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Abstract.

The paper introduces a constructive method for localization of the Morse
spectrum of a dynamical system on a vector bundle. The Morse spectrum is a
limit set of Lyapunov exponents of periodic pseudo-trajectories. The proposed
method does not demand any preliminary information on a system. An in-
duced dynamical system on the projective bundle is associated with a directed
graph called Symbolic Image. The symbolic image can be considered as a finite
discrete approximation of a dynamical system. Valuable information about
the system may come from the analysis of a symbolic image. In particular,
a neighborhood of the Morse spectrum can be found. A special sequence of
symbolic images is considered to obtain a sequence of embedded neighborhoods
which converges to the Morse spectrum. The main results of this article were
announced in [20].
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1 Linear extension of a homeomorphism

Let f : M → M be a homeomorphism of the compact manifold M . Let
(E,M, π) be a vector bundle over M , E be a total space, and π be a projector
from E onto the base M . Assume that for each x ∈ M a fiber E(x) = π−1(x)
is d-dimension linear space isomorphic to Rd.

Definition 1 A homeomorphism F of the total space E is said to be a linear
extension of f , if F takes fibers to fibers: f ◦ π = π ◦ F , i.e., the diagram

E
F−→ E

π ↓ ↓ π
M

f−→ M

commutes, and the restriction F |E(x) : E(x) → E(f(x)) on each fiber E(x) is a
linear isomorphism.

The investigation of linear extensions has been motivated by the study of
the tangent mapping of a diffeomorphism on the tangent bundle of manifold
[23, 24, 7, 8, 25, 27]. As an example of a linear extension we will keep in mind a
diffeomorphism f : M →M and its differential Df = F on the tangent bundle
TM = E. In particular, by locating of the Morse spectrum, one can construc-
tively recognize the hyperbolicity or the normal hyperbolicity of a dynamical
system. In this section we briefly show that the vector bundle E is associated
with a projective bundle P and with an one-dimension bundle L over P, in this
process the linear extension F : E → E induces a mapping PF : P → P and
its linear extension LF : L → L. Recall that a projective manifold P d−1 is
a set of one-dimensional subspaces in Rd. For a nonzero vector v we denote
by [v] = y a point from P d−1 corresponding to the space spanned over v. Let
(P,M,Pπ) be a bundle over M such that each fiber (Pπ)−1(x) is a projective
manifold P d−1(x) associated with the fiber E(x) of E. The bundle (P,M,Pπ)
is called the projective bundle associated with the linear bundle (E,M, π). The
linear space Rd can be considered as a collection of one-dimensional subspaces
L = {L(y), y ∈ P d−1}, where L(y) is a subspace spanned over y. So L is an
one-dimensional bundle over P d−1. Let us fix a fiber E(x) of E. As above,
each linear space E(x) is considered as an one-dimensional vector bundle L(x)
over P d−1(x) with fibers L(x, y) spanned over y ∈ P d−1(x). Thus, the bundle
(E,M, π) is associated with the one-dimensional linear bundle (L, P, LPπ) over
the projective space P , where L = {L(x, y), x ∈M, y ∈ P d−1(x)}, and LPπ is
the induced projector from L onto P. The bundles E, P and L are nontrivial,
in general. However there is a manner of trivialization of them. More precise,
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each vector bundle can be included in trivial one [2]. Hence, without a loss
of generality, we can use the following coordinates: (x, v) on E, (x, y) on P,
and (x, y, l) on L, where x ∈ M, v ∈ E(x), y ∈ P d−1(x), l ∈ L(y). In this
coordinates, the projectors LPπ and Pπ are of the form:

LPπ(x, y, l) = (x, y), Pπ(x, y) = x.

The linear extension F : E → E of the homeomorphism f : M → M is of the
form

F (x, v) = (f(x), A(x)v).

The mapping F induces the mapping PF : P → P on the projective bundle
and its linear extension LF : L → L on the one-dimensional linear bundle, so
the diagram

L
LF→ L

↓LPπ ↓LPπ

P
PF→ P

↓Pπ ↓Pπ

M
f→ M

commutes. In the coordinates (x, y, l), these mappings take the forms:

PF (x, y) = (f(x), pF (x, y)), pF (x, y) = [A(x)e(y)],

LF (x, y, l) = (f(x), pF (x, y), a(x, y)l) = (PF (x, y), a(x, y)l),

where e(y) is a basis vector in the fiber L(y), a(x, y)l is one-dimensional linear
mapping, i.e., a(x, y)l is a multiplication by the function a(x, y) as basis vectors
are fixed, and |a(x, y)| = |A(x)e(y)|.

2 Chain-recurrent points

Let ρ(∗, ∗) be a Riemannian metric on M.

Definition 2 An infinite in both directions sequence of points {xi} ⊂ M is
called an ε-trajectory of f if for any i the distance between the image f(xi) and
xi+1 is less than ε, i.e.,

ρ(f(xi), xi+1) < ε.

If the sequence {xi} is periodic then it is called a periodic ε-trajectory and the
points xi are called ε-periodic.
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In most cases, an exact trajectory of system is seldom known, and in fact
we ought to deal with an ε-trajectory for a sufficiently small ε > 0. Denote the
set of all ε-periodic points by Per(ε). The set Per(ε) is open. It is clear that
if ε1 > ε2 then every ε2-trajectory is an ε1-trajectory, hence

Per(ε2) ⊂ Per(ε1).

Thus, the sets Per(ε), ε > 0, are embedded one inside the other.

Definition 3 A point x is called chain recurrent if x is ε-periodic for every
positive ε. The set of chain recurrent points is called a chain recurrent set.

Let us denote the chain recurrent set by CR. It is well known that the
chain recurrent set is invariant, closed and contains the returning trajectories
of all types such as periodic, almost periodic, recurrent, homoclinic and others.
It should be noted that if a chain recurrent point x is not periodic then there
exists an arbitrarily small perturbation of the mapping f in C0-topology for
which x is periodic [22]. One may say that a chain recurrent point is either
periodic or becomes periodic under a C0-perturbation. From definition of the
chain recurrent set it follows that

CR = lim
ε→0

Per(ε) =
⋂
ε>0

Per(ε).

In other words, the sets {Per(ε), ε > 0} forms a base of neighborhoods of the
chain recurrent set CR.

For ε > 0 a finite ε-chain ξ is defined as a finite sequence x0, ..., xm ∈M of
length m with ρ(f(xi), xi+1) < ε, i = 0, ...m− 1. The same way one can define
an ε-semi-trajectory.

3 Morse spectrum

Let us consider the linear extension F : E → E and the mapping PF : P → P
on the projective bundle associated with F . Let ξ = {(x0, y0), ..., (xm, ym)} be
a finite ε-chain on the projective bundle P for the mapping PF . Define the
exponential growth rate of ξ by

λ(ξ) =
1

m

m−1∑
i=0

ln |F (xi, e(yi))|,

where |F (x, v)| = |A(x)v|, e(yi) is basis vector in L(yi), |e(yi)| = 1. One can say
that |A(x)e(y)| is a change coefficient of vector length. By using the induced
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mapping LF : L→ L the exponential growth rate of ξ can be rewritten in the
form

λ(ξ) =
1

m

m−1∑
i=0

ln |a(xi, yi)|.

