifurcational
problem can be considered as an eigenvalue nonlinear problem; in section 3
we discuss forms of eigenfunctions of this problem. It appears that asymptotic
behavior of bifurcational solutions under large values of parameter f depends
essentially on the parameter E0. In section 4 we prove that a unique point E∗

0
exists on the interval (E1, E2) such that there arise so called interior transition
layer phenomena [2,3] in the problem (1)–(3). If E0 ∈ (E1, E2), but E0 6= E∗

0 ,
then asymptotic behavior of bifurcational solutions has a completely different
nature. In section 5 the existence and uniqueness of solutions of nonstationary
initial–boundaru value problem for (1)–(3 for every t > 0 is discussed; this the-
ory is applied to investigate stability and instability of bifurcational solutions.
It appears that the stability of the first (positive ) and the second (negative )
eigenfunctions depends also on the parameter E0. In section 6 ti is proved that:
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if E0 = E∗
0 , then the pair eigenfunctions are stabile; if E1 < E0 < E∗

0 , then
only the negative function is stable, and if E∗

0 < E0 < E2 or vise versa, only
positive one is stable. Other eigenfunctions are unstabile for any E0 ∈ (E1, E2)
for those values of the parameter f for which they exist. In the last section
7 the existence of parabolic travelling wave for E0 = E∗

0 and its stability for
sufficiently large f are proved.

2. Existence of bifurcational solutions dependent on the

parameter E0

The problem(1)–(3) is equivalent to the following boundary value problem

E ′′ + E ′E = fH(E,E0), 0 < x < 1,

E(0) = E(1) = E0,
(4)

whereH(E,E0) = E−E0D(E0)D
−1(|E|).The last problem has a trivial solution

E(x) = E0 for any f . Let the diffusion coefficient satisfy the conditions:

1) D(y) ∈ C(2)(R+), D : R+ → R+;

2) D(y) has a unique local maximum and a unique point of inflection for
y > 0;

3) lim
y→+∞

D(y) = D0 > 0.

Let E(x) = E0 + u(x) and g(u) = D(E0)D
−1(|E0 + u|) − 1. The function

g(u) is continiously differentiable for u 6= −E0 and

0 < gi = sup
u

∣∣∣g(i)(u)
∣∣∣ < +∞, i = 0, 1.

Proposition 2.1 If the inequality f <
π2

E0g1
, is valid, then the problem (4)

has a unique (trivial) solution.

Let us write the problem (4) in the form

−u′′ − E0u
′ + fu− u′u = E0fg(u);

u(0) = u(1) = 0,
(5)

and let u be a nontrivial solution of this problem. Multiplying the second equa-
tion (5) by u(x) and integrating by parts we obtain

1∫
0

u′
2
(x)dx ≤ E0fg1

1∫
0

u2(x)dx,
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and since

π2

1∫
0

u2(x)dx ≤
1∫

0

u′
2
(x)dx, (6)

then the estimate f ≥ π2

E0g1
holds, which gives the proposition 1.1.

Let C
(2)
0 ([0, 1]) be the space of functions u(x) which are continious on[0, 1],

have the second continious derivatives on (0, 1) and for u(x) the conditions
u(0) = u(1) = 0 are fulfilled; let C([0, 1]) be the space of continious functions
on [0, 1]. We shall consider the problem (5) as a nonlinear eigenvalues problem:

Lu+ fK(E0)u+N(E0, f, u) = 0;

u(0) = u(1) = 0,
(7)

where Lu = −u′′ − E0u
′ is the linear operator mapping from X = C

(2)
0 ([0, 1])

into Y = C([0, 1]), K(E0) = 1 +D′(E0)E0D
−1(E0), and N(E0, f, u) = −u′u −

E0f

(
D(E0)

D(|E0 + u|)
+
D′(E0)u

D(E0)
− 1

)
is the nonlinear one mapping from R2 ×X

into Y . By S we denote the closure of the set of all nontrivial solutions (f, u) ∈
R×X to (7) with u 6=0, and let Sk be the maximal connected component of S
containing (fk, 0), ΘΛΞ fk = −K(E0)

−1
(
E2

0/4 + π2k2
)
, k = 1, 2, ...

Theorem 1.1 Suppose K(E0) < 0. Then the following holds:

(i) Sk is unbounded;

(ii) suppose (f, u) ∈ Sk and u 6≡ 0. Then u(x) has exactly (k + 1) zeros in
[0, 1], and all zeros are simple;

(iii) for all k ∈ N there exist a constant sk > 0, a neighbourhood Uk ⊂ R×X
of (fk, 0) and two C1-mappings f̂k : (−sk, sk) → R, ûk : (−sk, sk) → X such
that f̂k(s) = fk + O(s), ûk(s) = suk(x) + O(s2) for s → 0 and S ∩ Uk ={
(f̂k(s), ûk(s)) : |s| < sk

}
, where uk(x) = e−E0 x/2 sin(πkx).

