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Abstract

In this article we discuss two methods of solving systems of partial differen-
tial equations. First we describe the Painlevé test. In a second step a similarity
analysis is carried out to motivate optimal systems. We present procedures of
solving partial differential equations, which connect both methods. The connec-
tion between the methods is examplified by the KdV equation. Special points
are the applications of the theorem of Strampp and the calculation of nonclas-
sical symmetries via the algorithm of Clarkson.

Introduction

A large number of physical phenomena is described by systems of partial or
ordinary differential equations. During the last years it became more and more
important to characterise biological, chemical and physical phenomenons with
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nonlinear partial differential equations (PDEs). So the development of analytical
methods of solving such PDEs becomes more significant. Today there exist three
algorithms which are powerful and appropriate to solve such equations:
- the inverse scattering transform
- the calculation of similarity solutions by Lie’s theory, and
- the calculation of solutions with the Painlevé Ansatz.
The aim of this paper is to connect the method of Lie [1] and the Painlevé
Ansatz [2] to construct solutions with the aid of optimal systems. The first
section contains the main facts about the Painlevé test. In section 2 we discuss
the connection between the Painlevé tests developed by Weiss, Tabor, Carnevale
(WTC-Test) [3] and by Ablowitz, Ramani, Segur [2]. We apply these tests to the
Boussinesq equation to solve it. The third section connects the WTC-test and
Lie’s similarity analysis. We demonstrate the joint methods by applying it to
the KdV equation. The fourth section introduces optimal systems. We discuss
the preliminary method by Olver [1] for the KdV and nonlinear Schrödinger
equation. The last section makes some concluding remarks.

1 Facts about Painlevé Property and the Painlevé Test

The generation of the Painlevé test is traced back to S. Kovalevskaya’s conjec-
ture in the years 1889, 1890 [4, 5]. She demonstrated a connection between the
complete solvability of a finite dimensional Hamilton system and the analytical
structure of the equations of motions on a complex surface. Her discussion was
based on the problem that a rigid body moves around a fix point. She tried
to find parameters in such a way that the solutions should not have movable
branch points (essential singularities in the complex surface) depending on ini-
tial conditions. For these cases she solved the equations of motion explicitly
[6]. Kovalevskaya was motivated by papers written by Painlevé (1888) [7] and
Fuchs (1884) [8].

The main idea behind this investigation was the question if singularities
appearing in the solutions are fixed or movable. Painlevé showed in 1888 that
the singularities in the solution of a first-order differential equation

y

(
x, f,

df

dx

)
= 0 (1)

are poles and/or algebraic branch points [9]. In (1) y is an analytical polynom
in f and df

dx . The power expansion found by Kovalevskaya is based on a method
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introduced by Frobenius in the year 1873. After this Painlevé and Gambier
[10] catalogued all ordinary differential equations of order one and two due to
the fact that they allow poles as moveable singularities in the complex surface.
Out of these attributes there emerged the Painlevé property. All solutions of
the known ordinary differential equations except for six allow convergent series.
These six exceptions are called the ”Painlevé transcendents”.
The interest in this fact was recovered by Ablowitz [2, 11]. He found that the
Painlevé transcendents result from ordinary differential equations which are
generated by the reduction of partial differential equations solvable via inverse
scattering transformation .

Let us first look at the ordinary differential equations

y

(
x, f,

df

dx
,
d2f

dx2 , · · · ,
dnf

dxn

)
= 0 (2)

of order n ∈ IN in the complex surface. Equation (2) depends on dependent
variables f and the independent variables x. Equation (2) contains a meromor-
phic function f [12] which is one of the basics for the Painlevé property [6]. The
practical calculation of the Painlevé property is bases on the following theorem
by Steeb [6]:

Theorem 1.1 An ordinary differential equation of order n allows the Pain-
levé property. Then the general solution of the differential equation has the
generalised Laurent expansion at any point z1 ∈ C

f(z) =
∞∑

j=0

aj (z − z1)
j+m , m ∈ IR, (3)

furthermore there exist n− 1 free constants.

This theorem allows to define a test to verify the Painlevé property [6]. However
we note that condition (3) in Theorem 1.1 is not sufficient, because moveable
essential singularities are not excluded.