Recall that if ξ = {(x0, y0), (x1, y1), ...} is an ε-semi-trajectory, then

λ(ξ) = lim
m→∞

1

m

m−1∑
i=0

ln |A(xi)e(yi)|

is the characteristic or Lyapunov exponent of the ε-semi-trajectory ξ. If ξ =
{(x0, y0), ..., (xp, yp) = (x0, y0)} is a periodic ε-trajectory of a period p, then for
the Lyapunov exponent of ξ we have

λ(ξ) = lim
m→∞

1

m

m−1∑
i=0

ln |A(xi)e(yi)| = lim
k→∞

1

m

m−1∑
i=0

ln |A(xi)e(yi)| =
1

p

p−1∑
i=0

ln |A(xi)e(yi)|.

The Morse spectrum of F on the chain recurrent set CR of the associated
projective mapping PF is defined as

Σ(F ) = {λ ∈ R : there are εk → 0 and finite εk − chains ξk of lenths mk

in CR with mk →∞ and λ(ξk) → λ as k →∞}.

F. Colonius and Kliemann [7] showed that the Morse spectrum coincides with
the periodic Morse spectrum which is defined as

Σper(F ) = {λ ∈ R : there are εk → 0 and periodic εk − trajectories ξk

with λ(ξk) → λ as k →∞}.

Thus, to study the Morse spectrum it is sufficient to investigate the behavior
of Lyapunov exponents of periodic ε-trajectories on the projective bundle as
ε→ 0.

4 Symbolic Image [14]

Now we recall a construction of a symbolic image. Let f : M → M be a
homeomorphism of manifold M and C = {M(1), · · · ,M(s)} be a finite covering
of M by closed sets. The sets M(i) are called cells of the covering.

Definition 4 Let G be a directed graph having s vertices where each vertex i
corresponds to the cell M(i). The vertices i and j are connected by a directed
edge i→ j if and only if M(j)∩ f(M(i)) 6= ∅. The graph G is called a symbolic
image of f with respect to the covering C.
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Figure 1: Construction of a Symbolic Image.

Denote by V er the set of vertices of G. The graph G can be considered
as a multi-correspondence G : V er → V er between the vertices. Graph G is
uniquely determined by its s × s matrix of transitions Π = (πij): πij = 1 if
and only if there is the directed edge i → j, otherwise πij = 0. Much of an
effective information of a dynamical system may come from the investigation
of a symbolic image. It is easily seen that the symbolic image depends on
the covering C. Vary the covering C one changes the symbolic image of the
mapping f . It is natural to consider the symbolic image as a finite discrete
approximation of the mapping f . This approximation is more precise if the
mesh of the covering is smaller. Let

diamM(i) = max(ρ(x1, x2) : x1, x2 ∈M(i))

be a diameter of the cell M(i). Let d be the largest diameter of the cells M(i)
of the covering C. Denote by q the largest diameter of the images f(M(i)), i =
1, ..., s. We define the number r as follows. If a cell M(k) does not belong to
the covering C(i) then the distance

rik = ρ(f(M(i)),M(k)) = min(ρ(x, y) : x ∈ f(M(i)), y 6∈M(k)))

between the cell M(k) and the image f(M(i)) is positive. Let r be a minimum
of such rik. Since the number of the pairs (i, k) described above is finite then r
is positive.

Definition 5 A sequence {zk} of vertices of the graph G is called an admissible
path or simply a path if for each k the graph G contains the edge zk → zk+1. If
the sequence {zk} is periodic, then {zk} is called a periodic (admissible) path.

There is a natural connection between admissible paths on the symbolic image
G and ε-trajectories of the homeomorphism f . It can be said that an admissible
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path is a trace of ε-trajectory and vice versa. However, there are some relation-
ships between the parameters d, q, r of a symbolic image and the number ε for
which the connections take place.

Proposition 1 [16]

1. If a sequence {zk} is a path on the symbolic image G and xk ∈ M(zk)
then the sequence {xk} is an ε-trajectory of the homeomorphism f for
any ε > q + d. In particular, if the sequence {zk} is a periodic path on
the symbolic image then the sequence {xk} can be chosen a periodic ε-
trajectory.

2. If a sequence {xk} is an ε-trajectory of the homeomorphism f , ε < r and
xk ∈ M(zk) then the sequence {zk} is an admissible path on the symbolic
image G. In particular, if the sequence {xk} is periodic ε-trajectory then
the sequence {zk} can be chosen a periodic path on the symbolic image G.

Definition 6 A vertex of the symbolic image is called recurrent if there is a
periodic path passing through it. The set of recurrent vertices is denoted by RV.
A pair of recurrent vertices i, j are called equivalent if there is a periodic path
through i and j.

The recurrent vertices {i} are uniquely defined by the nonzero diagonal
elements πii 6= 0 of the powers of the transitions matrix Πm, m ≤ s, where s is
the number of the covering cells. By Definition 6, the set of recurrent vertices
RV decomposes into several classes {Hk} of equivalent recurrent vertices. It is
evident that each periodic path ω is in a certain class Hk = H(ω) determined
uniquely by ω.

5 Symbolic image of the projective mapping

Now we apply the symbolic image construction to the mapping PF. Let us
consider a symbolic image G(f) of the mapping f : M → M with respect to
a covering C(M) = {m(1), · · · ,m(q)}. To construct a symbolic image of the
induced mapping PF : P → P it is convenient to choose a covering C(P ) =
{M(z)} of the projective space P agreed with the covering C(M) such that
the projection of each cell is a cell: Pπ(M(z)) = m(j). The agreed covering
generates a natural mapping h from G(PF ) onto G(f) taking the vertices z
on the vertex j: h(z) = j. Since PF (M(z1)) ∩M(z2) 6= ∅ and Pπ(M(z1,2)) =
m(j1,2) implies f(m(j1)) ∩m(j2) 6= ∅, the directed edge z1 → z2 on G(PF ) is
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mapped by h on the directed edge j1 → j2 on G(f). Hence, the mapping h takes
the directed graph G(PF ) on the directed graph G(f) so that the diagram

V er
G(PF )→ V er

↓h ↓h

ver
G(f)→ ver

commutes, where V er and ver are the vertices of G(PF ) and G(f), respectively.

6 Linear extension of symbolic image and its spectrum

Let F : E → E be a linear extension of the homeomorphism f : M → M ,
PF : P → P be the associated projective mapping and LF : L → L be the
linear extension of PF on the one-dimension bundle. In the coordinates (x, y, l)
these mappings take the forms:

LF (x, y, l) = (PF (x, y), a(x, y)l) = (f(x), pF (x, y), a(x, y)l).

At first, we construct a linear extension of the symbolic image by fixing a
linear mapping a[ji] to each edge i → j. Let G(PF ) be the symbolic image
of PF . The existence of an edge i → j on G(PF ) guarantees the existence
of a point (x, y) in the cell M(i) such that the image PF (x, y) is in the cell
M(j). Obviously, such point is not unique. By setting a[ji]l = a(x, y)l we fix
a linear mapping to the edge i→ j. The value |a[ji]| = |A(x)e(y)| is a change
coefficient of a vector length. We suppose each cell of the covering C(P ) small
enough to ensure the existence of a continuous basis vectors e(x, y) ∈ L(x, y),
(x, y) ∈M(i). Fixing this basis we can identify the one-dimension linear spaces
L(x, y) for (x, y) ∈ M(i). The obtained linear space is denoted by Ri. Let
(x∗, y∗) ∈M(i) be a point such that PF (x∗, y∗) ∈M(j). We have the estimate

|a(x∗, y∗)− a(x, y)| < η(d),

where η(d) is a modulus of continuity of a(x, y) and d is the maximal diameter
of cells from the covering C(P ). The structure consisting of the symbolic image
G(PF ) and the linear maps {a[ji] : Ri → Rj} is said to be an one-dimensional
linear extension LG of a symbolic image G(PF ).

