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Abstract

Two-dimensional polynomial dynamical systems are considered. We de-
velop Erugin’s two-isocline method for the global analysis of such systems, con-
struct canonical systems with field-rotation parameters and study limit cycle
bifurcations. Using the canonical systems, cyclicity results and Wintner—Perko
termination principle, we outline a global approach to the solution of Hilbert’s
Sixteenth Problem.

1 Introduction

We consider two-dimensional dynamical systems

where P(x,y) and Q(z,y) are polynomials of real variables x, y with real coeffi-
cients. The main problem of the qualitative theory of such systems is Hilbert’s
Sixteenth Problem:
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Problem. Find the mazimum number and relative position of limit cycles
of (1).

This is the most difficult problem in the qualitative theory of polynomial
systems. There are a lot of methods and results on the study of limit cycles.
But the Problem has not been solved completely even for the case of simplest
(quadratic) systems. It is known only that a quadratic system has at least four
limit cycles in (3 : 1) distribution (see [1-4]).

There are three bifurcations of limit cycles: 1) Andronov—Hopf bifurca-
tion (from a singular point of the center or focus type); 2) separatrix cycle
bifurcation (from a homoclinic or heteroclinic orbit); 3) multiple limit cycle
bifurcation. The first bifurcation was studied completely only for quadratic
systems. N.N.Bautin proved that the number of limit cycles bifurcating from
a singular point (its cyclicity) was equal to three [5]. Recently H.Zoladek
found out that for cubic systems the cyclicity of a singular point was not
less than eleven [6]. The second bifurcation has been intensively studying by
F. Dumortier, R.Roussarie and C. Rousseau. Now we have the classification
of separatrix cycles, know the cyclicity of the most of them (of elementary
graphics) and have got some global results [7-9]. The last bifurcation is the
most complicated. Multiple limit cycles were considering, for instance, by J.-
P. Francgoise, C. C. Pough [10] and L. M. Perko [11-13]. All mentioned bifurca-
tions can be generalized for higher-dimensional dynamical systems and can be
used for various applications [14-19].

However all these bifurcations of limit cycle are local bifurcations. We con-
sider only a neighborhood of either the point or the separatrix cycle, or the
multiple limit cycle studying only the corresponding sufficiently small neigh-
borhood in the parameter space. It needs a qualitative investigation on the
whole (both on the whole phase plane and on the whole parameter space), i.e.,
it needs a global bifurcation theory. This is the first idea introduced for the first
time by N. P. Erugin in [20]. Then we should connect all limit cycle bifurcations.
This idea came from the theory of higher-dimensional dynamical systems. It
was contained in Wintner’s principle of natural termination [21] and was used
by L. M. Perko for the study of multiple limit cycles in two-dimensional case [11-
13]. At last, we must understand how to control the limit cycle bifurcations.
The best way to do it is to use field-rotation parameters considered for the first
time by G.F.D. Duff in [22]. All these ideas were considered in [23-27] and will
be developed in this paper.
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2 Previous results

In [25] we showed how to apply the two-isocline method to the global quali-
tative investigation of polynomial systems (1). This method was developed
by N.P.Erugin for two-dimensional systems [20] and then was generalized by
V. A.Pliss for the three-dimensional case [14]. An isocline portrait is the most
natural construction in the corresponding polynomial equation. It is enough
to have only two isoclines (isoclines of zero and infinity) to obtain principal
information on the original system, because these two isoclines correspond to
the right-hand sides of the system. We know geometric properties of isoclines
(conics, cubics, etc.) and can easily get all isocline portraits. By means of them
we can obtain all topologically different qualitative pictures of integral curves to
within a number of limit cycles and distinguishing center and focus. Hence we
are able to carry out the rough topological classification of the phase portraits
for the polynomial systems.

Using Erugin’s two-isocline method, we can give, for example, a geometric
interpretation of all four cases of center for the corresponding quadratic equation

dy  x+azx®+bxy + cy’
dr  —y+may +ny?

(2)

1) Axial symmetry:

dy _x+aa:2+cy2
dr  —y+may

(3)

2) Local symmetry (zero divergence) on the whole phase plane (Hamiltonian
case):
dy x4+ ax®+ cy?
dr  —y — 2cxy + ny?’