In the following we describe how to transfer this Painlevé test to partial
differential equations. We examine a system of partial differential equations of
higher order with n independent and m dependent variables. We denote the
independent variables by x = (x1, x2, ..., xn) and the dependent variables by
u =

(
u1, u2, ..., um

)
. Let F1, ..., Fl be functions defined on the manifold M :X ×
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U × U (r) → IR,
(
x, u, u(r)

)
7→ Fν

(
x, u, u(r)

)
, ν = 1, ..., l, and

u(r) =

u1
x1

, u2
x2

, · · · , u1
xn

, u2
x1

, · · · , um
x,n, u

1
x1x1

, · · · , um
xn · · ·xn︸ ︷︷ ︸

r times

 . (4)

are the derivatives in M . The system of differential equations under considera-
tion now is

F
(
x, u, u(r)

)
:=
(
F1

(
x, u, u(r)

)
, · · · , Fl

(
x, u, u(r)

))
= 0. (5)

We call a solution of (5) a function that satisfies F
(
x, f(x), f (r)(x)

)
≡ 0 if

f : X → U, x 7→ f(x) is given by (3).

We assume that all functions we are dealing with are analytic and therefore
can be differentiated as often as necessary. In the case of partial differential
equations we deal with functions with more than one variable. This extended
manifold is known as an analytical hypersurface [13]. The Painlevé property on a
analytic hypersurface is defined in [13]. To calculate solutions for Fν

(
x, u, u(r)

)
,

we need the definition giving by Weiss [3]

Definition 1.1 A partial differential equation of order r passes the Painlevé
test from Weiss-Tabor-Carnevale (WTC-Test), if the solution can be expressed
in the Form

u =
∞∑

j=0

uj (x1, · · · , xn) Φj+α (6)

where α ∈ ZZ, uj is holomorph and k of these uj are not determined.

We note:

1. Some authors don’t distinguish between the Painlevé property and the
Painlevé test.

The ansatz from definition 1.1 is called weak Painlevé property. So we
can define that a partial differential equation possesses the weak Painlevé
property if equation (5) passes the Painlevé test.

2. Condition written in definition 1.1 is not sufficient because essential sin-
gularities are not pointed out (see for example [14]).

In the course of the analysis we must differentiate series. So we have to apply
the theorem of Osgood [15]. This allows us to differentiate an infinite series of
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functions in n complex variables z1, ..., zn which are holomorph1 on a 2n di-
mensional surface T . You can conceive the product ujΦ

j+α in (6) as a function
of ũj. Applying the series ansatz by Weierstrass to (6), we need the condition
that ũj is holomorph. A holomorphic function is the product of two holomor-
phic functions. This fact is the reason that uj and Φ must have this property.
Furthermore we take the elements of this series and differentiate them one by
one.

There exists another Painlevé test given by [16] who is distinguished from
the WTC-test by assumptions and practicability:

Definition 1.2 A partial differential equation (5) passes the Painlevé test from
Ablowitz, Ramani, Segur (ARS-test), if the classical and the nonclassical sym-
metry reductions pass the Painlevé test, perhaps after transformations.

This procedure is very difficult because you need all symmetry reductions
of the original equation . The solution of this problem was the development
of the WTC-test which can be easily applied to partial differential equations.
However, it was shown [17] that if an equation passes the WTC-test it also
pasess the ARS-test, but not vice versa. In the following part we describe how
to apply the Painlevé test to partial differential equations. We look at a system
of differential equations (5) with x = (x1, x2, ..., xn) and u =

(
u1, u2, ..., um

)
.

We assume that the number of equations coincide with the number of de-
pendent variables (but it can happen that n 6= m). We make the following
ansatz to expand the functions uk; k = 1, ...,m about an analytic manifold Φ:

uk(x, t) = Φαk

∞∑
jk=0

uk
jk

Φjk(x, t); k = 1, ...,m; αk ∈ ZZ (7)

αk; k = 1, ...,m form a m-tuple in short α := (α1, α2, ..., αm) . The following
steps discuss the necessary calculations to come to the statement if the discussed
equation passes the Painlevé-test:

Step 1: To determine α, we have to look at the system of equations

F
(
x, u(0), u

(r)
(0)

)
= 0 (8)

where
u(0) =

(
u1

0Φ
α1, · · · , um

0 Φαm
)
. (9)

1Osgood is using the word analytic but he means the complex differentiation relating to z1, ..., zn at every
point inside of this surface.
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In each equation from (5) we determine for each nonvanishing term of the sum
the exponent of the power of Φ. We get determining equations for the tuple α

out of the fact that we look for the smallest exponents appearing in at least two
terms of the sum of each equation. The complete set of determining equations
for α depends on n, m and r. They are parameters in system (5).