Each periodic path ω = {z0, z1, ..., zp = z0} on G(PF ) of period p induces
a liner map

a(ω) = a[zpzp−1]...a[z2z1]a[z1z0] : Rz0
→ Rz0

.
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The number σ(ω) = (|a(ω)|)
1
p is called the multiplicator and

λ(ω) =
1

p

p∑
k=1

ln |a[zkzk−1]| = ln |σ(ω)|

is called the characteristic or the Lyapunov exponent of a periodic path ω.

Definition 7 The spectrum of the linear extension LG on the set of recurrent
vertices RV is defined as

Σ = {λ ∈ R : there are periodic paths ωk on G(PF ) with λ(ωk) → λ as k →∞}.

The first aim is to discover a constructive method for a computation of
the spectrum of the linear extension LG. The second aim is to compare the
spectrum of LG and the Morse spectrum of a dynamical system.

7 Computation of spectrum of the symbolic image linear

extension

Let us consider some class H of equivalent recurrent vertices. A periodic path
ω = {z1, ..., zp = z0} is called simple if the vertices z1, ..., zp are different, i.e.,
zi 6= zj as i 6= j; i, j = 1, ..., p. Let ω = {z1, ..., zp} be a periodic path. If ω is
not simple, there is a vertex z∗ such that z∗ = zl = zl+p1

. Consider two finite
sequences ω∗ = {z1, ..., zl−1, zl+p1

, ..., zp} and ω∗∗ = {zl+1, ..., zl+p1
}. Since there

are the edges zl−1 → zl = zl+p1
and zl+p1

= zl → zl+1, the sequences ω1 and
ω2 are periodic admissible paths of periods p1 and p2 = p − p1, respectively.
Obviously, p1, p2 < p. We will say that the path ω is a sum of the periodic
paths ω∗ and ω∗∗ and write

ω = ω∗ + ω∗∗.

By repeating this decomposition of periodic paths we come to the decomposi-
tion of ω in a sum of periodic paths ω1, ..., ωq of periods p1, ..., pq, p1+...+pq = p.

Because the periods are positive integers, and the maximal period of compo-
nents decreases, the decomposition process finishes. The final decomposition
ω = φ1+φ2+ ...+φr consists of simple periodic paths. Note, the simple periodic
paths φ1, ..., φr may coincide. When a periodic path ω∗ repeats k times in ω,

we write
ω = kω∗ + ω∗∗.

Since a symbolic image has a finite number of vertices, the number of simple
period paths is finite. For a class H let φ1, ..., φq be the all simple periodic paths
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of periods p1, ..., pq, respectively. Let

λ(φj) =
1

pj

pj∑
k=1

ln |a[zj
kz

j
k−1]|

be the characteristic exponent of periodic path φj = {zj
1, ..., z

j
pj
}. Suppose that

ω ⊂ H is a periodic path on G(PF ), and ω = k1φ1+...+kqφq is a decomposition
of ω with the period p = k1p1 + ... + kqpq. Without loss of generality, we can
consider each simple periodic path φj be contained in ω with the coefficient
kj ≥ 0 (the case kj = 0 means that, actually, ω does not pass through the
simple periodic path φj). If so, we will say that the simple periodic path φj is

contained in ω with the weight µj = kj pj

p . Obviously,
∑q

j=1 µj = 1.

Proposition 2 The characteristic exponent of each periodic path ω = k1φ1 +
...+ kqφq is given by the formula

λ(w) =
q∑

j=1
µjλ(φj),

where µj = kj pj

p .

Proof. Let ω be a periodic path on the symbolic image G(PF ). Suppose
that ω = k1φ1+ ...+kqφq is a decomposition of the periodic path ω of the period
p = k1p1 + ... + kqpq, where p1, ..., pq are periods of the simple periodic paths
φ1, ..., φq. For the characteristic exponent of ω = {z1, ..., zp} we have

λ(w) =
1

p

p∑
k=1

ln |a[zkzk−1]| =
1

p

q∑
j=1

kj

pj∑
k=1

ln |a[zj
kz

j
k−1]| =

1

p

q∑
j=1

kjpjλ(φj) =
q∑

j=1
µjλ(φj).

Thus, the characteristic exponent of ω is an arithmetic mean of characteristic
exponents of simple periodic paths with the weights µj,

∑q
k=1 µj = 1.

2

Let

λmin(H) = min{λ(φj), j = 1, ..., q},
λmax(H) = max{λ(φj), j = 1, ..., q}

be the minimum and the maximum of characteristic exponents of simple peri-
odic paths of the class H. From Proposition 2 it follows

Proposition 3 Characteristic exponent λ(ω) of each periodic path ω of class
H satisfies the inequality

λmin(H) ≤ λ(ω) ≤ λmax(H).
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Proposition 4 For every λ ∈ [λmin(H), λmax(H)] there is a sequence of periodic
paths {ωm} in H such that the characteristic exponents λ(ωm) → λ as m→∞.

Proof. Without loss of generality we can assume that λmin(H) < λ <
λmax(H). Let φmin = {z∗1, ..., z∗l } and φmax = {z∗∗1 , ..., z∗∗e } be simple periodic
paths realizing the characteristic exponents λmin(H) and λmax(H), respectively.
Since the vertices z∗l and z∗∗1 are equivalent recurrent vertices, there is a periodic
path ψ through z∗1 and z∗∗1 . Fix such a periodic path ψ = {z1 = z∗1, ..., zj =
z∗∗1 , ..., zq}. In H, there is a periodic admissible path ω of the form

ω = {

k∗−times︷ ︸︸ ︷︷ ︸︸ ︷
z∗1, ..., z

∗
l , ...,

︷ ︸︸ ︷
z∗1, ..., z

∗
l , z1 = z∗1, ..., zj =

k∗∗−times︷ ︸︸ ︷︷ ︸︸ ︷
z∗∗1 , ..., z

∗∗
e , ...,

︷ ︸︸ ︷
z∗∗1 , ..., z

∗∗
e ,

z∗∗1 = zj, ..., zq}
with the decomposition

ω = k∗φmin + k∗∗φmax + ψ.

Let p∗, p∗∗ and q be periods of φmin, φmax and ψ, respectively. For the weights of
φmin, φmax and ψ we have µ(φmin) = k∗p∗

p , µ(φmax) = k∗∗p∗∗

p and µ(ψ) = q
p , where

p = k∗p∗ + k∗∗p∗∗ + q is period of ω. If k∗ and k∗∗ → ∞ then µ(ψ) = q
p → 0.

Since λmin(H) < λ < λmax(H) there is δ, 0 < δ < 1, so that λ = δλ(φmin) +
(1 − δ)λ(φmax). Let us choose a sequence of integers {Vm} and {Wm} so that
Vm, Wm → ∞ and Vm

Wm
→ δ as m → ∞. Since 0 < δ < 1 then 0 < Vm < Wm.