(4)
3) Orthogonality of asymptotes of hyperbolas forming the family of isoclines

(Lotka—Volterra case):
dy x4+ ax®+ bay — ay?

(5)

de —y + mxy
4) Orthogonality of asymptotes of saddles at infinity:

dy x—a®—5nxy+ 2(n* + 1)y
dv —y+ (6n2+ oy —ny?

(6)
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Studying contact and rotation properties of isoclines we can also construct
the simplest (canonical) systems containing limit cycles.

Theorem 1 [25]. Any quadratic system with limit (separatriz) cycles can
be reduced to one of the systems either

or

x':—y(l—i—yy), y:Q(xay)> v =01, (8)

where
Q(z,y) =z + My + az® + By(1l + z) + cy®.

The advantage of systems (7) and (8) is that they contain the minimal
number of the essential parameters and some of these parameters rotate the
vector field. More precisely, it is true

Lemma [25]. Parameters a and (3 rotate the vector field of systems (7)
and (8) on the whole phase plane: when any of these parameters increases, the
field is rotated in negative direction (clockwise); when they decrease, the field
is rotated in positive direction (counterclockwise). Parameter X rotates the field
in the half-planes x > —1 and x < —1 wn opposite directions: when it increases
(decreases), the field is rotated in negative direction in the half-plane x > —1
(x < —1) and in positive direction in the half-plane x < —1 (z > —1).

Two groups of parameters can be distinguished in such systems: static (a, ¢)
and dynamic («, 3, \). Static parameters determine the behavior of the phase
trajectories in principle, since they control the number, position and type of
singular points in finite part of the plane (finite singularities). Parameters from
the first group determine also a possible behavior of separatrices and singular
points at infinity (infinite singularities) under the variation of parameters from
the second group. Dynamic parameters are rotation parameters. They typically
do not change the number, position and index of finite singularities and involve a
directional rotation in the vector field (in general, finite singular points can move
under the variation of some such parameters). The rotation parameters allow to
control infinite singularities, the behavior of limit cycles and separatrices. The
cyclicity of singular points and separatrix cycles, the behavior of semi-stable
and other multiple limit cycles can be studied by means of these parameters as

Electronic Journal. http://www.neva.ru/journal 4



Differential Equations and Control Processes, N 3, 2000

well. Obviously, the number of limit cycles depends on the number of rotation
parameters. Thus with the help of rotation parameters we can control all limit
cycle bifurcations, i.e., we can solve the finest qualitative problems and carry
out the global qualitative investigation of the polynomial systems.

Basing on the center cases and applying field-rotation parameters, we de-
veloped a new approach to the classification of separatrix cycles [24, 25]. The
classification was carried out according to the number and the type of finite sin-
gularities of the original reversible systems and with the help of the successive
variation of rotation parameters. We considered the following cases of singular
points: 1) three saddles and one antisaddle; 2) two saddles and two antisad-
dles; 3) one saddle and three antisaddles; 4) simple saddle and antisaddle; 5) two
simple antisaddles (nondegenerate cases) and 6) degenerate cases.

That approach allowed not only to define all possible types of separatrix
cycles, but also to control their cyclicity and relative position, to keep the track
of limit cycles (including multiple limit cycles), to obtain both the corresponding
phase portraits and the corresponding division in the parameter space.

Earlier, in [23], we studied limit cycle bifurcations of various codimensions
for a similar quadratic system with field-rotation parameters and introduced so-
called a function of limit cycles: a cross-section of the Andronov—Hopf manifold
formed by the limit cycles and the corresponding values of a rotation parameter.
Using numerical and analytical methods, we constructed concrete examples of
systems with different number and relative position of limit cycles. In particu-
lar, an example of the system with at least four limit cycles in (3 : 1) distribution
was constructed. In that work we considered the case of two singular points and
two field-rotation parameters and showed that in such two-parameter families
semi-stable limit cycles always moved either to the origin or to the separatrix
cycle under the variation of the rotation parameters. Their termination was in-
dicated either by vanishing the first focus quantity at the origin or by vanishing
the divergence (or the equivalent value) at the saddle (the saddle points) lying
on the separatrix cycle.