These solutions are called bifurcational ones [4].

It is fairly evident that the conditionK(E0) < 0 is equvalent to the condition
of negative differentional conductivity (NDC) (see Introduction).

Proposition 2.2 ([5]) Let D(|E|) satiafy the NDC. Then there exists a
unique E∗

0 such, that

a) 0 < G(Emin) < G(E∗
0) < G(Emax), where Emax, Emin – the local extrema

of function G(E) = ED(E) for E > 0;
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b) the derivative G′(E0) < 0 for E0 ∈ (Emax, Emin) which is equvalent to the
condition K(E0) < 0;

c) the equation H(E,E0) = 0 for E0 ∈ (Emax, Emin) has only three positive
solutions 0 < E1(E0) < E0 < E2(E0), moreover H ′

E(Ei(E0), E0) > 0, i = 1, 2;

d)

E∫
E1(E∗

0 )

H(s, E∗
0)ds

{
> 0, for E ∈ (E1(E

∗
0), E2(E

∗
0)) ,

= 0, for E = E2(E
∗
0).

Let us analyse for which values of the parameter E0 nontrivial solutions of
problem (4) exist.

Proposition 2.3 If 0 < E0 ≤ Emax or E0 ≥ Emin thenthe problem (4) has
only trivial solution E(x) = E0. If E0 ∈ (Emax, Emin) then the problem (4) has
nontrivial (bifurcaational) solutions.

If E0 ∈ (Emax, Emin), then G′(E0) < 0, i.e. K(E0) < 0 and from theorem
1.1 the problem (4) has nontrivial solution. If 0 < E0 ≤ Emax or E0 ≥ Emin

then K(E0) ≥ 0. Let us consider the problem (7). Further we prove that if
K(E0) ≥ 0 then thia problem has no small nontrivial solutions; from this and
from Rabinowitz’s results (see theorem 2.3 [6]) it follows that the problem (7)
can not have any nontrivial solutions. The problem (7) can be linearized in the
neighbourhood of a zero-solution

Lu = −fK(E0)u;

u(0) = u(1) = 0.

Since the last form of the problem has only a zero-solution, then the problem
(7) has no nontrivial solutions .

3. Extendability of bifurcational solutions on

parameter f

We show in this section that every bifurcational solution is extendable on the
parameter f > fk, where fk = −K(E0)

−1
(
E2

0/4 + π2k2
)
, k = 1, 2, .... Let us

prove the following proposition.

Proposition 3.1 Let E0 ∈ (Emax, Emin). Then there exists such a positive
continius fuiction ϕ(f) : R+ → R+, that for any solution (u, f) of the problem
(7) the inequality:

‖u‖X(f) ≤ ϕ(f) (8)
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is fulfilled.

Proof. From the form of differential equation and the inequality (6) we
have an estimate

‖u′‖L2
≤ π−1E0fg0, (9)

This estimate gives an analogous estimate in the norm C0([0, 1]). The estimate
of u′′(x) is based on (7) and inequalities (6) and (9). As a result we have

‖u′′‖L2
≤ c1f

2 + c2f
3 + c3f

4,

where constants ci depend only on E0 and g0. The same estimate is valid for u(x)
in the norm C(1)([0, 1]). To estimate the uniform norm of u′′(x) the equation
(7) can be used; it gives the estimate (8).

Now return to the problem (7). If E0 ∈ (Emax, Emin), then form the propo-
sition

a) of Theorem 1.1 and proposition 3.1 it follows that the bifurcational so-
lutions which were obtained in the proposition

b) of theorem 1.1 are extendable on the parametr f for any f > fk, k =
1, 2, ...

To synthesize these results we denote U+
k to be set of u(x) ∈ X, which have

(k + 1) simple zeros and sign
x→0+0

u(x) = 1; let U−
k = −U+

k , k ∈ N .

Theorem 3.1 Given E0 ∈ (Emax, Emin). Then for every k ∈ N , every ν = +
or − and for every f > fk there exists at least one solution u(x) of boundary
value problem (7) such that u ∈ U ν

k .

In further text the functions uν
k(x) ∈ U ν

k will be called eigenfunctions of the
nonlinear operator of the problem (7).

4. Forms of eigenfunctions.

To investigate the forms of these eigenfunctions let the problem (4) be refor-
mulated as:

−E ′′ − E ′E = f(G(E0)−G(E))D−1(|E|),
E(0) = E(1) = E0.

(10)

If E0 ∈ (Emax, Emin) and (f, E) is a nontrivial solution of the problem (10)
the for each x ∈ [0, 1] the inequality E1(E0) < E(x) < E2(E0) is fulfilled. In
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this inequality Ei(E0) (i = 1, 2) is the solution of the equation H(E,E0) = 0,
which was mentioned in the proposition 2.2, i = 1, 2. This result follows from
the fast that constants E0, E1(E0) and E2(E0) are the solutions of differential
equation (10).