We construct a sequence of integers {k∗m} and {k∗∗m } so that

k∗mp
∗

k∗mp
∗ + k∗∗m p

∗∗ =
Vm

Wm
,

i.e.,
k∗∗m = p∗∗Vm, k∗m = p∗(Wm − Vm).

Let us consider the described above sequence of periodic paths {ωm} with the
decompositions

ωm = k∗mφmin + k∗∗mφmax + ψ.

We have

µm(φmin) =
k∗mp

∗

k∗mp
∗ + k∗∗m p

∗∗ + q
=

Vm

Wm

k∗mp
∗ + k∗∗m p

∗∗

k∗mp
∗ + k∗∗m p

∗∗ + q
→ δ as m→∞,

µm(φmax) =
k∗∗m p

∗∗

k∗mp
∗ + k∗∗m p

∗∗ + q
= (1− Vm

Wm
)

k∗mp
∗ + k∗∗m p

∗∗

k∗mp
∗ + k∗∗m p

∗∗ + q
→ 1− δ as m→∞,

µm(ψ) =
q

k∗mp
∗ + k∗∗m p

∗∗ + q
→ 0 as m→∞.
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Thus, the characteristic exponent of ωm = k∗mφmin + k∗∗mφmax + ψ is

λ(ωm) = µm(φmin)λ(φmin) + µm(φmax)λ(φmax) + µm(ψ)λ(ψ).

So,
λ(ωm) → δλ(φmin) + (1− δ)λ(φmax) = λ as m→∞.

2

From Propositions 3 and 4 it follows

Theorem 1 The spectrum of the linear extension LG consists of the intervals
[λmin(Hk), λmax(Hk)], where {Hk} is the full family of classes of equivalent re-
current vertices of the symbolic image G(PF ).

One has to emphasize that the intervals [λmin(Hk), λmax(Hk)] may intersect
(see [26, 7]).

8 Spectrum of symbolic image

By construction, the linear extension LG depends on the choice of the linear
mappings {a[ji] : Ri → Rj} for the edges {i → j} of G(PF ). The mapping
a[ji] is determined by the choice of a point (x, y) ∈ M(i), (x, y) ∈ M(j) since
a[ji]l = A(x)e(y)l, where e(y) ∈ L(y), |e(y)| = 1. It follows from here that
the characteristic exponent depends on the choice as well. Let us examine
the variation of exponent under admissible variations of the linear mappings
{a[ji];Ri → Rj}.

Let ω = {z0, z1, ..., zp = z0} be a periodic path on G(PF ). By definition,
the characteristic exponent of the path ω for a linear extension LG is of the
form

λ(w) =
1

p

p∑
k=1

ln |a[zkzk−1]|,

where each |a[zkzk−1]| = |a[ji]| is determined by the edge i→ j rather then the
number k. In other words, if the path ω passes through the edge i → j twice,
i.e. zk−1 = i, zk = j and zl−1 = i, zl = j, then a[zkzk−1] = a[zlzl−1] = a[ji]. Let
us consider a more general case and define other exponent

σ(w) =
1

p

p∑
k=1

ln |α[zkzk−1]|,

where each α[zkzk−1] depends on k. In other words, if a path ω passes twice
through an edge i → j, i.e., zk−1 = i, zk = j zl−1 = i, zl = j, and k 6= l, then
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α[zkzk−1] and α[zlzl−1] can be different. Moreover, a value α[zkzk−1] is defined
as

α[zkzk−1] = a(x, y), where (x, y) ∈M(zk−1),

i.e., we do not require that the image F (x, y) is in M(zk).

Definition 8 Let ω = {z0, z1, ..., zp = z0} be an admissible periodic path on
the symbolic image G(PF ). A nonstationary exponent σ(w) of the path ω is
defined by the equality

σ(w) =
1

p

p∑
k=1

ln |α[zkzk−1]|,

where
α[zkzk−1] = a(x, y), (x, y) ∈M(zk−1), k = 1, ....p.

It is clear that the nonstationary exponent σ(ω) admits more variation than
λ(ω).

Definition 9 The set

Σ(G(PF )) = {σ ∈ R : there is a sequence of periodic paths ωk on G(PF )

with nonstationary exponents σ(ωk) such that σ(ωk) → σ as k →∞}
is called a spectrum of the symbolic image G(PF ) on the set of recurrent vertices
RV.

It is evident that the spectrum Σ(G(PF )) does not depend on linear exten-
sion LG. To find the spectrum of a symbolic image we introduce the following
notations

α(i) = min
(x,y)∈M(i)

|a(x, y)|, β(i) = max
(x,y)∈M(i)

|a(x, y)|.

Since each cell M(i) is compact, there are points (x∗, y∗) and (x∗∗, y∗∗) ∈M(i)
such that α(i) = |a(x∗, y∗)| and β(i) = |a(x∗∗, y∗∗)|. The maximal and the
minimal nonstationary exponents

Λmin(ω) =
1

p

p∑
k=1

lnα(zk), Λmax(ω) =
1

p

p∑
k=1

ln β(zk)

are defined for each periodic path ω = {z0, z1, ..., zp = z0}. By picking α[zkzk−1]
such that |α[zkzk−1]| = α(zk−1), we realize Λmin(ω) as a nonstationary exponent
σ(w) = 1

p

∑p
k=1 lnα(zk−1) of the path ω. The same way, Λmax(ω) is realized as

a nonstationary exponent of the path ω. Therefore, we obtain the estimates

Λmin(ω) ≤ σ(ω) ≤ Λmax(ω), (1)
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Λmin(ω) ≤ λ(ω) ≤ Λmax(ω), (2)

where σ(ω) is any nonstationary exponent, and λ(ω) is any characteristic ex-
ponent of a linear extension LG. Let φ1, ..., φq be a full collection of simple
periodic paths of class H with periods p1, ..., pq, respectively. Set

Λmin(H) = min{Λmin(φj), j = 1, ..., q},

Λmax(H) = max{Λmax(φj), j = 1, ..., q}.

Theorem 2 The spectrum Σ(G(PF )) of the symbolic image G(PF ) consists
of the intervals {[Λmin(Hk),Λmax(Hk)]}, where {Hk} is the full family of classes
of equivalent recurrent vertices on the symbolic image G(PF ).

Proof. We fix a class H of equivalent recurrent vertices on the symbolic
image. As indicated above, Λmin(φj) and Λmax(φj) are realized as some nonsta-
tionary exponents under a corresponding choice of α[zkzk−1]. Since the number
of simple periodic paths is finite, the exponents Λmin(H) and Λmax(H) are re-
alized as well. By repeating the proof of Proposition 2, one can show that each
nonstationary exponent of a periodic path is an arithmetic mean of nonstation-
ary exponents of simple periodic paths with corresponding weights. From this
it follows that the spectrum Σ(G(PF )) of the symbolic image G(PF ) is in⋃

k[Λmin(Hk),Λmax(Hk)], where {Hk} is the full family of classes of equivalent
recurrent vertices on the symbolic image G(PF ). By repeating the proof of
Proposition 4, one can show that each λ ∈ [Λmin(Hk),Λmax(Hk)] belongs to
the spectrum of a symbolic image. Thus,

Σ(G(PF )) =
⋃
k

[Λmin(Hk),Λmax(Hk)],

where {Hk} is the full family of classes of equivalent recurrent vertices of the
symbolic image G(PF ).

