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1 Definitions and results.

Let us consider a discrete dynamical system governed by a homeomorphism
f : M → M, where M is a C∞−smooth compact manifold.

Definition 1 [3] Let ε > 0 be given. An infinite in both direction sequence
{xk, k ∈ Z} is named an ε-trajectory or pseudo-trajectory or pseudo-orbit of f

if for any k the distance between the image f(xk) and xk+1 is less than ε:

ρ(f(xk), xk+1) < ε,
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PC prog.) and Russian Program ”Integracia”.
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where ρ(x, y) is the distance between x and y on M and Z is the set of integers.

A pseudo-trajectory {xk} is said to be ε-periodic if there is p such that xk = xk+p

for each k ∈ Z. In this case the number p is named a period of the pseudo-

trajectory.

Definition 2 [11] A point x is called chain recurrent if x is ε-periodic for each

positive ε, i.e., there exists a periodic ε-trajectory passing through x. A chain
recurrent set, denoted Q, is the set of all the chain recurrent points.

It is known, that the chain recurrent set Q is invariant, closed, and contains
periodic, homoclinic, nonwandering and other singular trajectories. It should

be remarked that if a chain recurrent point is not periodic then there exists
as small as one likes perturbation of f in C0-topology for which this point is
periodic [30],[39],[40]. One may say that a chain recurrent point may become

periodic under a small C0-perturbation of the map f .

A subset Ω ⊂ Q is called a component of the chain-recurrent set if each
two points from Ω can be connected by a periodic ε-trajectory for any ε > 0.
Denote by α(x) and ω(x) the α and ω−limit sets of the trajectory through

x, respectively. Let {Q1, Q2, Q3, ...} be chain recurrent set components of a
dynamical system. A connection Qi → Qj is said to exist if there is a point

x such that α(x) ⊂ Qi and ω(x) ⊂ Qj. Let g : M → M be a continuous
mapping and a distance ρ(f, g) = maxM ρ(f(x), g(x)). Denote a support of the

difference f and g by supp(f − g) = {x ∈ M : f(x) 6= g(x)}. The connections
{Qi → Qj} are said to be stable if there exists ε > 0 such that any perturbation

g, ρ(f, g) < ε, supp(f − g) ⊂ M\Q, has the same connections {Qi → Qj}.

Definition 3 Let the matrix S = (sij) be such that sij = 1 if there is the

connection Qi → Qj, sii = 1 and sij = 0 in other case. The matrix S is named
the structure matrix of dynamical system f.

By the definition, the structure matrix is a topological invariant. A size
on the structure matrix is q × q, where q is a number of components. So the
number q may be the infinity. The main result of paper is

Theorem 1 If the dynamical system has a finite number of chain recurrent
components with the stable connections then there exist a finite algorithm for

construction of the structure matrix.
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Example 1 A perturbed pendulum system on cylindric phase space.

Let us consider a system of the form

ϕ′ = y,

y′ = − sin ϕ − εy,

where ϕ ∈ S1 is an angle, 0 ≤ ϕ < 2π, y ∈ R, the parameter ε > 0. So the phase

space is the cylinder P = S1 ×R. The system has two equilibriums A(0, 0) and
B(π, 0). The first point is a focus, and the second is a hyperbolic point. Because

ε > 0, the infinity set S1 ×±∞ can be considered as an unstable point C. The
system do not have other chain recurrent points. So there are tree components

of chain recurrent set {A, B, C}. The trajectories can start at C and finish at A
or at B. The unstable separatrices of B finish at A. Thus the structure matrix
if of the form

S =







1 0 0

1 1 0

1 1 1






,

where A = Q1, B = Q2 and C = Q3. Moreover these connections are stable.

2 Symbolic image [24]

Let C = {M(1), · · · , M(n)} be a finite covering of M by closed sets. The sets
M(i) are called cells or boxes of the covering.

Definition 4 Let G be a directed graph having s vertices where each vertex i

corresponds to the cell M(i). The vertices i and j are connected by a directed
edge i → j if and only if M(j)∩ f(M(i)) 6= ∅. The graph G is called a symbolic

image of f with respect to the covering C.

Denote by V er the set of vertices of G. The graph G can be considered as
a correspondence G : V er → V er between the vertices. Graph G is uniquely

determined by its n × n matrix of transitions Π = (πij): πij = 1 if and only
if there is the directed edge i → j, otherwise πij = 0. Indeed we can use the

transition matrix without the symbolic image which is a convenient geometrical
tool only. Much of an effective information of a dynamical system may come

from the investigation of a symbolic image. It is natural to consider the symbolic
image as a finite discrete approximation of the mapping f .
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Figure 1: Construction of a Symbolic Image.

