

On the stability of nonlinear systems with the monotonic differentiable nonlinear characteristics

N.V.Kuznetsov
Russia, 198904 St.Petersburg, Staryi Petergof, Botanicheskaya Str., St.Petersburg State University, NIIMM, Laboratory of Theoretical Cybernetics, e-mail: nick@920.spb.ru

Abstract

. Some new frequency criteria of stability of pulse systems with the monotonic differentiable static characteristics of pulse element are obtained.

1 Problem setting

Suppose, nonlinear operator \mathcal{M}, mapping a continuous signal $\sigma(t)$ on the modulator input into a signal $f(t)$ on its output, has the following properties.
a) For any $\sigma(t) \in \mathbf{C}[0,+\infty)$ there exists a sequence $t_{n}\left(n=0,1, \ldots ; t_{0}=0\right)$ such that

$$
\begin{equation*}
\delta_{0} T \leq t_{n+1}-t_{n} \leq T \quad\left(0<\delta_{0}<1, \quad T>0\right) \tag{1}
\end{equation*}
$$

[^0]and the function $f(t)$ is piecewise continuous and does not change its sign on the interval $\left[t_{n}, t_{n+1}\right)$;
b) t_{n} depends only on $\sigma(t)$ for $t \leq t_{n}, f(t)$ depends only on $\sigma(\tau)$ for $\tau \leq t$;
c) for any n there exists $\widetilde{t}_{n} \in\left[t_{n}, t_{n+1}\right)$ such that the mean value of the n-th pulse
$$
v_{n}=\frac{1}{t_{n+1}-t_{n}} \int_{t_{n}}^{t_{n+1}} f(t) d t
$$
is related with $\sigma\left(\widetilde{t}_{n}\right)$ by formula
$$
v_{n}=\varphi\left(\sigma\left(\widetilde{t}_{n}\right)\right)
$$
where $\varphi(\sigma)$ is a continuously differentiable function (static characteristics of pulse element) such that : $\varphi(0)=0$,
\[

$$
\begin{align*}
& 0<\frac{\varphi(\sigma)}{\sigma}<\frac{1}{\sigma_{*}} \quad \text { for } \sigma \neq 0 \tag{2}\\
& 0 \leq \frac{d \varphi}{d \sigma} \leq l . \tag{3}\\
& \frac{\varphi(\sigma)}{|\sigma|} \rightarrow 0 \quad \text { for }|\sigma| \rightarrow \infty \tag{4}
\end{align*}
$$
\]

Properties a), b), c) turn out to be ordinary for the most of modulators used in technology.

Consider a pulse system described by the following functional differential equation

$$
\begin{equation*}
\dot{x}=A x+b f, \quad \sigma=c^{\prime} x, \quad f=\mathcal{M} \sigma \tag{5}
\end{equation*}
$$

where A is a constant Hurwitz $m \times m$-matrix, b and c are constant m-dimensional columns

The problem is to define the properties of the transfer functions $W(p)=$ $c^{\prime}\left(A-p I_{m}\right)^{-1} b$, which assure the asymptotics $x(t) \rightarrow 0$ as $t \rightarrow+\infty$ for any $x(0)$.

2 The formulation of result

Consider system (5) and suppose that the following conditions

$$
\begin{equation*}
\lim _{p \rightarrow \infty} p W(p)=\lim _{p \rightarrow \infty} p^{2} W(p)=0 \tag{6}
\end{equation*}
$$

are satisfied.
Theorem Suppose that the transfer function $W(p)$ is nondegenerate, relations (1)-(4),(6) are valid, and there exist positive constants $\tau, \tau_{1}, \varepsilon_{1}, \varepsilon_{2}$ and $\kappa \geq 0$ such that for all $\omega \in[0,+\infty]$ the frequency condition holds