In [26, 27] we used all this information and by means of the field-rotation
parameters and functions of limit cycles we tried to control semi-stable limit
cycles changing the rotation parameters so that to push the semi-stable limit
cycles either to a singular point of focus (centre) type or to some separatrix
cycle and to obtain a contradiction with their cyclicity.
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3 Local bifurcation surfaces of multiple limit cycles

Let us first rewrite system (1) in the vector form

d3:f(w, IJ’)7 (9)

where £ € R*, u € R", f € R* (f is a polynomial vector function), then recall
a few basic facts about multiple limit cycles and formulate Perko’s theorems [13]
on the local existence of fold, cusp, swallow-tail and multiplicity-m limit cycle
bifurcation surfaces for polynomial system (9).

Assume that system (9) has a limit cycle

LO X = ¢O(t)

of minimal period 7j at some parameter value p = p, € R". Let | be the
straight line normal to Ly at the point p, = ¢,(0) and let r denote the coor-
dinate along [ with r positive on the exterior of L. It then follows from the
implicit function theorem for analytic functions that there is a ¢ > 0 such that
the Poincaré map h(r, p) is defined and analytic for |r| < § and ||pe— | < 6 [1].
The displacement function for (9) along the normal line [ to Ly is then defined
as the function

d(r,p) = h(r,p) —r.

In term of the displacement function, a limit cycle Ly of (9) is a multiple
limit cycleiff d(0, py) = d,.(0, py) = 0 and it is a simple limit cycle (or hyperbolic
limit cycle) if it is not a multiple limit cycle; furthermore, Ly is a limit cycle of
multiplicity m iff

d(0, po) = dr(0, o) = ... = dgﬂm_l)(ov o) = 0, d7(“m)(07 o) # 0.

The multiplicity of Lg is independent of the point p, € Lo through which we
take the normal line [ [2].

The following formulas, which determine the derivatives of the displacement
function in terms of integrals of the vector field f along the periodic orbit ¢ (),
are classical [2]:

d, (0, pry) = eh’ V-F (@) dt g

and

T
d, (0 _ —“o — [V F (@ (5).14,) ds g
; (0, o) 1 (00(0), o) /0 € fAfuj(Qf)o(t)aMo) t
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for y = 1,... ,n, where wy = £1 according to whether Ly is positively or ne-
gatively oriented, respectively, and where the wedge product of two vectors
x = (x1,29) and y = (y1,92) in R? is defined as € Ay = 1Yo — T2 y;. Similar
formulas for d,,(0, ) and d,,,;(0, py) can be derived in terms of integrals of
the vector field f and its first and second partial derivatives along ¢(t). The
hypotheses of the theorems in this section will be stated in terms of conditions
on the displacement function d(r, u) and its partial derivatives at (0, tg).

In this section we formulate Perko’s theorems on the local existence of
(n —m+ 1)-dimensional surfaces, C,,, of multiplicity-m limit cycles for poly-
nomial system (9) with g € R" and n > m > 2. These results describe the
topological structure of the codimension (m — 1) bifurcation surfaces C,,. For
m = 2,3, and 4, Cy, (5, and Cy are the familiar fold, cusp, and swallow-tail
bifurcation surfaces; for m > 5, the topological structure of the surfaces C,, is
more complex. For instance, C; and Cy are butterfly and wigwam bifurcation
surfaces respectively. Since the proofs of the theorems in this section, describing
the universal unfolding near a multiple limit cycles of (9), parallel the proofs in
elementary catastrophe theory, they are not included in this paper (see also [13]
for more details).

Theorem 2. Suppose that n > 2, that for p = puy, € R" system (9) has a
multiplicity-two limit cycle Ly, and that d,, (0, py) # 0. Then given € > 0, there

is a § > 0 and a unique function g(us, ... , ) with g(,ugo),... ,M;O)) = ,u§0),
defined and analytic for |uy — uéo)] < 0y e e — ,u%())] < 6, such that for
iz — 1] < 6 i — )] <6,

Co iy = g(pa, ..., n)

is an (n — 1)-dimensional, analytic fold bifurcation surface of multiplicity-two
limit cycles of (9) through the point pu,.