The solutions E(x) of the problem (10) will be called a positive one if a
corresponding function u(x) = E(x)− E0 is positive on (0, 1).

Let E(x) be the positive solution of the problem (10). Let us prove that
E(x) has only one maximum. If it is not so then there exists such x0 ∈ (0, 1)
that E(x0) is a localminimum. However that given

0 ≥ −E ′′(x0) = f(G(E0)−G(E(x0)))D
−1(E(x0)) > 0,

wich is impossible.

Theorem 2.1 shows that each solution from Sk has (k + 1) simple zeros
on[0, 1]; similar reasoning gives next result.

Proposition 4.1 Let E(x) = u(x) + E0 be such a solution of the boudary
value problem (10) that (f, u) ∈ Sk, k = 1, 2, .... Then:

a) if k = 2n, then E(x) has n maxima and n minimuma;

b) if k = 2n+ 1 then the numbers of minima and maxima differ by 1.

5. Asymptotic behaviour of the eigenfunctions for large

values of parameter f

The case of large concentrations of ionized impurities is of gread interest for
physical application. Mathematically this fact can be associated with asymp-
totical behaviour of the eigenfunctions for large values of parameter f . Let the
problem (4) be formulatrd as:

εE ′′ + εE ′E = H(E,E0),

E(0) = E(1) = E0,
(11)

where ε = f−1, H(E,E0) = E − E0D(E0)D
−1(|E|).

Let uν
k(x, f) be the bifurcational solutions of the problem (7), f > fk,

k = 1, 2, ..., ν = +,−. Then Eν
k (x, ε) = uν

k(x, ε
−1) + E0 are the solutions of

the problem (11), which are defined for 0 < ε < εk, where εk = f−1
k . We shall

call these the eigenfunctions of the problem (11). Let E0 ∈ (Emax, Emin) and
Ei(E0), i = 1, 2 be two positive solutions of the equation H(E,E0) = 0 from
the proposition 2.2. The main results of this section are the next three theorems.
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Theorem 5.1 Given E0 ∈ (Emax, E
∗
0). The problem (11) has families of

solutions E−
1 (x, ε), E

±
k (x, ε), k = 2, 3, ..., defined for sufficiently small ε; these

families have the following properties:

lim
ε→0+0

E−
1 (x, ε) = E1(E0) uniformly for every compact set from (0, 1);

lim
ε→0+0

E±
k (x, ε) = E1(E0) almost everywhere on (0, 1).

Theorem 5.2 Given E0 ∈ (E∗
0 , Emin). The problem (11) has families of

solutions E+
1 (x, ε), E

±
k (x, ε), k = 2, 3, ..., defined for sufficiently small ε; these

families have the following properties: lim
ε→0+0

E+
1 (x, ε) = E2(E0) uniformly for

every compact set from (0, 1);

lim
ε→0+0

E±
k (x, ε) = E2(E0) almost everywhere on (0, 1).

The asymptotic behaviour of the eigenfunctions of the problem (11) sharply
changes when E0 = E∗

0 . In this case the families of solutions have interior
transition points.

Definition 5.1 [2]. Let E(x, ε) be the famili of solutions for the problem
(10), defined for sufficiently small ε > 0. Point x0 ∈ (0, 1) is called the transition
point(interior transition one), if for some sufficiently eni δ > 0 the condition

lim
ε→0+0

E(x, ε) =

{
E1(E0) uniformlu for 0 < x < x0 − δ,

E2(E0) uniformly for x0 + δ < x < 1

is fulfilled (or an analogous condition where E2(E0) and E1(E0) are inserted in
place of E1(E0) and E2(E0)).

Theorem 5.3 states that there exists a family of solutions of the problem
(11) with an arbitrary large number of transition points of such solutions.

Theorem 5.3 Given E0 = E∗
0 . The problem (11) has families of solutions

E±
k (x, ε), k = 1, 2, ... defined for sufficiently small ε; moreover every family

E±
k (x, ε) has exactly k − 1 transition points on the interval (0, 1).

The proves of these theorems follow from some results of R.O’Malley [7].
It appears that the asymptotic behaviour of the solutions of the problem (11)
depends essentially on the properties of such differential equations as

ÿ +
√
εẏy −H(y, E0) = 0, (12)

ü−H(u,E0) = 0. (13)

Proposition 5.1 Given E0 ∈ (Emax, E
∗
0). For sufficiently small ε > 0

the differential equation (12) has a solution y(t, ε) such that lim
t→+∞

y(t, ε) =
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lim
t→−∞

y(t, ε) = E1(E0), and

lim
ε→0+0

y(t, ε) = y0(t), t ∈ R,

where y0(t) is the solution of the equation (13); for this solution

lim
t→+∞

y0(t) = lim
t→−∞

y0(t) = E1(E0).