Definition 1.3 Terms leading to the smallest exponents of Φ for the ν-th equa-
tion in (5) are called the leading terms of the equation

Fν

(
x, u, u(r)

)
= 0; ν = 1, ...,m.

If one of the coefficients of α is not in ZZ, the system doesn’t possess the Painlevé
property. If you cannot calculate all αk, k = 1, ..., n meaning, that some can
be chosen arbitrary, we continue with the Painlevé test under the assumption
α ∈ ZZm and restrict this arbitrary α in a later step.

Step 2: All known coefficients αk ∈ ZZm will be inserted in (5). We neglect
all terms with the exception of the leading ones. If the equation can be reduced
to the form

uk
0u

l
0

∂|J |Φ

∂xj1 · · · ∂xj|J|

= 0,

the cases uk
0 = 0 and ul

0 = 0 are inconsistent with the ansatz, because the series
starts with powers of Φαk. The partial derivatives are written with a multi-
index. In the cases that the assumption α ∈ ZZm isn’t valid or the last case has
happened you can try to transform equation (5) into a form which passes step
1 and step 2 of the Painlevé test

Step 3: After doing these examinations we insert the generalised Laurent-
series (6) into equation (5) and take into account the values of αk. We assume
that these series are convergent or absolutely convergent without making ex-
aminations about this question. We now factor out Φσν in the ν-th equation
where σν is the leading power of this equation. The gained result is

∞∑
j=0

Gν
j

(
uj, u

(r)
j−1, · · · , u

(r)
0 , Φ(r)

)
Φj = 0. (10)

Now we make a comparison of coefficients in powers of Φ leading to∧
j∈IN0

Gν
j

(
uj, · · · , Φ(r)

)
= 0.
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These equations lead to a recursion equation for arbitrary but fixed j,

P ν
(
j, u0, Φ

(r)
)

uT
j,ν = G̃ν

(
uj−1, ..., u0, Φ

(r)
)

,

where P ν
(
j, u0, Φ

(r)
)

:=
(
P ν

1
(
j, u0, Φ

(r)
)
, ..., P ν

m

(
j, u0, Φ

(r)
))

. T denotes a trans-
position and P ν

k , k = 1, ...,m are the coefficients in front of uk. All ν equations
can be put together to a matrix equation

Mu = V (uj−1, uj−2, · · · , Φ, Φx1
, · · · ) .

To solve this matrix equation in a definite manner it is necessary that det M

doesn’t vanish. So we define

Definition 1.4 The spots aj, j = 1, ..., r, where the determinant of M is van-
ishing are called resonance spots. At these spots the functions uk

aj
are arbitrary.

This arbitrary function is necessary for solving problems including initial-
and boundary condition problems. We must adapt the solutions to these prob-
lems.

The gain of this procedure is:

1. One resonance spot is a1 = −1. This corresponds with the arbitrariness of
Φ.

2. If u0 is arbitrary we find the resonance spot a2 = 0.

3. If all resonance spots are a ∈ ZZ and have the rows of the vector V the
same factor as the belonged rows of the matrix M , so the system posses
the Painlevé property. Further more we find that all coefficients uk with
the index j = ai are arbitrary functions.

4. Some resonance spots may be not an element of ZZ. For this case we find
integrable as well as non-integrable equations. An example for this is the
Harry-Dym equation. The case of rational resonance spots is called weak
Painlevé property.

5. If all resonance spots are in ZZ but the rows of the vector on the right hand
aren’t linear dependent like described in 3) then we distinguish between
two cases:

Electronic Journal. http://www.neva.ru/journal 23



Differential Equations and Control Processes, N 4, 2002

(a) We can generate the linear dependence if one introduces logarithm
Psi-series 2 or:

(b) We get conditions of compatibility out of the assumption that the ma-
trix equation is solvable. The solutions had to perform these additional
equations. In the last two cases the Painlevé test is violated.