Definition 5 An infinite in both direction sequence {zk} of vertices on the

graph G is called an admissible path (or simply a path) if for each k the graph
G contains the directed edge zk → zk+1. A path {zk} is said to be p-periodic if

zk = zk+p for each k ∈ Z.

There is a natural connection between the admissible paths on the symbolic

image G and the ε -trajectories of the homeomorphism f . It can be said that an
admissible path is the trace of an ε-trajectory and vice versa. However, there
are some relationships between the parameters of the symbolic image and the

number ε for which the connections take place [26].

Definition 6 A vertex of the symbolic image is called recurrent if there is a

periodic path passing through it. The set of recurrent vertices is denoted by RV.
A pair of recurrent vertices i, j are called equivalent if there is a periodic path

through i and j.

The recurrent vertices {i} are uniquely defined by the nonzero diagonal

elements πii 6 =0 of the powers of the transitions matrix Πm, m ≤ n, where n is
the number of the covering cells. By Definition 6, the set of recurrent vertices

RV decomposes into several classes {Hk} of equivalent recurrent vertices.

Denote by P (d) the union of the cells M(i) for which the vertex i is recur-

rent, i.e.,

P (d) = {∪M(i) : i is recurrent}, (2.1)

where d is the largest diameter of the cells M(i). As before we consider the
dependence of P on the largest diameter d. Denote by T (d) the union of the

Electronic Journal. http://www.neva.ru/journal 35



Differential Equations and Control Processes, N 2, 2001

cells M(k) for which the vertex k is non recurrent, i.e.,

T (d) = {∪M(k) : k is non recurrent}.

The following theorem describes the properties of the sets P (d) and T (d).

Theorem 2 [26] (i) The set P (d) is a closed neighborhood of the chain recur-
rent set., i.e., Q ⊂ P (d).

(ii) For any neighborhood V of Q there exists d > 0 such that P (d) ⊂ V, i.e.,
if the largest diameter d is small enough then this neighborhood is sufficiently

small.

(iii) The chain recurrent set Q coincides with the intersection of the sets
P (d) for all positive d:

Q =
⋂

d>0

P (d). (2.2)

(iv) The points of T are not chain recurrent, i.e., T ∩ Q = ∅.

Let us introduce a quasi-order relation between the vertices of the symbolic

image. We consider i ≺ j if and only if there exists an admissible path of the
form

i = i0, i1, i2, ..., im = j.

Hence, a vertex i is recurrent if and only if i ≺ i, and a pair of recurrent vertices

i, j are equivalent if and only if i ≺ j ≺ i.

Proposition 1 [1] The vertices of a symbolic image G can be renumbered such
that

• the equivalent recurrent vertices are numbered with consecutive integers,

• the new numbers i, j of other vertices are chosen such that i < j if i ≺ j 6
≺i.

In other words, the transition matrix is of the form

Π =

















(Π1) · · · · · · · · · · · ·
. . .

0 (Πk) · · · · · ·
. . . . . .

0 0 (Πs)

















(2.3)
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where the elements under the diagonal blocks are zeros, each diagonal block Πk

corresponds to either a class of equivalent recurrent vertices Hk or a nonrecur-
rent vertex. In the last case Πk coincides with a single zero. The renumbering

described in Proposition 1 is not uniquely defined.

3 Algorithms.

In order to find the transition matrix of the form (3) we have to renumbering
vertices on symbolic image. For this we give an algorithm which finds classes

of recurrent equivalent vertices and establishes a partial order between these
classes and nonrecurrent vertices.

Our aim is to construct new graph by identifying equivalent vertices of the
initial directed graph G.

The algorithm consist of four main parts:

1. Continuation,

2. Comparison,

3. Identification,

4. Forbidden.

Let us consider a path {i0, i1, i2, ..., ik} of length k.

“Continuation” constructs a continuation of path w = {i0, i1, i2, ..., ik} on

an edge as follows. If there is an edge ik → j, ik 6= j we put ik+1 = j and
construct of a new path of the form w∗ = {i0, i1, i2, ..., ik, ik+1} .

“Comparison” compares the last vertex j with the vertices of path w =
{i0, i1, i2, ..., ik}, i.e., we check the equality j = im, m = k − 1, k − 2, ..., 1, 0.

“Identification”: if there exists j = is, than we have the circle {is, is+1, ..., ik, j},
i.e., these vertices are equivalent recurrent vertices. In this case we identify the

vertices {is, is+1, ..., ik, j} and replace their by new vertex j∗.

