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Abstract

Slow extensional flows past a porous sphere, liquid sphere and a solid smooth
sphere with slip at the surface have been obtained when all the spheres are

bounded by a sphere whose surface is stretching radially. Mass transfer to the
fluid due to the inner sphere has been evaluated in each case.

1. Introduction

Steady flows of Newtonian fluid past a solid sphere, liquid drop and smooth
spheres at low Reynolds numbers have been studied extensively (see Happel

and Brenner [1]). Recently Bhatt [2] has discussed these problems when the
flow at infinity is given by extensional field. Kawase and Moo-Young [3] ob-

tained approximate solutions of power law fluid flow past a solid sphere at small
Reynolds numbers when the flow at infinity was given by the extensional field.
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In the present problem we have extended the results of Bhatt [2] when the

spheres are bounded by a sphere whose surface is stretching radially. Using the
Stokes’s approximation we get exact solutions in each case. The mass transfer

due to the presence of these spheres has been evaluated in each case. The
results of Bhatt [2] are derived as a particular case.

2. Extensional flow past a porous sphere

We cosider a porous sphere of radius a and permeability k surrounded by
a sphere of radius b whose surface is stretching such that

ux = −α
2
x, uy = −α

2
y, uz = αz, (2.1)

where α is constant.

The flow in the free fluid region (a < r ≤ b) for steady motion is given by

∇p = ρν∇2v (2.2)

and
∇.v = 0, (2.3)

where ν is the kinematic viscosity of the fluid, ρ is the density, p is the pressure

and v is the velocity vector. In spherical polar coordinates (r, θ, φ), v has
components (ur, uθ, 0). We define the Stokes stream function ψ to satisfy (2.3)

by

ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
(2.4)

and (2.2) gives
E4ψ = 0, (2.5)

where

E2 =
∂2

∂r2
+

1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ
. (2.6)

The flow in the porous region(0 ≤ r < a) is given by

U = − k

ρν
∇P (2.7)

and
∇.U = 0 (2.8)
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where U is the velocity vector and P is the pressure in the porous region. Stokes

stream function Ψ can be defined similar to ψ in the porous region with velocity
components Ur, Uθ as

Ur = − 1

r2 sin θ

∂Ψ

∂θ
, Uθ =

1

r sin θ

∂Ψ

∂r
(2.9)

which satisfy (2.7) and (2.8) and we get

E2Ψ = 0, (2.10)

where E2 is defined earlier.

The boundary conditions to be satisfied are:
At r = 0, the solution should be finite. (2.11)

At r = a,

ur = Ur,

erθ = σ√
k
(uθ − Uθ),

p = P.

(2.12)

where erθ is the strain tensor, σ is the slip parameter (the second condition in
equation (2.12) is that of Jones [4]).

At r = b,

ur = αb
2
(2 cos2 θ − sin2 θ),

uθ = −3αb
2

sin θ cos θ.
(2.13)

The solutions of (2.5) and (2.10) can be obtained as

ur = −(A1r
−2 +A2r + A3r

3 +A4r
−4)(2 cos2 θ − sin2 θ), (2.14)

uθ = (3A2r + 5A3r
3 − 2A4r

−4) sin θ cos θ, (2.15)

p = −µ(2A1r
−3 + 7A3r

2)(2 cos2 θ − sin2 θ), (2.16)

Ur = −(B1r +B2r
−4)(2 cos2 θ − sin2 θ), (2.17)

Uθ = (3B1r − 2B2r
−4) sin θ cos θ, (2.18)

P =
µ

k

(

B1

2
r2 − B2

3
r−3

)

(2 cos2 θ − sin2 θ), (2.19)
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Using the boundary conditions (2.11)-(2.13) we get:

A1 =
1

3
(2A3b

5 − 5A4b
−2),

A2 = − α

2
− 5

3
A3b

2 +
2

3
A4b

−5,

B1 = −2λ2(2A1a
−3 + 7A3a

2),

B2 = 0,

A3 =

[

3α

2
−A4{−5b−2a−3(1 + 4λ4) + 2b−5 + 3a−5}

]