To check whether the resonance spots are valid or not you form the matrix
equation for the special j and examine the linear dependence of the rows. It
must be accomplish

Rang M = Rang Merw. (11)

For constructing solutions we make a cut of the several series uk at the power
Φ0 and put this terms in system (5). A comparison of coefficients of powers of Φ
leads to an overdetermined system of equations which we have to solve. There
are several varieties for solving:

1. You can simplify the system by inserting an equation into other equations
of the system and making a very strong assumption. In this case a solution
will be found.

2. We can add and subtract terms to remove interfering terms. You have
to pay attention to the fact that the Painlevé property respectively the
passing of the Painlevé test wouldn’t be disturbed. This means, that the
resonance spots can be displaced and the condition (11) can loose its valid-
ity because of adding and subtracting terms. A procedure to find special
terms which don’t change the Painlevé property is given in a paper by
Newell. [21]

1.1 The Boussinesq Equation and Painlevé tests

In this subsection we will examine the Boussinesq equation. This equation intro-
duced by Boussinesq in 1871 describes the expansion of long waves in shallow
water. However, this type of equation is applied to a wide range of physical
problems containing one-dimensional nonlinear lattice wave, vibrations in a
nonlinear chains, and sound waves of ions in a plasma.

2series of the form

uk =
∞∑

j=0

∞∑
n=0

uk
j,nΦj−αk (Φai lnΦ)n

(vgl. Clarkson [18], Tabor [19], Levine [20])
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Here we examine the Boussinesq equation in the form

utt + auxx + b
(
u2)

xx
+ cuxxxx = 0 (12)

⇒ utt + auxx + 2bu2
x + 2buuxx + cuxxxx = 0 (13)

and make for the WTC-Test the ansatz.

u =
∞∑

j=0

ujΦ
j+α. (14)

First, as mentioned in step 1, we introduce the terms of order zero in the
equation to determine u0 and α. We get the solution

α = −2; u0 = −6
c

b

(
∂Φ

∂x

)2

.

The last three terms of equation (13) are the leading ones. We put the series and
their derivatives into the differential equation and make an index - transforma-
tion. Since the derived equation is valid for all j we get the following recursion
equation:

uj−2(j − 4)(j − 5)

(
∂Φ

∂t

)2

+ 2(j − 5)
∂uj−3

∂t

∂Φ

∂t
+ uj−3(j − 5)

∂2Φ

∂t2
+

∂2uj−4

∂t2
+ auj−2(j − 4)(j − 5)

(
∂Φ

∂x

)2

+ 2a
∂uj−3

∂x
(j − 5)

∂Φ

∂x
+

auj−3(j − 5)
∂2Φ

∂x2 + a
∂2uj−4

∂x2 + 2b

j∑
k=0

∂uk

∂x

∂uj−k−2

∂x
+

2b

j∑
k=0

∂uk

∂u j−k−1
(j − k − 3)

∂Φ

∂x
+ 2b

j∑
k=0

uk(k − 2)
∂uj−k−1

∂x

∂Φ

∂x
+

2b

j∑
K=0

uk(k − 2)uj−k(j − k − 2)

(
∂Φ

∂x

)2

+

2b

j∑
k=0

uk
∂2uj−k−2

∂x2 + 4b

j∑
k=0

uk
∂uj−k−1

∂x
(j − k − 3)

∂Φ

∂x
+

2b

j∑
k=0

ukuj−k(j − k − 2)(j − k − 3)

(
∂Φ

∂x

)2

+
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2b

j∑
k=0

ukuj−k−1(j − k − 3)
∂2Φ

∂x2 +

c(j − 5)(j − 4)(j − 3)(j − 2)uj

(
∂Φ

∂x

)4

+

4c(j − 5)(j − 4)(j − 3)
∂uj−1

∂x

(
∂Φ

∂x

)3

+ (15)

6c(j − 5)(j − 4)(j − 3)uj−1

(
∂Φ

∂x

)2
∂2Φ

∂x2 +

12c(j − 5)(j − 4)
∂Φ

∂x

∂uj−2

∂x

∂2Φ

∂x2 +

3c(j − 5)(j − 4)uj−2

(
∂2Φ

∂x2

)2

+ 6c(j − 5)(j − 4)

(
∂Φ

∂x

)2
∂2uj−2

∂x2 +

6c(j − 5)
∂2Φ

∂x2

∂2uj−3

∂x2 + 3c(j − 5)(j − 4)uj−2
∂Φ

∂x

∂3Φ

∂x3 +

4c(j − 5)
∂uj−3

∂x

∂3Φ

∂x3 + 4c(j − 5)
∂Φ

∂x

∂3uj−3

∂x3 +

c(j − 5)uj−3
∂4Φ

∂x4 + c
∂4uj−4

∂x4 = 0

We solve this equation for the leading terms and calculate the resonance
spots. One finds j = −1, 4, 5, 6.

