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Abstract.

Some new frequency criteria of stability of pulse systems with the monotonic
differentiable static characteristics of pulse element are obtained.

1 Problem setting

Suppose, nonlinear operator M, mapping a continuous signal σ(t) on the mod-
ulator input into a signal f(t) on its output, has the following properties.

a) For any σ(t) ∈ C[0, +∞) there exists a sequence tn (n = 0, 1, ...; t0 = 0)
such that

δ0T ≤ tn+1 − tn ≤ T (0 < δ0 < 1, T > 0) (1)
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and the function f(t) is piecewise continuous and does not change its sign on
the interval [tn, tn+1);
b) tn depends only on σ(t) for t ≤ tn, f(t) depends only on σ(τ) for τ ≤ t;
c) for any n there exists t̃n ∈ [tn, tn+1) such that the mean value of the n-th
pulse

vn =
1

tn+1 − tn

tn+1∫
tn

f(t) dt

is related with σ(t̃n) by formula

vn = ϕ(σ(t̃n)),

where ϕ(σ) is a continuously differentiable function (static characteristics of
pulse element) such that : ϕ(0) = 0,

0 <
ϕ(σ)

σ
<

1

σ∗
for σ 6= 0 (2)

0 ≤ dϕ

dσ
≤ l. (3)

ϕ(σ)

|σ|
→ 0 for|σ| → ∞. (4)

Properties a), b), c) turn out to be ordinary for the most of modulators
used in technology.

Consider a pulse system described by the following functional differential
equation

ẋ = Ax + bf, σ = c′x, f = Mσ, (5)

where A is a constant Hurwitz m×m-matrix, b and c are constant m-dimensional
columns

The problem is to define the properties of the transfer functions W (p) =
c′(A−pIm)−1b, which assure the asymptotics x(t) → 0 as t → +∞ for any x(0).

2 The formulation of result

Consider system (5) and suppose that the following conditions

lim
p→∞

pW (p) = lim
p→∞

p2W (p) = 0. (6)
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are satisfied.

Theorem Suppose that the transfer function W(p) is nondegenerate, re-
lations (1)-(4),(6) are valid, and there exist positive constants τ, τ1, ε1, ε2 and
κ ≥ 0 such that for all ω ∈ [0, +∞] the frequency condition holds

α(ω)β(ω)− |δ(ω)|2 > 0, (7)

where

α(ω) = τ(σ∗−ε2)−
τ1T

2

3
−ε3ω

2|W (iω)|2 +(τ +κω2)ReW (iω)−κε1ω
4|W (iω)|2,

β(ω) = τ1 − ε3ω
4|W (iω)|2 − κε1[κ1 + iω3W (iω)]2,

δ(ω) = κκ1
iω

2
(τ +κω2)W (iω)−ε3iω

3|W (iω)|2−κε1[(κ1+iω3W (iω))ω2(W (iω))]

ν = τ(σ∗ − ε2)−
τ1T

2

3
, ε3 =

T 2

π2 (
κl2

ε1
+

τ

ε2
),

κ1 = lim
p→∞

p3W (p).

Then solutions of system (5) have asymptotics x(t) → 0 as t → +∞ for any
x(0).

This theorem extends result, obtained in [1] under condition κ1 = 0, to case
κ1 6= 0.

3 The proof of theorem

We introduce, following [2], the functions v(t) = vn for tn ≤ t < tn+1, u(t) =∫ t

0 [f(t)− v(t)]dt, and y = x− bu and transform system (5) to the form

ẏ = Ay + bv + Abu. (8)

The objective of such a transformation is in finding the system such that the
function f is excluded, the function v is a ”frozen” function ϕ(σ(t)), and the
function u is small in a certain sense.

By (6) we have
c′b = c′Ab = 0. (9)

Consider now the Lyapunov function [3]

V = y∗Hy − κc′Ayϕ(σ), (10)
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where H ∈ Rk×k is a constant positively definite matrix, which will be given
below. Differentiating (10) by using system (8) and taking into account the
following equality

σ̇ = c′Ay, (11)

which is resulted from (9), we obtain

V̇ = W1 − κc′A2yϕ− κ(σ̇)2dϕ

dσ
,

where W1 = 2y′H(Ay+bv+Abu). Applying the S-procedure with the coefficients
τ and τ1, we transform the above relation into

V̇ = W1 − κc′A2yϕ + W2 + τ(σ − σ∗v)v+

+τ1(
T 2

3
v2 − u2), (12)

where σ(t) = σ(t̃n) for tn ≤ t < tn+1,

W2 = −κσ̇2dϕ

dσ
− τ(σ − σ∗v)v − τ1(

T 2

3
v2 − u2)