$$
\begin{equation*}
\alpha(\omega) \beta(\omega)-|\delta(\omega)|^{2}>0 \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
\alpha(\omega)=\tau\left(\sigma_{*}-\varepsilon_{2}\right)-\frac{\tau_{1} T^{2}}{3}-\varepsilon_{3} \omega^{2}|W(i \omega)|^{2}+\left(\tau+\kappa \omega^{2}\right) R e W(i \omega)-\kappa \varepsilon_{1} \omega^{4}|W(i \omega)|^{2} \\
\beta(\omega)=\tau_{1}-\varepsilon_{3} \omega^{4}|W(i \omega)|^{2}-\kappa \varepsilon_{1}\left[\kappa_{1}+i \omega^{3} W(i \omega)\right]^{2} \\
\delta(\omega)=\kappa \kappa_{1} \frac{i \omega}{2}\left(\tau+\kappa \omega^{2}\right) W(i \omega)-\varepsilon_{3} i \omega^{3}|W(i \omega)|^{2}-\kappa \varepsilon_{1}\left[\left(\kappa_{1}+i \omega^{3} W(i \omega)\right) \omega^{2} \overline{(W(i \omega))}\right] \\
\nu=\tau\left(\sigma_{*}-\varepsilon_{2}\right)-\frac{\tau_{1} T^{2}}{3}, \varepsilon_{3}=\frac{T^{2}}{\pi^{2}}\left(\frac{\kappa l^{2}}{\varepsilon_{1}}+\frac{\tau}{\varepsilon_{2}}\right) \\
\kappa_{1}=\lim _{p \rightarrow \infty} p^{3} W(p)
\end{gathered}
$$

Then solutions of system (5) have asymptotics $x(t) \rightarrow 0$ as $t \rightarrow+\infty$ for any $x(0)$.

This theorem extends result, obtained in [1] under condition $\kappa_{1}=0$, to case $\kappa_{1} \neq 0$.

3 The proof of theorem

We introduce, following [2], the functions $v(t)=v_{n}$ for $t_{n} \leq t<t_{n+1}, u(t)=$ $\int_{0}^{t}[f(t)-v(t)] d t$, and $y=x-b u$ and transform system (5) to the form

$$
\begin{equation*}
\dot{y}=A y+b v+A b u \tag{8}
\end{equation*}
$$

The objective of such a transformation is in finding the system such that the function f is excluded, the function v is a "frozen" function $\varphi(\sigma(t))$, and the function u is small in a certain sense.

By (6) we have

$$
\begin{equation*}
c^{\prime} b=c^{\prime} A b=0 \tag{9}
\end{equation*}
$$

Consider now the Lyapunov function [3]

$$
\begin{equation*}
V=y^{*} H y-\kappa c^{\prime} A y \varphi(\sigma) \tag{10}
\end{equation*}
$$

where $H \in \mathbf{R}^{k \times k}$ is a constant positively definite matrix, which will be given below. Differentiating (10) by using system (8) and taking into account the following equality

$$
\begin{equation*}
\dot{\sigma}=c^{\prime} A y \tag{11}
\end{equation*}
$$

which is resulted from (9), we obtain

$$
\dot{V}=W_{1}-\kappa c^{\prime} A^{2} y \varphi-\kappa(\dot{\sigma})^{2} \frac{d \varphi}{d \sigma}
$$

where $W_{1}=2 y^{\prime} H(A y+b v+A b u)$. Applying the S-procedure with the coefficients τ and τ_{1}, we transform the above relation into

$$
\begin{gather*}
\dot{V}=W_{1}-\kappa c^{\prime} A^{2} y \varphi+W_{2}+\tau\left(\bar{\sigma}-\sigma_{*} v\right) v+ \\
+\tau_{1}\left(\frac{T^{2}}{3} v^{2}-u^{2}\right), \tag{12}
\end{gather*}
$$

where $\bar{\sigma}(t)=\sigma\left(\widetilde{t}_{n}\right)$ for $t_{n} \leq t<t_{n+1}$,

$$
W_{2}=-\kappa \dot{\sigma}^{2} \frac{d \varphi}{d \sigma}-\tau\left(\bar{\sigma}-\sigma_{*} v\right) v-\tau_{1}\left(\frac{T^{2}}{3} v^{2}-u^{2}\right)
$$

Using (2), (3) and the property, stated in [2],

$$
\int_{t_{n}}^{t_{n+1}} u^{2} d t \leq \frac{\left(t_{n+1}-t_{n}\right)^{2}}{3} \int_{t_{n}}^{t_{n+1}} v^{2} d t
$$

the following estimate holds

$$
\begin{equation*}
\int_{t_{n}}^{t_{n+1}} W_{2} d t \leq 0 \tag{13}
\end{equation*}
$$