Theorem 3. Suppose that n > 3, that for p = puy, € R" system (9) has
a multiplicity-three limit cycle Ly, that d,, (0, py) # 0, dvy, (0, pg) # 0 and for
J=2,...,n,

o(d, d,)
A; = —"(0, ) # 0.
J 8(leﬂj)( O)
Then giwven € > 0, there is a 6 > 0 and constants o = £1 for j =2,... ,n, and

there exist unique functions hy(ps, ... , pn), he(po, ... ) and g=(pa, ... i)

with by (1, ) = i, oy ) = ) and gy, ) =
u(lo), where hy and hy are defined and analytic for |pu; — /Lg.o)] <0,j=2,....,n,
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(0)

and g= are defined and continuous for 0 < o;(p; — 14 ) < & and analytic for

0 <o —,ugp)) <d,j=2,...,n such that

o m = hi(pa, .- s i)
3
1 = h2(/’[/27"' ,,Mn)

is an (n—2)-dimensional, analytic, cusp bifurcation surface of multiplicity-three
limit cycles of (9) through the point w, and

Cy == g (2, - -, fin)

are two (n — 1)-dimensional, analytic, fold bifurcation surfaces of multiplicity-
two limit cycles of (9) which intersect in a cusp along Cs.

Theorem 4. Suppose that n > 4, that for p = p, € R" system (9)
has a multiplicity-four limit cycle Ly, that d, (0, @) # 0, dv, (0, ) # O,
drrpy (0, py) # 0, and that for j =2,... n,

a(d, d,) o(d, d,) O(dy, dry)
—Oau’ 7&07 O:/*l' 7é07 07”‘ 7&0
a(luhﬂj)( 0) a(:ulaluJ)( O) 8(,&1,/,Lj)( 0)

Then given € > 0, there is a 0 > 0 and constants oj, = £1 for j =2,... ,n,

k = 1,2, and there exist unique functions gi(fa, ... ,fn), hy (U2, ... , ) and

. 0 0 0 0 0 0
Fi(pra, ) with gi(py o) = b)) = B, o)) =
u(lo), for v = 0,1,2 and k = 1,2, where F; is defined and analytic for 1 =
0,1,2, and |p; — uﬁo)\ < 6,7 =2,...,n, hii are defined and continuous for
0 < ojr(p; — H;o)) < § and analytic for 0 < oj(p; — ,LL;.O)) <6, 7J=2,...,m,
k= 1,2, and for i = 0,1,2, g; 1s defined and analytic in the cuspidal region
between the surfaces j1; = ha (o, ... , fin), which intersect in a cusp, and g; is
continuous in the closure of that region, such that

p1 = Fo(pa, -, pn)
Ci:q pr=Fi(po, . s )
p = Fy(pa, ... fin)
is an (n — 3)-dimensional, analytic, swallow-tail bifurcation surface of multi-
plicity-four limit cycles of (9) through the point p, which is the intersection of
two (n—2)-dimensional, analytic, cusp bifurcation surfaces of multiplicity-three
limit cycles of (9),
o m= Iy (g2, - s pin)
n1 = hét(,u% ,/Ln)
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which intersect in a cusp along Cy; furthermore, C; = 02(0) ﬂCQ(” and Cy =
C’éo) N C’éQ) where for1=0,1, 2,

Cy: = gi(a, - -+ fin)
are (n — 1)-dimensional, analytic, fold bifurcation surfaces of multiplicity-two
limit cycles of (9) which intersect in cusps along C§ and in an (n — 2)-dimen-
stonal, analytic surface C’él) ﬂC’éQ) on which (9) has two multiplicity-two limit
cycles.