Using (2), (3) and the property, stated in [2],∫ tn+1

tn

u2dt ≤ (tn+1 − tn)
2

3

∫ tn+1

tn

v2dt

the following estimate holds ∫ tn+1

tn

W2dt ≤ 0. (13)

Having performed the changes of variables in (12), namely, ϕ = v+(ϕ−v), σ =
c′y + (σ − σ), we obtain

V̇ = W1 + W2 − κc′A2yv + τ(c′y − σ∗v)v + W3 + τ1(
T 2

3
v2 − u2), (14)

where W3 = κc′A2y(v − ϕ) + τ(σ − σ)v. By (3), estimate W3 takes the form

W3 ≤ κ[ε1(c
′A2y)2 +

l2(σ − σ)2

4ε1
)] + τ [ε2v

2 +
(σ − σ)2

4ε2
] (15)

According to the inequality of Virtinger [2] and property (1), the following
estimate ∫ tn+1

tn

(σ − σ)2dt ≤ 4T 2

π2

∫ tn+1

tn

σ̇2dt
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is valid. Therefore by (15) and (11)∫ tn+1

tn

W3dt ≤ τε2

∫ tn+1

tn

v2dt + ε3

∫ tn+1

tn

(c′Ay)2dt + κε1

∫ tn+1

tn

(c′A2y)dt. (16)

By (13), (14), (16) we have∫ tn+1

tn

V̇ dt ≤
∫ tn+1

tn

(W1 −G)dt, (17)

where G is a quadratic form with the real coefficients

G(y, v, u) = [τ(σ∗ − ε2)−
τ1T

2

3
]v2+

+τ1u
2 − ε3(c

′Ay)2 + (κc′A2y − τc′y)v − τ1|u|2 − κε1|c′A2y|2.
Extending it to the Hermitean one, we obtain

G(y, v, u) = [τ(σ∗ − ε2)−
τ1T

2

3
]|v|2 + τ1|u|2 − ε3|c′Ay|2+

+Re[(κc′A2y − τc′y)v],−τ1|u|2 − κε1|c′A2y|2, (18)

where v, u are complex numbers, v is a complex number, associated with v,
y ∈ Ck. Having performed the Laplace transformation with the zero initial
conditions in (8) and saving a notation of variables, we arrive at a formula

y = −(A− pIm)−1bv − (A− pIm)−1Abu.

Using the representation A = (A− pIm) + pIm and properties (9), we find

c′y = −W (p)v − pW (p)u,

c′Ay = −pW (p)v − p2W (p)u,

c′A2y = κ1u− p2W (p)v − p3W (p)u.

Substituting these expressions into (18) and putting p = iω, we obtain

G |p=iω= α(ω)|v|2 + β(ω)|u|2 + 2Re[δ(ω)uv].

If the Hermitean matrix (
α δ

δ β

)
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is positively definite, then by the frequency theorem of V.A. Yakubovich for
the nondegenerate case [4] there exist µ > 0 and a positively definite matrix H
such that the term under integral sign in (17) may be estimated as follows

W1 −G < −µ(u2 + v2 + |y|2). (19)

The Silvester criterion implies that for the positive definiteness of this matrix
it is necessary and sufficient that for all ω ∈ [0, +∞] the inequalities

α(ω) > 0, α(ω)β(ω)− |δ(ω)|2 > 0

were satisfied. The second inequality coincides with frequency condition (7)
and therefore is also satisfied. The first inequality follows directly from the
second one. Really, as ω → ∞ β → τ1, δ → 0, and, consequently, α(∞) > 0
and α(ω) cannot be zero for any ω.

Thus estimate (19) is proved.

Relations (17) and (19) resulted in the inequality

V |t=tn +µ

∫ tn

0
(v2 + u2 + |y|2)dt ≤ V |t=0 . (20)

By (4) and by the positive definiteness of the matrix H V → +∞ as
|y| → ∞. Therefore (20) implies that u, v ∈ L2[0, +∞). Since the matrix
A is the Hurwitzian one, it follows from (8) that y(t) → 0 as t → +∞. From
that v ∈ L2[0, +∞) and from (1) the asymptotics v(t) → 0 as t → +∞ follows.
In [2] it is stated that |u| ≤ T |v| and therefore u → 0 as t → +∞. Finally,
from the relation x = y − bu it follows that x → 0 as t → +∞. The proof of
theorem is completed
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