Proof. Since E0 ∈ (Emax, E
∗
0), then proposition 2.2 gives

E2(E0)∫
E1(E0)

H(s, E0)ds <

0. Therefore from the proposition 5 (see the theorem from [7]) it can be obtained
that the equation(13) has a solution y0(t) with the properties mentioned above.

Rewrite for convienience the equation (12) as

G1(ÿ, ẏ, y, ε) = ÿ + εẏy −H(y, E0) = 0. (14)

Substitation y − y0 = v gives

G1(ÿ0 + v̈, ẏ0 + v̇, y0 + v, ε) = ÿ0 + v̈ + ε(ẏ0 + v̇)(y0 + v)−H(y0 + v) = 0,
(15)

where lim
|t|→∞

v(t, ε) = 0.

Lemma 4.2 [3] states that the left–hand part of (12) defines on operator
G̃1(v, ε) from X×R1 into Y , where X = H2∩C2, Y = H0∩C0 with the norms

‖v‖X = |v|2+

 2∑
k=0

+∞∫
−∞

|v(k)(η)|2dη

1/2

, ‖v‖Y = |v|0+

 +∞∫
−∞

v2(η)dη

1/2

. Let us

verify the condition of lemma 3.1 [3]:

(i) M ≡ G̃1, m(v, ε) ≡ v(0), G̃1(0, 0) = 0, m(0, 0) = 0;

(ii) Φ = ẏ0 ∈ X, 〈Φ∗, v〉 =
+∞∫

−∞

ẏ0vdη,

R(M1(0, 0)) = {v ∈ Y : 〈Φ∗, v〉 = 0}, ΘΛΞ M1(0, 0)w = ẅ −H ′(y0)w;

(iii) 〈Φ∗,M2(0, 0; 1)〉 =
+∞∫

−∞

ẏ0ẏ0y0dη 6= 0;

(iv) m1(0, 0; Φ) = Φ(0) 6= 0.
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From this lemma follows proposition 4.1. The next proposition is proved by
the same way.

Proposition 5.2 Given E0 ∈ (E∗
0 , Emin). For sufficientlu small ε > 0

the differential equation (12) has a solution y(t, ε) such that lim
t→+∞

y(t, ε) =

lim
t→−∞

y(t, ε) = E2(E0), and lim
ε→0+0

y(t, ε) = y0(t), t ∈ R, where y0(t) is the solu-

tion of the equation (13); for this solution lim
t→+∞

y0(t) = lim
t→−∞

y0(t) = E2(E0).

We have on hands the situation where E0 = E∗
0 .

Proposition 5.3 Given E0 = E∗
0 . For sufficientlu small ε > 0 the dif-

feretial equation (12) has the solution y(t, ε) such that lim
t→+∞

y(t, ε) = E2(E
∗
0),

lim
t→−∞

y(t, ε) = E1(E
∗
0) and lim

ε→0+0
y(t, ε) = y0(t), t ∈ R, where y0(t) is the solu-

tion of (13), for which lim
t→+∞

y0(t) = E2(E
∗
0), lim

t→−∞
y0(t) = E1(E

∗
0).

Proof. We shall use the results of P.Fife [3]. The equation εE ′′ + εE ′E −
H(E,E∗

0) = 0 can be rewritten as F (εE ′′,
√
εE ′, E, ε) = 0. Substitution t =

x− c√
ε

, where c is an arbitrary constant gives

F (εE ′′,
√
εE ′, E, ε) ≡ G(ÿ, ẏ, y, ε) = ÿ +

√
εẏy −H(y, E∗

0) = 0. (16)

The function y0(t) = y(t, 0) satisfies the equation

G(ÿ0, ẏ0, y0, 0) = ÿ0 −H(y, E∗
0) = 0. (17)

The properties c) and d) of proposition 2.2 are equvalent to the fast that the
equation (17) has the solution y0(t) satisfying the conditions y0(−∞) = E1(E

∗
0),

y0(+∞) = E2(E
∗
0). It appears that the conditions c) and d) from proposition 2.2

are sufficient for the existence of the solution y(t, ε) of the equation (16). This
solution is defined for sufficiently small ε > 0 and has properties y(−∞, ε) =
E1(E

∗
0), y(+∞, ε) = E2(E

∗
0). This fact can be obtained from the following

cpecisl case of theorem 5.1 [3].

Proposition 5.4 ([3]) The conditions

1) H ′
E (Ei(E

∗
0), E

∗
0) > 0, i = 1, 2;

2)

E∫
E1(E∗

0 )

H(s, E∗
0)ds

{
> 0, for E ∈ (E1(E

∗
0), E2(E

∗
0)) ,

= 0, for E = E2(E
∗
0)

are sufficient for the existence of the family of solutions y(t, ε) of the differental
equation (16); these solutions are defined for t ∈ R and for sufficientlu small
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ε > 0 and are uniformly continious on ε ; for them the properties y(−∞, ε) =
E1(E

∗
0), y(+∞, ε) = E2(E

∗
0) are fulfilled.