Theorem 5. Given m > 2. Suppose that n > m, that for p = p, € R"
polynomial system (9) has a multiplicity-m limit cycle Ly, that
ad ad, ad" %
—(0, 0, —(0, 0, ...,
5#1( o) 7 8#1( o) 7 I
and that

(07 H’O) 7& 07

a(d, d)
e, 0
a(,ula,uk) ( “O) #
fori,j=0,... m—2witht# j and k =2,... ,n. Then given € > 0 there is
a 0 > 0 such that for ||pu — py|| < 9, system (9) has
(1) a unique (n —m+1)-dimensional analytic surface C,, of multiplicity-m
limit cycles of (9) through the point pu;
(2) two (n —m + 2)-dimensional analytic surfaces Cy,—1 of multiplicity-

(m — 1) limit cycles of (9) through the point w, which intersect in a cusp along
Chn;

(7) exactly j, (n—m+j)-dimensional analytic surfaces Cp,—j+1 of multipli-
city-(m — 7+ 1) limit cycles of (9) through the point p, which intersect pairwise
in cusps along the bifurcation surfaces Cp,—ji9;

(m—1) exactly (m—1), (n—1)-dimensional analytic fold bifurcation surfaces
Cy of multiplicity-two limit cycles of (9) through the point w, which intersect
pairwise in a cusp along the (n — 2)-dimensional cusp bifurcation surfaces Cs.

Remark. Asin [13], it can be shown that the set of polynomial vector fields
f(x, p) satisfying the hypotheses of Theorem 5 is an open, dense subset of the
set of all polynomial vector fields having a multiplicity-m limit cycle Ly at a
point p = py, € R"; i.e., the codimension (m — 1) bifurcation at Ly, described
in Theorem 5, is generic.
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4 Global bifurcations

In this section we use the results from Sections 2 and 3 to develop a global
approach to the study of limit cycle bifurcations. For instance, in [8] by means
of Abelian integrals a complete study of quadratic three-parameter unfoldings
of some integrable system was carried out and for small perturbations of the
system a versal bifurcation diagram and global phase portraits including the
precise number and configuration of the limit cycles were obtained. We use more
general Wintner—Perko termination principle [13] describing a global behaviour
of multiple limit cycles to connect all local bifurcations of limit cycles and to
develop a global bifurcation theory of polynomial systems (9) on the whole
parameter space. For (9) this principle can be formulated in the following way:

Theorem 6 (Termination Principle). Any one-parameter family of
multiplicity-m limit cycles of a polynomial system (9) can be extended in a
unique way to a maximal one-parameter family of multiplicity-m limit cycles
of (9) which is either open or cyclic. If it is open, then it terminates either as the
parameter or the limit cycles become unbounded; or, the family terminates either
at a singular point of (9), which is typically a fine focus of multiplicity m, or on
a (compound) separatriz cycle of (9), which is also typically of multiplicity m.

In order to obtain a one-parameter family of multiplicity-m limit cycles
of (9), we can use the results on establishing the local existence of the corre-
sponding bifurcation surfaces which were formulated in [13] for the case when
n = m. To show that such a one-parameter family of multiplicity-m limit cycles
can be uniquely continued through any bifurcation and to prove the termination
principle, L. M. Perko used arcs and paths of (multiplicity-m) limit cycles which
were originally introduced by J. Mallet-Paret and J. A. Yorke in their work [15].
After defining arcs and paths of multiplicity-m limit cycles of (9), he applied
Puiseux series as in [12] to show how the Poincaré map or displacement function
for (9) can be used to define a local analytic path of multiplicity-m limit cycles,
how this path can be uniquely continued through any bifurcation and how it
can be extended to a unique maximal one-parameter family of multiplicity-m
limit cycles of (9) which is either open or cyclic and which satisfies the Termina-
tion Principle. This principle implies that the boundary of any global multiple
limit cycle bifurcation surface typically (generically) consists of Hopf bifurcation
surfaces of the same multiplicity and/or homoclinic (or heteroclinic) loop bifur-
cation surfaces also of the same multiplicity. However, there are examples [13]
which show that in non-generic cases, a one-parameter family of multiplicity-m
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limit cycles can terminate at a singular point (focus) or on a separatrix cycle of
multiplicity & > m; it can also terminate at a center or at a generate singular
point in a Bogdanov—Takens (or cusp) bifurcation.