Having performed the changes of variables in (12), namely, $\varphi=v+(\varphi-v), \bar{\sigma}=$ $c^{\prime} y+(\bar{\sigma}-\sigma)$, we obtain

$$
\begin{equation*}
\dot{V}=W_{1}+W_{2}-\kappa c^{\prime} A^{2} y v+\tau\left(c^{\prime} y-\sigma_{*} v\right) v+W_{3}+\tau_{1}\left(\frac{T^{2}}{3} v^{2}-u^{2}\right), \tag{14}
\end{equation*}
$$

where $W_{3}=\kappa c^{\prime} A^{2} y(v-\varphi)+\tau(\bar{\sigma}-\sigma) v$. By (3), estimate W_{3} takes the form

$$
\begin{equation*}
\left.W_{3} \leq \kappa\left[\varepsilon_{1}\left(c^{\prime} A^{2} y\right)^{2}+\frac{l^{2}(\bar{\sigma}-\sigma)^{2}}{4 \varepsilon_{1}}\right)\right]+\tau\left[\varepsilon_{2} v^{2}+\frac{(\bar{\sigma}-\sigma)^{2}}{4 \varepsilon_{2}}\right] \tag{15}
\end{equation*}
$$

According to the inequality of Virtinger [2] and property (1), the following estimate

$$
\int_{t_{n}}^{t_{n+1}}(\bar{\sigma}-\sigma)^{2} d t \leq \frac{4 T^{2}}{\pi^{2}} \int_{t_{n}}^{t_{n+1}} \dot{\sigma}^{2} d t
$$

is valid. Therefore by (15) and (11)

$$
\begin{equation*}
\int_{t_{n}}^{t_{n+1}} W_{3} d t \leq \tau \varepsilon_{2} \int_{t_{n}}^{t_{n+1}} v^{2} d t+\varepsilon_{3} \int_{t_{n}}^{t_{n+1}}\left(c^{\prime} A y\right)^{2} d t+\kappa \varepsilon_{1} \int_{t_{n}}^{t_{n+1}}\left(c^{\prime} A^{2} y\right) d t \tag{16}
\end{equation*}
$$

By (13), (14), (16) we have

$$
\begin{equation*}
\int_{t_{n}}^{t_{n+1}} \dot{V} d t \leq \int_{t_{n}}^{t_{n+1}}\left(W_{1}-G\right) d t \tag{17}
\end{equation*}
$$

where G is a quadratic form with the real coefficients

$$
\begin{gathered}
G(y, v, u)=\left[\tau\left(\sigma_{*}-\varepsilon_{2}\right)-\frac{\tau_{1} T^{2}}{3}\right] v^{2}+ \\
+\tau_{1} u^{2}-\varepsilon_{3}\left(c^{\prime} A y\right)^{2}+\left(\kappa c^{\prime} A^{2} y-\tau c^{\prime} y\right) v-\tau_{1}|u|^{2}-\kappa \varepsilon_{1}\left|c^{\prime} A^{2} y\right|^{2} .
\end{gathered}
$$

Extending it to the Hermitean one, we obtain

$$
\begin{align*}
& G(y, v, u)=\left[\tau\left(\sigma_{*}-\varepsilon_{2}\right)-\frac{\tau_{1} T^{2}}{3}\right]|v|^{2}+\tau_{1}|u|^{2}-\varepsilon_{3}\left|c^{\prime} A y\right|^{2}+ \\
& +\operatorname{Re}\left[\left(\kappa c^{\prime} A^{2} y-\tau c^{\prime} y\right) \bar{v}\right],-\tau_{1}|u|^{2}-\kappa \varepsilon_{1}\left|c^{\prime} A^{2} y\right|^{2}, \tag{18}
\end{align*}
$$

where v, u are complex numbers, \bar{v} is a complex number, associated with v, $y \in \mathbf{C}^{k}$. Having performed the Laplace transformation with the zero initial conditions in (8) and saving a notation of variables, we arrive at a formula

$$
y=-\left(A-p I_{m}\right)^{-1} b v-\left(A-p I_{m}\right)^{-1} A b u .
$$

Using the representation $A=\left(A-p I_{m}\right)+p I_{m}$ and properties (9), we find

$$
\begin{gathered}
c^{\prime} y=-W(p) v-p W(p) u, \\
c^{\prime} A y=-p W(p) v-p^{2} W(p) u \\
c^{\prime} A^{2} y=\kappa_{1} u-p^{2} W(p) v-p^{3} W(p) u
\end{gathered}
$$