×

{2b5a−3(1 + 4λ2) − 5b2 + 3a2(1 + 14λ2)}−1,

A4 =
3α

2

[

2b5a−2(σ − 8λ3) − 2a3(σ − 5λ+ 42λ3)
]

×

[−42a−2(5λ2σ + σ + 12λ3) + 25b−2(−2λ+ 4λ3 + 10λ2σ + σ) +

25b2a−4(σ + 2λ) − 4b5a−7(σ + 5λ+ 10σλ2 + 32λ3) −
4b−5a3(σ − 5λ+ 42λ3)]−1

where λ =

√
k

a
.

Following Bhatt [2] , the mass transfer (M) from a porous sphere at high
Schmidt numbers can be obtained as

u
′

θ = − 15

2
αM sin θ cos θ

M = 2[−4(σ + 6σλ2 + λ+ 8σλ4 + 4λ3) + 10η3(σ + λ+ 2σλ2) −
2η5(14λ3 + 41σλ2 − 4σ + 168σλ4 − 4λ) +

10η7(−σ − λ+ σλ2 + 10λ3 + 20σλ4 + 56λ5) +

35η8(3σλ2 − σ − λ) + 2η10(23σ + 53σλ2 − 28λ3 + 23λ− 441σλ4) +

15η12(196λ5 + 70σλ4 − 9σλ2 − λ− σ)] ×
[2(1 + 4λ2) − 5η3 − 3η5(1 + 14λ2)]−1 ×
[−4(σ + 10σλ2 + 5λ+ 32λ3) + 25η3(σ + 2λ)−42η5(σ + 12λ3 + 5σλ2) +

25η7(−2λ+ 4λ3 + 10σλ2 + σ) + 4η10(−σ + 5λ− 42λ3)]−1

For η → 0 , the value of M agrees with Bhatt [2]. The values of M for

various values of σ and λ have been given in Table 1. The first entry in each
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block corresponds to η =
1

2
and second entry corresponds to η = 1. M increases

as λ decreases or as σ increases (similar to Bhatt [2]).

Table 1

λ σ = 0.5 σ = 1 σ = 2

0 1.66399 1.71728 1.74393

1.0061479 1.0061482 1.006148

2 0.020886 0.0345009 0569277

0.022689 0.0358339 0.0574771

4 0.0084211 0.015755 0.0289445

0.0095417 0.0108176 0.0292896

6 0.0049393 0.0099828 0.0193588

0.0596707 0.0108176 0.0198333

8 0.0033196 0.00716597 0.0144419

0.0043298 0.00802823 0.0150234

10 0.0023856 0.0054949 0.01143986

0.0033948 0.00638415 0.0120993

3. Extensional flow past a liquid sphere

For liquid sphere of radius a if we take µi(i = 1, 2) be the viscosities of the
fluid inside and outside of the sphere, the stream functions Ψi , are given by

Ψi = (Ai +Bir
3 + Cir

5 +Dir
−2) sin2 θ cos θ, (3.1)

uri = (Air
−2 +Bir + Cir

3 +Dir
−4)(sin2 θ − 2 cos2 θ), (3.2)

uθi = (3Bir + 5Cir
3 − 2Dir

−4) sin θ cos θ. (3.3)

The boundary conditions are:
At r = b,

ur1 = 1

2
αb

(

2 cos2 θ − sin2 θ
)

,

uθ1 = −3

2
αb sin θ cos θ.