Besides, the Termination Principle is too general to be applied directly
to such specific problem as Hilbert’s 16th Problem. For example, we do not
know precisely what parameters of system (9) really control the multiple limit
cycles, we have no complete information about the boundary of the global
bifurcation surface of multiple limit cycles, we do not know how to separate the
case when the maximal one-parameter family of multiple limit cycles is cyclic,
etc. Therefore it makes sense to consider, first, the quadratic case of (9). By
means of canonical systems (7), (8) we can outline the proof of the following
conjecture:

Conjecture 1. There exists no quadratic system having a swallow-tail
bifurcation surface of multiplicity-four limit cycles in its parameter space. In
other words, a quadratic system cannot have neither a multiplicity-four limat
cycle nor four limit cycles around a singular point (focus) and the maximum
multiplicity or the maximum number of limit cycles surrounding a focus is equal
to three.

Proof. Let us give a sketch of proof of this conjecture. The proof is
carried out by contradiction. We suppose that system (7) containing three
field-rotation parameters «, 3, A has four limit cycles around the origin; then
we get into some three-dimensional domain of these parameters being restricted
by some conditions on the rest two parameters a, ¢ corresponding to the definite
case of singular points in the phase plane [25]. The three-parameter domain
of four limit cycles is bounded by three fold bifurcation surfaces forming a
swallow-tail bifurcation surface of multiplicity-four limit cycles [13]. It can be
shown that the corresponding maximal one-parameter family of multiplicity-
four limit cycles cannot be cyclic and terminates either at the origin or on some
separatrix cycle surrounding the origin, because its termination is indicated
either by vanishing the divergence and the first focus quantity at the origin or
by vanishing the divergence (or the equivalent value) at the saddle (or saddle
points) lying on the separatrix cycle [23, 25]. Since we know absolutely precisely
at least the cyclicity of the singular point (Bautin’s result) which is equal to
three, we have got a contradiction with the Termination Principle stating that
the multiplicity of limit cycles cannot be higher than the multiplicity (cyclicity)
of the singular point in which they terminate [13]. This contradiction concludes
the proof.

Electronic Journal. http://www.neva.ru/journal 11
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Since we know the concrete properties of all field-rotation parameters in (7),
(8) and, besides, we are able to control simultaneously bifurcations of limit
cycles around different singular points, we can formulate also

Conjecture 2. The mazrimum number of limit cycles in a quadratic system
is equal to four and the only possible their distribution is (3 : 1).

5 Conclusion and applications

In a similar way cubic and more general polynomial systems can be considered.
Thus, generalizing the obtained results and using the Termination Principle, we
develop a global bifurcation theory of planar polynomial dynamical systems.

Perko’s termination principle is a consequence of Wintner’s principle of
natural termination which was stated for higher-dimensional dynamical systems
and was applied for studying one-parameter families of periodic orbits of the
restricted three-body problem [21]. By means of Puiseux series, it was shown
that in the analytic case any one-parameter family of periodic orbits can be
uniquely continued through any bifurcation except a period-doubling bifurca-
tion. Besides, there exist higher-dimensional systems where the periods in a
one-parameter family can become unbounded in strange ways: for example,
the periodic orbits may belong to a strange invariant set (strange attractor)
generated at a bifurcation value for which there is a homoclinic tangency of
the stable and unstable manifolds of the Poincaré map. Such bifurcations can
occur even in three-dimensional quadratic systems of Lorenz type. It would be
interesting to construct a three-dimensional system with a strange attractor

on the base, for example, of a planar quadratic system with two unstable foci
and an invariant straight line.

Applying the obtained results, we can also carry out the global qualitative
analysis of two-dimensional polynomial dynamical systems simulating compli-
cated generation-recombination processes in semiconductors. Basing on these
processes, new types of transistors are worked out in micro- and nanoelectronics,
and the qualitative analysis of the mathematical models helps to obtain more
optimal characteristics for the transistors. We consider also possibilities of ap-
plication of the global bifurcation theory to the study of generalized (polynomial
and nonpolynomial) higher-dimensional Lotka—Volterra systems describing the
dynamics in complex ecological models.
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