”Forbidden” : if we can not construct the continuation, i.e., there is not
an edge ik → j, ik 6= j, we form a forbidden vertex kl = ik and put kl in the
set of forbidden vertices N . Then we consider the path {i0, i1, i2, ..., ik−1} . The

”forbidden” gives a partial order between the forbidden vertices. The order is
determined by the index l, which is increased by each step of the forbidden.

By repeating the ”continuation”, ”comparison”, ”identification” and ”for-
bidden” we come to a graph with recurrent vertices only of the form k → k ∈ N .
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Moreover a final recurrent vertex kl corresponds to the class of equivalent re-

current vertices of the initial graph. In this case the transition matrix of con-
structed graph is of the form

Π∗ =

















(π∗
11) · · · · · · · · · · · ·

. . .

0 (π∗
ll) · · · · · ·

. . . . . .

0 0 (π∗
ss)

















, (3.4)

where (π∗
ll), (1 ≤ l ≤ s) is either 1 or 0, 1 corresponding to a recurrent vertex

and 0 nonrecurrent vertex.The initial transition matrix takes the form (4) if we

make the renumbering according to the constructed partial order.

Now we give the algorithm. We will denote the forbidden vertices by N,
at first N = φ. Let s be number of vertices from N . Let V er = {i} be a set
of vertices of symbolic image. Consider a path w = {i0, i1, i2, ..., ik}, let k be a

index of last vertex in w, suppose these vertices are different and i0 is named
initial vertex in graph. At first w = φ. Let m be a index of vertex in w for

”Comparison”. Let x be a index of vertex in w for ”Identification”.

Algorithm 1

1. Initiation

N = φ; w = φ; k = 0; s = 0

2. Continuation

If ∃i /∈ N then add i in w

Else go to 7

3. Continuation

If ∃ik → j, j /∈ N, j 6= ik then add j in w; k = k + 1

Else go to 6

4. Comparison

For m since k − 1 down to 0

If im = ik then go to 5

Go to 3

5. Identification
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Add new vertex j∗ in V er

For x since k down to m + 1

For all ix → i∗ add new edge j∗ → i∗; delete edge ix → i∗

For all i∗ → ix add new edge i∗ → j∗; delete edge i∗ → ix

Delete vertex ix from V er

Delete vertex ix from w

Delete vertex im from w

Add j∗ in w; k = m

Go to 3

6. Forbidden

Add ik in N ; s = s + 1

Delete ik from w; k = k − 1

If w = φ then go to 2

Else go to 3

7. End

From the previous explanation it follows

Proposition 2 If the directed graph G has class of equivalent recurrent vertices

K = {i0, i1, i2, ..., ik} then the algorithm identifies K to one vertex.

Algorithm 2

Suppose we have a directed graph G which has a classes of equivalent recur-

rent vertices consisting of one vertex {jk}, i.e., there exists a closed path only
of the form jk → jk. Let {i0, i1, i2, ..., is} be a set of nonrecurrent vertices.

Our aim is to construct new graph NG with the same recurrent vertices
{jk} and without nonrecurrent vertices. An edge jk → jl exists on NG if and

only if there is a path jk → ... → jl on the initial graph G.

Now we give the algorithm. The main idea is to replace nonrecurrent vertex

i∗ by a collection of edges j → l if the path j → i∗ → l exists. Let k is an index
of nonrecurrent vertices.

1. k = 0

2. For all j∗ such that j∗ → ik

For all l∗ such that ik → l∗
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Add new edge j∗ → l∗

Delete edge ik → l∗

Delete edge j∗ → ik

Delete vertex ik

3. If k < s then k := k + 1; go to 1

4. End

From the previous explanation it follows

Proposition 3 The graphs G and NG have the same recurrent vertices and
new graph has an edge jk → jl if and only if there is a path jk → ... → jl on

the initial graph G.

By applying the algorithm 1 and 2 to the symbolic image the structure

matrix of dynamical system is constructed.

4 Examples.

Now we can present some results obtained by program realization of our algo-
rithms. We indicate the structure matrix of two test systems and show appropri-

ate phase portraits of these systems, where each component of chain recurrent
set is separated from others. The links between components correspond to non-
diagonal ”1” of structure matrix. The indexes of components are defined on

the proper picture.

Test system 1. The Van-der-Pol equation

{

x′ = y

y′ = y(1 − x2) − x

The appropriate structure matrix is

S =

(

1 1

0 1

)

,

see Picture 1.

Test system 2
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{

x′ = 2x cosx − 5y

y′ = 2x

The appropriate structure matrix is

S =













1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1













,

see Picture 2.
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Picture 1. Test system 1. Van-der-Pol equation

Picture 2. Test system 2
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