2

Theorem 3 The spectrum Σ(G(PF )) offers the properties:

1) spectrum of any linear extension Σ(LG) is in Σ(G(PF )),

2) Morse spectrum Σ(F ) is in Σ(G(PF )).

Proof. 1) From the definition of a nonstationary exponent it follows, that
each characteristic exponent λ(ω) of the periodic path ω = {z0, z1, ...zp = z0}
can be realized as a nonstationary exponent σ(ω) setting α[zkzk−1] = a[zkzk−1],
k = 1, ....p. From this it follows that the characteristic exponent λ(ω) of any
linear extension LG is in the spectrum of a symbolic image.
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2) Let us show that for any periodic ε-trajectory

ξ = {(x0, y0), (x1, y1), ..., (xp, yp) = (x0, y0)}, ε < r,

where r is the lower bound of a symbolic image, there is an admissible periodic
path ω = {z0, z1, ...zp = z0} such that the characteristic exponent λ(ξ) =
1
p

∑p−1
k=0 ln |a(xk, yk)| of ξ is realized as a nonstationary exponent σ(ω) of ω. Let a

vertex zk be such that (xk, yk) ∈M(zk). Since ε < r, according to Proposition
1 the path ω = {z0, z1, ..., zp = z0} is an admissible periodic path on the
symbolic image. By setting α[zkzk−1] = a(xk−1, yk−1), we obtain

σ(ω) =
1

p

p∑
k=1

ln |α[zkzk−1]| =
1

p

p−1∑
k=0

ln |a(xk, yk)| = λ(ξ).

Hence, a characteristic exponent of any periodic ε-trajectory, ε < r, is in
Σ(G(PF )). Since the Morse spectrum is a limit set of periodic ε-trajectories as
ε→ 0, it is in the spectrum of symbolic image Σ(G(PF )).

2

9 Estimate of Morse spectrum and symbolic image spec-

trum

In this section we find a family of intervals containing the desired spectra under
the supposition that a spectrum Σ(LG) of a linear extension of symbolic image
is known. Since M is compact, the mapping A(x) has a modulus of continuity
ηA(ρ) on x. Set

η(ρ) = ηA(ρ) + max
x∈M

|A(x)|ρ,

θ = ( min
x∈M, |e|=1

|A(x)e|)−1 = max
x∈M

|A−1(x)|.

Proposition 5 Let ω be an admissible periodic path on a symbolic image
G(PF ), λ(ω) be a characteristic exponent for a linear extension LG, and σ(ω)
be a nonstationary exponent of the same periodic path ω. Then

|λ(ω)− σ(ω)| ≤ θη(d),

where d is a maximal diameter of cells of covering C(P ).

Proof. Let (x, y) and (x∗, y∗) be two points from a cell M(i), a = a(x, y),
and a∗ = a(x∗, y∗). We have the estimate

|a∗ − a| ≤ |A(x∗)e(y∗)− A(x)e(y)| ≤ |A(x∗)− A(x)|+ |A(x)||e(y∗)− e(y)| ≤
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ηA(ρ(x, x∗)) + max
x
|A(x)|ρ1(y

∗, y) ≤ η(d),

where ρ1(∗) is a distance on the projective manifold, d is a maximal diameter
of cells of the covering C(P ).

Let LG be a linear extension of the symbolic image G(PF ) and ω =
{z0, z1, ..., zp = z0} be a periodic path onG(PF ).Denote by λ = 1

p

∑p
k=1 ln |a[zkzk−1]|

and σ = 1
p

∑p
k=1 ln |α[zkzk−1]| a characteristic exponent and a nonstationary

exponent of the path ω, respectively. Since a[zkzk−1] = a(xk−1, yk−1) and
α[zkzk−1] = a(x∗k−1, y

∗
k−1), where the points (xk−1, yk−1) and (x∗k−1, y

∗
k−1) are

in the cell M(k − 1), we have the estimate

|a[zkzk−1]− α[zkzk−1]| ≤ η(d).

From this it follows the estimate

|λ− α| ≤ 1

p

p∑
k=1

| ln |a[zkzk−1]| − ln |α[zkzk−1]|| ≤ (max
P

1

|a(x, y)|
)η(d) =

η(d)

minP |a(x, y)|
= θη(d). (3)

2

According to Proposition 1, each ε-trajectory with ε < r is realized as an
admissible path on the symbolic image G(PF ). From this and Proposition 5 it
follows

Proposition 6 Let ξ = {(x0, y0), (x1, y1), ..., (xp, yp) = (x0, y0)} be a periodic
ε-trajectory, ε < r, and the vertices zk are such that (xk, yk) ∈ M(zk). Then
ω = {z0, z1, ..., zp = z0} is an admissible periodic path, and for any linear
extension LG characteristic exponent λ(ω) offers the inequality

|λ(ω)− λ(ξ)| ≤ θη(d).

According to Theorem 1, the spectrum of the linear extension

Σ(LG) =
⋃
k

[λmin(Hk), λmax(Hk)],

where {Hk} is the full family of classes of equivalent recurrent vertices of the
symbolic imageG(PF ), λmin(Hk) and λmax(Hk) are the maximum and minimum
of characteristic exponents of simple periodic paths of the class Hk.

Theorem 4 The Morse spectrum Σ(F ) of the linear extension F : E → E and
the spectrum Σ(G(PF )) are in⋃

k

[λmin(Hk)− θη(d), λmax(Hk) + θη(d)],
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where {Hk} is the full family of classes of equivalent recurrent vertices on sym-
bolic image G(PF ), d is a maximal diameter of cells of covering C(P ).

Proof. According to Theorem 3, the Morse spectrum is in the spectrum of
a symbolic image. Thus, it is sufficient to prove that the last is in the described
family of intervals. Let σ be in the spectrum of a symbolic image. This means
that there is a sequence of periodic paths ωm = {zm

0 , z
m
1 , ..., z

m
pm

= zm
0 } and

their nonstationary exponents

σm = σ(ωm) =
1

pm

pm∑
i=1

ln |α[zm
i z

m
i−1]|,

such that
σm → σ as m→∞.

Let a periodic path ωm be in the class H and LG be a linear extension of the
symbolic image G(PF ). According to Theorem 1 the characteristic exponent

λ(ωm) =
1

pm

pm∑
i=1

ln |a[zm
i z

m
i−1]|

of the path ωm is in the interval I = [λmin(H), λmax(H)]. In addition, we have
the estimate

|α[zm
i z

m
i−1]− a[zm

i z
m
i−1]| ≤ η(d).

Since all exponents λ(ωm) are in the interval [λmin(H), λmax(H)], by (3) each
nonstationary exponent

σ(ωm) =
1

pm

pm∑
i=1

ln |α[zm
i z

m
i−1]|

is in the closed interval [λmin(H)− θη(d), λmax(H) + θη(d)]. Hence, the limit

λ = lim
m→∞λm

is in this interval as well.
2

We denote by ˜Σ(LG) a union of the intervals Ĩk = [λmin(Hk)−θη(d), λmax(Hk)+
θη(d)] : ˜Σ(LG) = ∪kĨk, where d is a maximal diameter of cells on the projective
space and {Hk} is the full family of classes of equivalent recurrent vertices.
Recall that the Hausdorff distance H(A,B) between sets A and B is defined by

H(A,B) = max{h(A,B), h(B,A)},

where
h(A,B) = sup

u∈B
ρ(u,A) = sup

u∈B
inf
v∈A

ρ(u, v).
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Theorem 5 Let {LGm} be a sequence of linear extensions of images {Gm} of
PF with the maximal diameters dm of cells. If dm → 0 as m→∞ then

H(Σ(F ),Σ(LGm)) → 0,

H(Σ(F ), ˜Σ(LGm)) → 0,

H(Σ(F ),Σ(Gm)) → 0.

as m→∞.