Let us return to the proof of 5.1. It is raiher easy to prove that the rest point
(E0, 0) is a stable focus for sufficiently small ε > 0. By Cε we detnote a closed
loop which circles the point (E0, 0), coming out from the point (E1(E0), 0) and
returning t0 it. Then there exists the trajectory y(t, ε) within the domain which
is formed by the loop Cε; this trajectory has properties: ω(y(t, ε)) = (E0, 0),
α(y(t, ε)) = Cε, where α(y) and ω(y) are α–limit set and ω–limit set of y(t, ε)
[8]. Consider an arbitrary solution E(x, ε) of the problem (11). The function
y(t, ε) is a solution for the boundary value problem

ÿ +
√
εẏy −H(y, E0) = 0,

y(0) = E0, y

(
− 1√

ε

)
= E0

(18)

Since α(y(t, ε)) = Cε ⊃ (E1(E0), 0) and the point (E1(E0), 0) is a unique saddle
point with a separatrix Cε then theorem 5.1 can be obtained by the reasoning
used in the 5–th proposition of R.�’Malley’s theorem [7]. Proof of theorem 5.2
completely repeats that of theorem 5.1.

The closed loop Cε is an α-limit set for any solution of the problem (18).
When E0 = E∗

0 Cε has two saddle points (E1(E
∗
0), 0) and (E2(E

∗
0), 0), this fact

and the 4-th proposition of �’Malley’s theorem [7] give theorem 5.3.

6. Nonstationary initial-boundary value problem. Exis-

tence and uniqueness of solutions for t > 0

It is easy to prove that the problem (4) is a stationary problem for the following
nonstationary problem [8]:

D(|E|)−1∂E

∂t
=
∂2E

∂x2 +
∂E

∂x
E − fH(E,E0),

E(0, t) = E(1, t) = E0,

E(x, 0) = Ẽ(x).

(19)

The problem (19) is equvalent to the following boundary value problem

D(|u+ E0|)−1∂u

∂t
=
∂2u

∂x2 + E0
∂u

∂x
+
∂u

∂x
u− fh(u,E0),

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),

(20)
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where h(u,E0) = H(u+ E0, E0), u0(x) = Ẽ(x)− E0.

Consider the space X = L2(0, 1) and the operator A = − d2

dx2− −E0
d

dx
with

the domain of definition D(A) = H2(0, 1) ∩ H1
0(0, 1) Υ D(A1/2) = = X1/2 =

H1
0(0, 1). It is to prove that for the operator F : H1

0(0, 1) → L2(0, 1), which
defined by the formyla

F (ϕ)(x) = ϕ(x)ϕ′(x)− fh(ϕ(x), E0), 0 < x < 1,

the conditions of theorems 3.3.3 and 3.3.4 [8] are fulfilled. To this end it is
sufficiently to prove that

1) ‖F (ϕ)‖L2
≤ c‖ϕ‖2

H1
0
, i.e. F maps bounded subsets H1

0(0, 1) into bounded

subsets L2(0, 1);

2) F is Lipschitzian locally.

Using the theorems 3.3.3 and 3.3.4 [8] we can formulate the following propo-
sition.

Proposition 6.1 A unique solution u(x, t) of Cauchi problem (20) exists
on some maximal interval 0 ≤ t ≤ t̄.Moreover this solution exists for any initial
condition and either t̄ = +∞ or ‖u(x, t)‖H1

0
→ +∞ for t→ t̄.

To prove the following proposition we need the theorem 3.5.2. [8] on a
smoothing differential operator.

Proposition 6.2 The solution u(x, t) of the nonstationary problem (20) is
a classical solution.

Proof. u(t;u0) ∈ D(A) for t > 0. The function t 7→ du

dt
∈ ∈ H1

0(0, 1) is

Gölderian locally (see the theorem 3.5.2 [8]). There fore the function

(x, t) 7→ u(x, t;u0),
∂u

∂t
(x, t;u0)

are continions for t0 < t < t̄ and x ∈ [0, 1]. Since u ∈ D(A), then u′ ∈
W 1

2 (0, 1) ⊂ C(0, 1). There exists some δ > 0 that F (u) ∈ Cδ(0, 1) u(·, t) ∈
C2+δ(0, 1). Thus, when t > 0 the function (x, t) 7→ u(x, t;u0) is continiously
differentiable by t and twice continiouslu differentiable by x; therefore it is a
classical solution of the (20).

The main item of this section is the following proposition which based on
the concept of the dynamical system for parabolic equations [8].

Proposition 6.3 The nonstationary problem (20) defines the dynamical
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system in the set C =

{
u ∈ H1

0(0, 1)

∣∣∣∣σ1(E0) ≤ u(x) ≤ σ2(E0) almost every-

where on [0, 1]

}
, where σi(E0) = Ei(E0)− E0, i = 1, 2.