(3.4)
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At r = a,

ur1 = ur2 = 0,

µ1

∂

∂r

(

1

r2

∂Ψ1

∂r

)

= µ2

∂

∂r

(

1

r2

∂Ψ2

∂r

)

.

uθ1 = uθ2,

(3.5)

At r = 0,
ur2 and uθ2 should be finite. (3.6)

Applying the boundary conditions (3.4)-(3.6) on (3.2) and (3.3), we get

A2 = D2 = 0, (3.7)

A1 = −(B1a
3 + C1a

5 +D1a
−2), (3.8)

B1 = −1

2
α − 5

3
C1b

2 +
2

3
D1b

−5, (3.9)

C1 =

[

−3

2
αa3 −D1(5b

−2 − 2b−5a3 − 3a−2)

]

[−2b5

+5b2a3 − 3a5]−1, (3.10)

B2 = −a
2

σ

(

C1 +
D1

a7

)

, (3.11)

C2 =
1

σ

(

C1 +
D1

a7

)

, (3.12)

D1 = [3αa{a5(σ − 1) − b5σ}][42aσ − 5(5σ + 2)b5a−1 +

5(2 − 5σ)a3b−2 + 4(σ − 1)a6b−5 + 4(1 + σ)a−4b5]−1. (3.13)

where σ =
µ2

µ1

. Here we obtain

u′θ1
sin θ cos θ

= [−3α(5σ + 1){46a6 − 35a4b2 − 15a8b−2 + 8ab5

+ 10a−1b7 − 10a3b3 − 4a−4b10}][(−2b5 + 5a3b2 − 3a5) ×

(42aσ − 5(5σ + 2)a−1b2 + 5(2 − 5σ)a3b−2

+ 4(σ − 1)a6b−5 + 4(1 + σ)a−4b5)]−1, (3.14)
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which gives

M =
2(1 + 5σ)

5(2 − 5η3 + 3η5)
[12η12 − 46η10 + 35η8 + 10η7 − 8η5 − 10η3 + 4] ×

[42η5σ − 5η3(5σ + 2) − 5η7(5σ − 2) + 4η10(σ − 1) + 4(1 + σ)]−1. (3.15)

The behaviour of M with σ and η has been given in figure 1. M increases
with σ and η.

4. Extensional flow past a solid smooth sphere

Here we consider a solid smooth sphere of radius a placed in an extesional

flow of fluid of viscosity µ. The solution is given by
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ur = − 1

r2 sin θ

∂ψ

∂θ
, uθ =

1

r sin θ

∂ψ

∂r
,

ψ = (A+ Br3 + Cr5 +Dr−5) sin2 θ cos θ, (4.1)

ur = (Ar−2 + Br + Cr3 +Dr−4)(sin2 θ − 2 cos2 θ), (4.2)

uθ = (3Br + 5Cr3 − 2Dr−4) sin θ cos θ. (4.3)

The boundary conditions to be satisfied are

At r = b,

ur =
αb

2

(

2 cos2 θ − sin2 θ
)

,

uθ = −3

2
αb sin θ cos θ. (4.4)

At r = a,

ψ = 0, β
1

r

(

∂ψ

∂r

)

= µr
∂

∂r

(

1

r2

∂ψ

∂r

)

, (4.5)

where β is a slip parameter.

Using the boundary conditions we get

A = −Bb3 − Cb5 −Db−2 − α

2
b3, (4.6)

B = −α
2
− 5

3
Cb2 +

2

3
Db−5, (4.7)

C =

[

3

2
αa3 −D(3a−2 + 2a3b−5 − 5b−2)

]

[3a5 − 5a3b2 + 2b5 ]−1, (4.8)

D = 3αa6b5(−βa5 + βb5 + 5a4µ)[aβ(25a3b7 + 25a7b3 − 42a5b5

−4a10 − 4b10) + 10µ(2a10 − 5a7b3 + 5a3b7 − 2b10)]−1. (4.9)

Again here M can be obtained as

M = 2(aβ + µ)(5η7 − 7η5 + 2)[aβ(4η10 − 25η7

+ 42η5 − 25η3 + 4) − 10µ(2η10 − 5η7 + 5η3 − 2)]−1, (4.10)

where η =
a

b
.
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The behaviour of M with η, aβ and µ is given in figure 2. Here M is a

monotonic increasing function of η and aβ but a monotonic decreasing function
of µ. For η → 0 The results of M given in all the three cases agree with Bhatt

[2].
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