Proof. First we notice that

H( ˜Σ(LGm),Σ(LGm)) ≤ θη(dm), H(Σ(Gm),Σ(LGm)) ≤ θη(dm),

H( ˜Σ(LGm),Σ(Gm)) ≤ θη(dm),

and θη(dm) → 0 asm→∞. From this it follows that to prove theorem it is suffi-
cient to establish one of the required limits. For example thatH(Σ(F ),Σ(Gm)) →
0 as m→∞.

We prove by contradiction that h(Σ(F ),Σ(Gm)) → 0 as m → ∞. Let us
assume on the contrary that there are χ > 0, a sequence of symbolic images
{Gm} and σm ∈ Σ(Gm) such that ρ(σm,Σ(F )) ≥ χ. There is a sequence {ωm

j }
of periodic paths on Gm such that their nonstationary exponents σ(ωm

j ) → σm

as j → ∞. According to Proposition 1, each periodic path ωm
j generates a

periodic εm−trajectory ξm
j on the projective space, εm → 0 as m → ∞. In

addition, we can choose ξm
j such that its characteristic exponent λm

j coincides
with σ(ωm

j ). One can consider that ρ(λm
j ,Σ(F )) ≥ 1

2χ > 0. Since {λm
j } is

bounded, there is a convergent subsequence λ
m(k)
j(k) → λ as k →∞. By definition

of the spectrum, the limit λ has to be in Σ(F ) that contradicts to the inequality

ρ(λ
m(k)
j(k) ,Σ(F )) ≥ 1

2χ. Thus, h(Σ(F ),Σ(Gm)) → 0 as m → ∞. According to
Theorem 3, Σ(F ) ⊂ Σ(Gm). From this it follows that h(Σ(Gm),Σ(F )) = 0. So,
H(Σ(F ),Σ(Gm)) → 0 as m→∞.

2

Theorem 5 guarantees that a good estimate for Morse spectrum can be
obtained if the largest cell diameter d of the covering C(P ) is sufficiently
small. However, we do not have suitable estimate for the diameter d. In this
case an algorithm constructing a monotone sequvence of sets converging to the
Morse spectrum is of greatest practical utility. Let us consider one of them.
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10 Localization of the chain recurrent set

Denote by RV (d) the union of cells M(i) for which the vertices i are recurrent
:

RV (d) = {
⋃
M(i) : i are recurrent},

where d is the largest diameter of the cells M(i). It should be noted that in fact
the constructed set RV (d) depends on the covering C(P ). However, in what
follows we need only to consider the dependence of RV (d) on d.

Theorem 6 [16]

1. The set RV (d) is a closed neighborhood of the chain recurrent set CR.
Moreover, RV (d) is a subset of ε-periodic points set for any ε > q+d, i.e.,

RV (d) ⊂ Per(ε), ε > q + d.

2. The chain recurrent set CR coincides with an intersection of the sets
RV (d) for all positive d:

CR =
⋂

d>0
RV (d).

Theorem 6 makes possible to localize the chain recurrent set without pre-
liminary information on a dynamical system [16]. The subdivision is a main
step of the construction.

11 Subdivision process

Let C = {M(i)} be a covering of P and G be a symbolic image for C. Suppose a
new covering NC is produced by taking a subdivision of C, i.e., each cell M(i) is
subdivided. Denote by NG the symbolic image for NC. It is a convenience the
cells of the new covering to designate as M(i, k). Thus, the cells M(i, k), k =
1, 2, ... , form a partition of the cell M(i):

⋃
k

M(i, k) = M(i).

The vertices of the new symbolic image are denoted as (i, k). Some cells are not
excluded actually to be not subdivided, i.e., M(i, 1) = M(i). The described
subdivision generates a natural mapping S from NG on G which takes the
vertices (i, k), k = 1, ..., onto the vertex i. Since from PF (M(i, k))∩M(j, l) 6= ∅
it follows PF (M(i)) ∩M(j) 6= ∅, the directed edge (i, k) → (j, l) is mapped
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onto the directed edge i → j. Hence, the mapping S takes the directed graph
NG into the directed graph G.

An algorithm localizing the chain recurrent set CR is available in [16]. It
consists of the following steps:

1. Starting with an initial covering C, the symbolic image G of the map PF
is found. The cells of the initial covering may have arbitrary diameter d0 .

2. The recurrent vertices {ik} of the graph G are recognized. Using the
recurrent vertices, a closed neighborhood V = {∪M(ik) : ik is recurrent}
of the chain recurrent set CR is found.

3. The cells corresponding to recurrent vertices {M(ik) : ik is recurrent} are
subdivided. For example, the largest diameter of the cells may be divided
by 2. Thus, the new covering is defined.

4. The symbolic image G is constructed for the new covering. It should
be noted that the new symbolic image may be constructed on the set
V = {∪M(ik) : ik is recurrent}. In other words, the cells corresponding
to non recurrent vertices do not participate in the construction of the new
covering and the new symbolic image.

5. Then one goes back to the second step.

Repeating this subdivision process we obtain a sequence of neighborhoods
V0, V1, V2, ... of the chain recurrent set CR and a sequence of the largest
diameters d0, d1, d2, ... . The following theorem substantiates the described
algorithm for localization of the chain recurrent set.

Theorem 7 [16] The sequence of sets V0, V1, V2, ... offers the following prop-
erties:

(i) the neighborhoods Vk are imbedded one inside the other, i.e.,

V0 ⊃ V1 ⊃ V2 ⊃ ... ⊃ CR,

(ii) if the largest diameters dk → 0 as k becomes infinite then

lim
k→∞

Vk =
⋂
k

Vk = CR. (4)
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12 Localization of Morse spectrum

Let us modify the subdivision process to localize the Morse spectrum of a
dynamical system. To this end we apply the subdivision process to mapping PF
and after the second step of the described algorithm we produce the following

2∗. The classes {Hm} of equivalent recurrent vertices are found, and the
family of simple periodic paths {φm

j } is recognized for each class Hm,

2∗∗. The intervals Im = [Λmin(Hm),Λmax(Hm)] are determined by using the
families {φm

j }.
Then one goes to the third step. Repeating the subdivision process and the

calculation of intervals Im we obtain

1) a sequence of neighborhoods {Vk} of the chain recurrent set,

2) a sequence of the largest diameters of cells {dk},
3) a sequence of families of intervals {Ik

m}.