Proof. First consider the fact that the solution u(x, t) of the problem (20)
with the initial condition u0 ∈ C can not leave the set C on the interval of
its existence. For this we use a version of the maximum principle. Let t1 be a
minimal value t1 ∈ (0, t̄), so that the solution u(x, t1) of the problem (20) has
a local maximum. σ = u(x1, t1), where x1 ∈ (0, 1) and σ > σ2(E0) > 0, i.e.
∂u

∂x
(x1, t1) = 0,

∂2u

∂x2 (x1, t1) ≤ 0. Then from the differential equation (20) we

obtain that since (−h(σ,E0)) < 0 then u̇(x1, t1) < 0.

Furthermore, the solution u(x, t) of the problem (20) can not have a local
minimum, which value is less than σ1(E0) < 0 ( a proof is quite similar). Prove
that the solution of (20) exists for any t ≥ 0. Let it be not so. Then proposition

6.1 gives that

1∫
0

u′
2
(x, t)dx is unbounded for t → t̄. Multiplying the equation

(20) by u and integrating its parts on [0, 1] gives

1∫
0

u̇u

D(|u+ E0|)
dx = −

1∫
0

u′
2
dx− f

1∫
0

h(u,E0)udx.

But

−f
1∫

0

h(u,E0)udx

 is uniformly bounded for t; then

1∫
0

u̇u

D(|u+ E0|)
dx→

−∞ for t→ t̄. But the latter statement is impossible because Gronuollo inequal-

ity ϕ̇ ≤ −c1ϕ+ c2 (ci > 0, i = 1, 2) is valid for function ϕ(t) =

1∫
0

g(u(x, t))dx,

where g(u) =

u∫
0

sD−1(|s+ E0|)ds.
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7. Stability and instability of eigenfunctions

This section deals with stability of solutions for the stationary problem (4)
by the linear approximetion. For this aim we need two theorems ( 5.1.1 and
5.1.3) from [8], which give sufficient conditions of stability and instability of
such solutions. Let Eν

k (x, ε) be the solutions of the problem (11) from section
4 defined for sufficienly small ε, ν = +,−; k = 1, 2, ... Two following theorems
form the main subject of this section.

Theorem 7.1

1) If Emax < E0 < E∗
0 , then the solution E−

1 (x, ε) of the problem (11) is
stable for sufficiently small ε;

2) if E∗
0 < E0 < Emin, then the solution E+

1 (x, ε) of the problem (11) is
stable for sufficiently small ε;

3) if E0 = E∗
0 , then both solutions E±

1 (x, ε) of the problem (11) are stable
for sufficiently small ε;

Theorem 7.2 The solution E±
k (x, ε) are unstable for E±

k (x, ε), for every
E0 ∈ (Emax, Emin) and for each k = 2, 3, ....

Remark. Theorem 7.1 states thates that the solutions are stable only for
sufficiently small ε > 0. Apparently this fact is assignable; it is quite possible
that the solutions E±

1 (x, ε) can be unstable when ε is not small.

Proves of Theorems 6.1 and 6.2 must be preceeded by rather spacious
preambula. First discuss the case where Emax < E0 < E∗

0 . For such E0

E2(E0)∫
E1(E0)

H(s, E0)ds < 0

and the problem

ẑ′′0 = H(E1(E0) + ẑ0, E0),

ẑ0(0) = E0 − E1(E0), ẑ0(+∞) = 0
(21)

has a unique solution ẑ0(t) which is a strong monotonous function [7]. Let ζ(y)
is a cut-off function from C∞-class and the conditions 0 ≤ ζ ≤ 1, ζ ≡ 1 for

0 ≤ y ≤ 1/4, ζ ≡ 0 for y ≥ 1

2
, are fulfilled for it. Let z0(x, ε) = ẑ0

(
x√
ε

)
ζ(x),

z1(x, ε) = ẑ0

(
1− x√

ε

)
ζ(1− x), 0 ≤ x ≤ 1. Consider the function

U0(x, ε) = E1(E0) + z0(x, ε) + z1(x, ε).
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This function (see theorem 5.1) is a first approximation on ε for E−
1 (x, ε).

When E∗
0 < E0 < Emax the function U0(x, ε) can be formed quite analogically(

E2(E0) stands in the place of E1(E0)) and it is a first approximation on ε for
E+

1 (x, ε).