Substituting these expressions into (18) and putting $p=i \omega$, we obtain

$$
\left.G\right|_{p=i \omega}=\alpha(\omega)|v|^{2}+\beta(\omega)|u|^{2}+2 \operatorname{Re}[\delta(\omega) u \bar{v}] .
$$

If the Hermitean matrix

$$
\left(\begin{array}{ll}
\alpha & \delta \\
\bar{\delta} & \beta
\end{array}\right)
$$

is positively definite, then by the frequency theorem of V.A. Yakubovich for the nondegenerate case [4] there exist $\mu>0$ and a positively definite matrix H such that the term under integral sign in (17) may be estimated as follows

$$
\begin{equation*}
W_{1}-G<-\mu\left(u^{2}+v^{2}+|y|^{2}\right) . \tag{19}
\end{equation*}
$$

The Silvester criterion implies that for the positive definiteness of this matrix it is necessary and sufficient that for all $\omega \in[0,+\infty]$ the inequalities

$$
\alpha(\omega)>0, \quad \alpha(\omega) \beta(\omega)-|\delta(\omega)|^{2}>0
$$

were satisfied. The second inequality coincides with frequency condition (7) and therefore is also satisfied. The first inequality follows directly from the second one. Really, as $\omega \rightarrow \infty \beta \rightarrow \tau_{1}, \delta \rightarrow 0$, and, consequently, $\alpha(\infty)>0$ and $\alpha(\omega)$ cannot be zero for any ω.

Thus estimate (19) is proved.
Relations (17) and (19) resulted in the inequality

$$
\begin{equation*}
\left.V\right|_{t=t_{n}}+\mu \int_{0}^{t_{n}}\left(v^{2}+u^{2}+|y|^{2}\right) d t \leq\left. V\right|_{t=0} . \tag{20}
\end{equation*}
$$

By (4) and by the positive definiteness of the matrix $H V \rightarrow+\infty$ as $|y| \rightarrow \infty$. Therefore (20) implies that $u, v \in L_{2}[0,+\infty)$. Since the matrix A is the Hurwitzian one, it follows from (8) that $y(t) \rightarrow 0$ as $t \rightarrow+\infty$. From that $v \in L_{2}[0,+\infty)$ and from (1) the asymptotics $v(t) \rightarrow 0$ as $t \rightarrow+\infty$ follows. In [2] it is stated that $|u| \leq T|v|$ and therefore $u \rightarrow 0$ as $t \rightarrow+\infty$. Finally, from the relation $x=y-b u$ it follows that $x \rightarrow 0$ as $t \rightarrow+\infty$. The proof of theorem is completed

References

[1] Gelig A.Kh., Kuznetsov N.V. "On the stability of nonlinear systems with the monotonic differentiable nonlinear characteristics", Proceedings of 5th IFAC Symposium "Nonlinear Control Systems", Saint-Petersburg, Juli, 2001.
[2] Gelig A.Kh. and Churilov A.N. "Stability and Oscillations of Nonlinear Pulse-Modulated Systems", Birkhauser, Boston-Basel-Berlin, 1998.
[3] Yakubovich V.A. " Matrix Inequalities Method in the Theory of Stability of Nonlinear Controlled Systems"
II. "Absolute Stability in a Class of Nonlinearities with the Restriction on the Derivative" [in Russian], Avtomatika i Telemekhanika, Vol. 26, No. 4, pp. 577-583, 1965.
[4] Gelig A.Kh., Leonov G.A., and Yakubovich V.A. "Stability of Nonlinear Systems with a Unique Equilibrium State" [in Russian], Moscow, 1978.

[^0]: ${ }^{0}$ The work is partly supported by the Grant Board of the President of RF and of the State Support of Leading Science Schools (Project No 00-15-96028)