Theorem 8 The constructed sequence of intervals offers the following proper-
ties:

(i) each set Σk = ∪mI
k
m contains the Morse spectrum of F ,

(ii) the sets Σk are embedded one inside the other, i.e.,

Σ0 ⊃ Σ1 ⊃ Σ2 ⊃ ... ⊃ Σ(F ),

(iii) if dk → 0 as k becomes infinite then

lim
k→∞

Σk =
⋂
k

Σk = Σ(F ). (5)

Proof. (i) follows from Theorem 3, and (iii) is a corollary of Theorem
5. To prove the statement (ii) we consider a covering C = {M(i)} and a new
covering NC = {m(ij)} which is a subdivision of C, i.e., ∪jm(ij) = M(i). Let
G and NG be symbolic images for the coverings C and NC, respectively. As
indicated above, there is the mapping S : NG→ G taking the directed graphs.
In particular, S takes a periodic path on some periodic path. However, an
image of simple path may be not simple periodic path. Consider an interval
NI = [Λmin(NH),Λmax(NH)] corresponding to some class NH of the new
symbolic image. Since the mapping S takes the equivalent periodic paths into
the equivalent periodic paths, the image S(NH) is in some class H. Let us
prove that the interval I = [Λmin(H),Λmax(H)] contains the interval NI. In
fact, according to Theorem 2, there is a simple periodic path φ ⊂ NG on
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which Λmin(NH) is realized as a nonstationary exponent, i.e.,

Λmin(NH) = σ(φ) =
1

p

p∑
k=1

lnα(zk)

where φ = {z0, z1, ..., zp = z0}, α(zk) = min{|a(x, y)|, (x, y) ∈ m(zk)}. Let a
periodic path ω = {z∗1, ..., z∗p} be an image S(φ) of the simple periodic path φ
with the minimal nonstationary exponent

σ(ω) =
1

p

p∑
k=1

lnα∗(z∗k),

where
α∗(z∗k) = min

(x,y)∈M(z∗k)
|a(x, y)|.

From the inclusion m(zk) ⊂M(z∗k) it follows α∗(z∗k) ≤ α(zk) and σ(ω) ≤ σ(φ) =
Λmin(NH). Hence, Λmin(H) ≤ σ(ω) ≤ Λmin(NH). The same way, one can prove
that Λmax(NH) ≤ Λmax(H). Thus,

Λmin(H) ≤ Λmin(NH) ≤ Λmax(NH) ≤ Λmax(H),

i.e., NI ⊂ I.

2

13 Exponential estimates

Let us apply of the obtained results to estimate an action of the mapping
F along an ε-trajectory ξ = {(xi, yi)}. According to Proposition 1, if ε <
r, r is a lower bound of symbolic image, then there is an admissible path
ω = {zi} corresponding to the ε-trajectory ξ where zi : (xi, yi) ∈ M(zi). By
Theorem 2, the spectrum of the symbolic image Σ(G(PF )) consists of the
intervals {[Λmin(Hk),Λmax(Hk)]}, where {Hk} is the full family of equivalent
recurrent vertices classes. The interval [Λmin(H),Λmax(H)] is reasonably named
a spectrum of class H.

Theorem 9 If the spectrum of class H is in an interval [a, b] then there ex-
ist positive constants K∗ and K∗ such that for any finite ε-trajectory ξ =
{(x0, y0), (x1, y1), ..., (xp, yp)}, ε < r, r is a lower bound of symbolic image,
for which the corresponding admissible path ω = {zi}, zi : (xi, yi) ∈ M(zi) is
in H, the following estimate holds

K∗ exp(pa) ≤
p−1∏
k=0

|F (xk, e(xk, yk))| ≤ K∗ exp(pb). (6)

Electronic Journal. http://www.neva.ru/journal 42



Differential Equations and Control Processes, N 4, 1999

Proof. Recall that each directed edge i → j induces the value α[ji] =
a(x, y), |a(x, y)| = |F (x, e(y))|, where (x, y) ∈ M(i), e(y) is a base vector in
one-dimension space L(y).

First we obtain the desired estimates for a simple periodic path. Let ψ =
{z0, z1, ...zp = z0} be a simple periodic path in the class H. By fixing the values
α[zkzk−1], k = 1, ..., p, one can find a nonstationary exponent

σ(ψ) =
1

p

p∑
k=1

ln |α[zkzk−1]|.

Since it is in the interval [a, b], we obtain the inequality

a ≤ 1

p

p∑
k=1

ln |α[zkzk−1]| ≤ b.

From this it follows the estimate

exp(pa) ≤
p∏

k=1
|α[zkzk−1]| ≤ exp(pb).

Now, consider any path ω = {z0, z1, ..., zp} in the class H. Let us decompose
ω in a sum of simple paths as it done above. Let the path ω pass through a
vertex z∗ twice, i.e., z∗ = zl = zl+p1

, p1 > 0. Consider two finite sequences
ω1 = {z0, z1, ..., zl−1, zl = zl+p1

, ..., zp} and ω2 = {zl, zl+1, ..., zl+p1
= zl}. By

construction, the path ω2 is an admissible periodic path of period p2. We say
that the path ω is a sum of paths ω1 and ω2, i.e.,

ω = ω1 + ω2,

where ω1 is a nonperiodic path, in general. By repeating the decomposition
process, we come to the representation

ω = k1ψ1 + k2ψ2 + ...+ kqψq + ω0

of the path ω in a sum of simple periodic paths {ψ, ψ2, ..., ψq} ⊂ H plus some
path ω0 with different vertices of the class H. In this case p = k1p1 + k2p2 +
...kqpq + p0, ki ≥ 0, p0 is a length of the path ω0. Clearly, p0 is less than
the maximal period of simple periodic paths of the class H, i.e., p0 ≤ t =
max{pj, j = 1, ..., q}. Let us obtain an estimate of the product

Π(ω) =
p∏

k=1
|α[zkzk−1]|, (7)

where α[zkzk−1] = a(xk−1, yk−1), (xk−1, yk−1) ∈ M(zk−1). To do this we change
the position of factors in (7) according to the decomposition

ω = k1ψ1 + k2ψ2 + ...+ kqψq + ω0.
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We start with a product Π(ω0) consisting of factors α0[ji] = α[ji], i → j ∈
ω0, corresponding to the path ω0. Next are k1 products Πi(ψ1), i = 1, ..., k1

consisting of factors αi[ji] = α[ji], i → j ∈ ψ1, corresponding to the simple
periodic path ψ1, k2 products Πi(ψ2) corresponding to the simple periodic paths
ψ2, and so on. As a result we get the representation of the product Π(ω) in the
form

Π(ω) =
q∏

j=1
(

kj∏
i=1

Πi(ψj)) · Π(ω0).

For each factor Πi(ψj) we have the estimate

exp(pja) ≤ Πi(ψj) ≤ exp(pjb). (8)

As the product Π(ω0) has no more than t factors then

(Kmin)
t ≤ Π(ω0) ≤ (Kmax)

t, (9)

where Kmin ≤ |α[z∗z∗∗]| ≤ Kmax, z
∗ → z∗∗ ∈ H, this we suppose Kmin ≤ 1 ≤

Kmax without a loss of generality. From inequalities (8) and (9) it follows the
estimate

(Kmin)
t exp(a

q∑
j=1

kjpj) ≤ Π(ω) ≤ (Kmax)
t exp(b

q∑
j=1

kjpj).

Thus,
K∗ exp(pa) ≤ Π(ω) ≤ K∗ exp(pb), (10)

where

K∗ =

 (Kmin)
t exp(−at), fiΥ a > 0,

(Kmin)
t, fiΥ a ≤ 0;

K∗ =

 (Kmax)
t exp(−bt), fiΥ b < 0,

(Kmax)
t, fiΥ b ≥ 0.