We have on hands the case E0 = E∗
0 . So as

E2(E∗
0 )∫

E1(E∗
0 )

H(s, E∗
0)ds = 0 only for

this condition each of the problems

ẑ′′0 = H(Ei(E
∗
0) + ẑ0, E

∗
0),

ẑ0(0) = E∗
0 − Ei(E

∗
0), ẑ0(+∞) = 0, i = 1, 2

has a unique solution ẑ
(i)
0 (t) (i = 1, 2) which is a stroug monotonous [7]. Let

z
(i)
0 (x, ε) = ẑ

(i)
0

(
x√
ε

)
ζ(x) and ẑ

(i)
1 (t) is the unique strong monotonous solution

of the problem

ẑ′′1 = H(Ei(E
∗
0) + ẑ1, E

∗
0),

ẑ1(0) = E∗
0 − Ei(E

∗
0), ẑ1(+∞) = 0, i = 1, 2

Let z
(i)
1 (x, ε) = ẑ

(i)
1

(
1− x√

ε

)
ζ(1 − x), 0 ≤ x ≤ 1. Consider the function

U
(i)
0 (x, ε) = Ei(E

∗
0) + z

(i)
0 (x, ε) + z

(i)
1 (x, ε), i = 1, 2. Theorem4.1 states that

they are the first approximation on ε for the solutions E±
1 (x, ε) of the problem

(11). For ε > 0 and u ∈ C(2)
0 the norm

|u|(ε)2 = |u|0 +
√
ε|u′|0 + ε|u′′|0

can be introduced, where | · |0 is a norm in C(0); let the corresponding Banach

space be denoted by C
(2)
0,ε . The linear operator mapping from C

(2)
0,ε into C(0) can

be constructed:

Lεu = εu′′ + εU ′
0u+ εU0u

′ −H ′(U0, E0)u,

(the function U0(x, ε) is constructed according to the value of E0 by means
which where used above). The linear operators

L(i)
ε u = εu′′+εU

(i)
0

′
u+εU

(i)
0 u′−H ′(U

(i)
0 , E∗

0)u, (i = 1, 2)areformedsimilarly.

Lemma 71.. Operators L
(i)
ε , i = 1, 2 and Lε have inverse ones, which are

uniformly bounded on ε for sufficiently small ε > 0.
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Proof. For the proof it is sufficient to show that there exists a constant c
independent of ε, shuch that for any continuous function F with |F |0 ≤ 1 and
for any sufficiently small ε > 0 there exists solution uε for

Lεuε = F (x), 0 ≤ x ≤ 1,

uε(0) = uε(1) = 0,
(22)

satisfying |uε|(ε)2 ≤ c. This can be done by constructing supersolutions uε and
subsolutions u ε. For this supersolution the conditions Lεuε ≤ F , uε ≥ 0,
uε(1) ≥ 0 must be valid by definition. The opposite inequalities must be valid
for the subsolution. If the positive supersolution can be constructed, then we
merely take |uε|0 ≤ |uε|0. By a theorem of Nagumo [9], there exists an ex-

act solution (22) with |uε|(ε)2 ≤ const|uε|0. This inequality and equation (22)
together with interpolation inequality relating |u′′|0, |u′|0 and |u|0 given that
|uε|2 ≤ const|uε|0. The positive supersolution uε with |uε|0 uniformly bounded
on ε can be constructed like that in the Lemma 2.1 [2].

Proof of theorem 7.1. For definiteness we shall presume that Emax <
E0 < E∗

0 and prove stability of solution E−
1 (x, ε) = E−

1 (x, f
−1) = Ẽ−

1 (x, f).
Consider the followig boudary value problem

v′′0 + Ẽ−
1
′v0 + Ẽ−

1 v
′
0 − fH ′(Ẽ−

1 , E0)v0 + α0v0 = 0,

v0(0) = v0(1) = 0,

where v0 is the first positive eigenfunction of the linear operator Lfu = u′′ +
Ẽ−

1
′u + Ẽ−

1 u
′ − fH ′(Ẽ−

1 , E0)u. It is easy to show that the spectrum of the Lf

operator is real. Theorem 5.1.1 [8] states that, if α0 > 0 then solution Ẽ−
1 (x, f)

is stable. Consider the problem

ψ′′ + Ẽ−
1
′ψ + Ẽ−

1 ψ
′ − fH ′(Ẽ−

1 , E0)ψ = 0. (23)

From 7.1 it followes that for sufficiently large f the problem(23) has only trivial
solution. Theorem of Nagumo [9] states that α0 > 0 in fast, suppose that α0 < 0
than we have Lfv0 ≥ Lfψ = 0. Hence v0 ≤ ψ(x) ≡ 0 which is impossible. Cases
when E∗

0 < E0 < Emin and E0 = E∗
0 can be prove similarly.

Proof of the theorem 7.2. We use here the following proposition.

Proposition 7.1 ([8]) it Let the function ϕ(x), ψ(x) ∈ C2 satisfy the
conditions ϕ(0) = ψ(0) = 0, ϕ′(0) = ψ′(0) = 1, ϕ′′ + b(x)ϕ′+ +a(x)ϕ >
ψ′′ + b(x)ψ′ + a(x)ψ for 0 < x < x1 and ψ(x) > 0 for 0 < x < x1. Then it
follows ϕ(x) > ψ(x) for 0 < x ≤ x1.
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Let ϕ±k (x, f) = E±
k
′(x, f−1) = Ẽ±

k
′(x, f), k = 2, 3, ... If ψ(x) is the solution

of this problem

ψ′′ + Ẽν
k
′ψ + Ẽν

kψ
′ − fH ′(Ẽν

k , E0)ψ = 0,

ψ(0) = 0, ψ′(0) = 1,

ν = +,−, k ≥ 2 then

ψ(x)ϕν
k
′(x)− ψ′(x)ϕν

k(x) = ce
−

x∫
0

Ẽν
k (s)ds

,

where c = const. So far as ϕν
k(0) > 0, then c < 0. Hence x ∈ [0, 1] ψ(x)ϕν

k
′(x)−

ψ′(x)ϕν
k(x) < 0. Let x0 be the minimum point of the function Ẽν

k (x). Conse-
quently ψ(x0)ϕ

ν
k
′(x0) < 0 because ϕν

k(x0) = 0, ϕν
k
′(x0) > 0. Therefore, ψ(x0) < 0

and ψ(x) has negative values on [0, 1]. Consider the following problem

v′′0 + Ẽν
k
′v0 + Ẽν

kv
′
0 − fH(Ẽν

k , E0)v0 + α0v0 = 0,

v0(0) = v0(1) = 0,

where v0 is the first positive eigenfunction of the linear operator Lfu = u′′ +
Ẽν

k
′u+ Ẽν

ku
′ − fH ′(Ẽν

k , E0)u. Suppose that v′0(0) = 1. Theorem 5.1.3 [8] states
that if α0 < 0, then the solution Ẽν

k (x, f) is unstabile. In fact, let α0 > 0,
then proposition 7.1 it follows that v0(x) < ψ(x) for every x ∈ [0, 1] because
Lfv0 < Lfψ. This is impossible.

8. A parabolic traveling wave. Stability of the traveling

wave

Consider the parabolic equation of the problem (19) for E0 = E∗
0

D(|E|)−1∂E

∂t
=
∂2E

∂x2 +
∂E

∂x
E − fH(E,E∗

0), x ∈ R, t > 0. (24)

It is easy to show that, if ϕ(s) is solution of the equation

ϕ′′ +

(
ϕ− V

D(|ϕ|)

)
ϕ′ = fH(ϕ,E∗

0), s ∈ R, (25)

than E(x, t) = ϕ(x+ V t) is a traveling wave (V = const). We shall prove that
for sufficiently large f , there exists a solution of (25) such that ϕ(s)→ E1(E

∗
0)
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for s → −∞, ϕ(s) → E2(E
∗
0) for s → +∞. Divide f the equation (25) , let

ε = f−1 and suppose τ =
s√
ε
. Then we have

ÿ +
√
ε

(
y − V

D(|y|)

)
ẏ = H(y, E∗

0). (26)

Theorem 4.1 [3] states that for sufficiently small ε the equition (26) has a
solution y(τ, ε) such that y(τ, ε) → E1(E

∗
0) for τ → −∞, y(τ, ε) → E2(E

∗
0) for

τ → +∞. The folloving interesting result [8] states the stability of parabolic
traveling wave. Suppose that there exists a solution ϕ(x)

ϕ′′(x) + f (ϕ(x), ϕ′(x)) = 0, x ∈ R,

shuch that ϕ(x) → α for x → −∞, ϕ(x) → β for x → +∞ f(u, p) ∈ C1 and
f(α, 0) = f(β, 0) = 0. The linearized problem of ϕ is

−Lv = v′′ + a(x)v′ + b(x)v,

where a(x) =
∂f

∂p
(ϕ(x), ϕ′(x)), b(x) =

∂f

∂u
(ϕ(x), ϕ′(x)). Let a±, b± be the

limits of these functions for x→ ±∞. Denote by σe(L) the essential spectrum
of operator L [8].

Proposition 8.1 ([8]) The essential spectrum σe(L) lies in right semiplane
if and only if b+ < 0 and b− < 0, i.e. where the solution ϕ(x) connects two saddle
points.

Proposition 8.2 ([8]) If the solution ϕ(x) connects two saddle points, then
the solution ϕ(x) is stabile.

Since E1(E
∗
0), E2(E

∗
0) are saddle points, then proposition 8.1 and proposi-

tion 8.2 state that for sufficiently small ε the solution y(τ, ε) of the equation
(26) connects two saddle points. The exercise 6 in § 5.1 [8] gives the result that
the solution E(x, t) expotentially approximates ϕ by norm in ϕ ∆ Ωff¬Ξ fiff Ω∆ 
W 1

p (R), p ≥ 1. It means that for every solution E(x, t), such that the norm
‖E(·, 0) − ϕ‖ in W 1

p (R), p ≥ 1 is sufficiently small, there exists a real c for
which ‖E(·, t)−ϕ(·+ c+ V t)‖ = O

(
e−βt

)
, t > 0, β > 0. Finally, we obtain the

stability of the parabolic traveling wave for sufficiently large f and for arbitrary
velocity V .
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