(11)

From this it follows (6).
2

Corollary 1 The constants K∗ and K∗ of the exponential estimate (6) are
found by the formulas (11), where Kmin ≤ |F (x, e)| ≤ Kmax, Kmin ≤ 1 ≤
Kmax, t is a maximal period of simple periodic paths of class H.

Corollary 2 Let ξ = {(xk, yk) = PF k(x, y), k = 0, 1, ..., p} be a finite part of
trajectory of a point (x, y) = (x0, y0) ∈ P such that a path ω = {zk} : (xk, yk) ∈
M(zk), k = 0, 1, ..., p corresponding to ξ is in H, then

K∗ exp(pa)|v| ≤ |F p(x, v)| ≤ K∗ exp(pb)|v|,

where v ∈ L(x, y).
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Proof. First, note that the estimate (6) holds for the trajectory ξ. If
(x1, y1) = PF (x, y) then a basis vector in the space L(x1, y1) is of the form

e(x1, y1) =
A(x)e(x, y)

|A(x)e(x, y)|
.

Hence, we have

|F (x1, e(x1, y1))||F (x, e(x, y))| = |A(f(x))e(x1, y1)||A(x)e(x, y)| =

|A(f(x))A(x)e(x, y)| = |F 2(x, e(x, y))|.
The same way we obtain the equality

p−1∏
k=0

|F (xk, e(xk, yk))| = |F p(x, e(x, y))|,

where e = v/|v|. Then (6) takes the form

K∗ exp(pa)|v| ≤ |F p(x, v)| ≤ K∗ exp(pb)|v|.

2

14 Chain-recurrent components in the project bundle

A subset Ω ⊂ CR is called a component of the chain-recurrent set if each two
points from Ω can be connected by a periodic ε-trajectory for any ε > 0.

Recall some information on attractors. A closed invariant Lyapunov asymp-
totically stable set is called an attractor. An attractor of the inverse mapping
f−1 is called a repeller of f . An intersection of an attractor and a repeller is
called a Morse set.

Proposition 7 [3, 5] An invariant set A is an attractor of f if there is a
neighborhood U of A such that

f(cl U) ⊂ U, A =
⋂

n>0
fn(U),

where cl stands for the closure.

The described set U is called a fundamental neighborhood of an attractor
A, and the set W s(A) =

⋃
n<0 f

n(U) is called an attraction domain of A.

Definition 10 [13] A filtration of f is a finite sequence {U0 = ∅, U1, . . . , Ul =
M} of open sets such that U0 ⊂ U1 ⊂ · · · ⊂ Ul and f(clUk) ⊂ Uk for each
k = 0, 1, ...,m.
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The second condition is a property of fundamental neighborhood of an
attractor. The next proposition describes a structure of attractors induced by
a filtration.

Proposition 8 [5] Let {U0 = ∅, U1, ..., Ul} be a filtration. The following prop-
erties hold:

(i) a maxilal invariant set in Uk, k = 0, 1, ..., l

Ak = {∩fn(Uk) : n ∈ Z+}

is an attractor, and
∅ = A0 ⊂ A1 ⊂ · · · ⊂ Al = M,

(ii) a maximal invariant set in Uk \ Uk−1:

Ωk = {∩F n(Uk \ Uk−1) : n ∈ Z}, k = 1, ..., l,

is a Morse set, and the chain recurrent set CR is in ∪l
k=1Ωk.

The family {Ω1, ...,Ωl} is called a Morse decomposition.

Theorem 10 [5, 7, 26] Let F be a linear extension of a homeomorphism
f : M →M on a vector bundle (E,M, π), and PF be an induced by F mapping
on the projective bundle (P,M,Pπ). If Ω is a component of the chain-recurrent
set of f on the base M then

(i) the chain-recurrent set of the restriction PF |Pπ−1(Ω) has l components
Ω1, ...,Ωl, 1 ≤ l ≤ dimE(x), x ∈M , which form a Morse decomposition,

(ii) each set Ωi defines a (continuous, constant dimensional) subbundle Ei

over Ω
Ei = {v ∈ π−1(Ω) : v 6= 0 ⇒ [v] = y ∈ Ωi},

(iii) the following decomposition into a Whitney sum holds

E|Ω = E1 ⊕ ...⊕ El,

(iv) conversely, each chain-recurrent component Ω∗ on the projective space
P is projected onto a chain-recurrent component Ω of the base M, which is of
the form described in (ii).

In particular, from (iv) it follows that any component Ω∗ of the chain-
recurrent set on the projective bundle P meets each leaf Pπ−1(x) at a some pro-
jective manifold which continuously depends on x ∈ Ω = Pπ(Ω∗). J.Selgrade
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[26] proved that the described property holds not only for a component of the
chain-recurrent set but for each Morse set Ω∗ on the projective bundle. The
decomposition described in (i)-(iii) is called the finest Morse decomposition on
the projective bundle.

Let C(M) = {m(j)} be a covering of the manifold M and C(P ) = {M(z)}
be an agreed covering of the projective space P , i.e., a natural projection of
each cell is a cell: Pπ(M(z)) = m(j). We denote by G(f) and G(PF ) the
symbolic images of f and PF, respectively. As indicated above, for the agreed
coverings there is a ”natural projection” h(z) = j from G(PF ) on G(f), where
Pπ(M(z)) = m(j). Moreover, the mapping h takes the directed graph G(PF )
on the directed graph G(f).

Theorem 11 Let G(f) and G(PF ) be the symbolic images of the mappings f
and PF for the agreed coverings C(M) and C(P ), respectively. If H is a class
of equivalent recurrent vertices on the symbolic image G(f) and {H1, ..., Hl}
is a full collection of equivalent recurrent vertices classes on G(PF ) which are
projected on H , i.e., h(Hm) = H, m = 1, ..., l, then

(i) number l of classes Hm : h(Hm) = H is less or equal to dimE(x), x ∈
M ,

(ii) if Ωm is a maximal invariant set in Vm = {⋃
M(z), z ∈ Hm} then the

family {Ω1, ...Ωl} is a Morse decomposition,

(iii) each Ωm defines a (continuous, constant dimensional) subbundle Em

over a component Ω being in V = {⋃
m(j), j ∈ H}:

Em = {v ∈ π−1(Ω) : v 6= 0 ⇒ [v] = y ∈ Ωm},

(iv) the following decomposition into a Whitney sum holds

E|Ω = E1 ⊕ ...⊕ El,

(v) if the spectrum of the class Hm is in an interval [am, bm] then for each
point (x, v) ∈ Em and every integer p > 0 the following estimate hold

K∗ exp(pam) |v| ≤ |F p(x, v)| ≤ K∗ exp(pbm) |v|,

where the constants K∗ and K∗ are given by (11),

(v) if 1 is not in the spectrum of classes {Hm} then the linear extension F
is hyperbolic over Ω,

(vi) for each component Ω of the chain-recurrent set on the base M there ex-
ists d0 > 0 such that for every covering C(P ) with the maximal diameter of cells
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d < d0 the full family {Hm} of equivalent recurrent vertices on G(PF ) induces
(see(ii)) a decomposition {Ω1, ...,Ωl} which is the finest Morse decomposition
over Ω.

Proof. The statement (i) follows from (ii)-(iv). The statement (ii) follows
from the results of the paper [18]. The statements (iii) and (iv) are proved
in [5], p. 117. Corollary 2 guarantees the validity of (v). The statement (vi)
follows from Theorem 6.

2
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