Now we insert numbers of IN for j in (15) and get the uj’s:

j = 0 : u0 = −6
c

b

(
∂Φ

∂x

)2

,

j = 1 : u1 = 6
c

b

∂2Φ

∂x2 ,

j = 2 : u2 = −

(
∂Φ
∂t

)2
+ a

(
∂Φ
∂x

)2 − 3c
(

∂2Φ
∂x2

)2
+ 4c∂Φ

∂x
∂3Φ
∂x3

2b
(

∂Φ
∂x

)2 ,

j = 3 : u3 = −
−∂2Φ

∂x2

(
∂Φ
∂x

)2
+
(

∂Φ
∂t

)2 ∂2Φ
∂x2 − 3c

(
∂2Φ
∂x2

)3

2b
(

∂Φ
∂x

)4 +

4c∂Φ
∂x

∂2Φ
∂x2

∂3Φ
∂x3 − c

(
∂φ
∂x

)2
∂4Φ
∂x4

2b
(

∂Φ
∂x

)4 .
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For j = 4, j = 5 and j = 6 the equation (15) is fulfilled identically. So the
Boussinesq equation passes the WTC-Test.

In the following part of this section we deal with the symmetry analysis.
Applying Lie’s theory by using the functions of MathLie [22], we get the in-
finitesimal symmetries of equation (13):

ξ1 = c1 +
c3

2
x, ξ2 = c2 + c3t, η1 = −c3 (a + 2bu)

2b
,

which are connected with the generators

v1 =
∂

∂x
, v2 =

∂

∂t
, and v3 =

1

2
x

∂

∂x
+ t

∂

∂t
− a + 2bu

2b

∂

∂u
The commutator table is

v1 v2 v3

v1 0 0 −1
2v1

v2 0 0 −v2

v3
1
2v1 v2 0

In the next step we reduce the Boussinesq equation with these generators:

1. v1: The corresponding similarity variable is λ = t, u = F (λ), and the
reduced equation is

F ′′(λ) = 0.

We find the solution u = aλ + b. This function hasn’t any singularities.
It follows that this equation posses the Painlevé property for ordinary
differential equations.

2. v2: The similarity solution for this generator is λ = x, u = F (λ). We find
the following reduced equation:

2b (F ′(λ))
2
+ aF ′′(λ) + 2bF (λ)F ′′(λ) + cF (iv)(λ) = 0.

3. v1 + v2: We get the following similarity solution for this generator:

λ =
k1t− k2x

k1
; u = F (λ).

The reduction is

2bk2
1k

2
2 (F ′ (λ))

2
+ k4

1F
′′ (λ) + ak2

1k
2
2F

′′(λ) + 2bk2
1k

2
2F (λ)F ′′(λ) +

ck4
2F

(iv)(λ) = 0.

After two integrations we find

bk2
1k

2
2 (F (λ))2 + k4

1F (λ) + ak2
1k

2
2F (λ) + ck4

2F
′′(λ) = Aλ + B.
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4. v3: The similarity representation is

λ =
x2

t
, F = x2 (a + 2bu) .

This leads to the reduction

10

λ4 (F (λ))2 +
120c

λ4 F (λ)− 14

λ2F (λ)F ′(λ) +
4

λ2F (λ)F ′′(λ)−
120c

λ3 F ′(λ) +
2

λ
F ′(λ) +

4

λ2 (F ′′(λ)) +
60c

λ2 F ′′(λ) +

F ′′(λ)− 16c

λ
F ′′′(λ) + 16cF (iv)(λ) = 0

On the other hand, we can examine (13) by means of the non-classical symme-
try reduction. The main topics about this procedure are collected in [23, 24].
Following Clarkson [23] we make the following ansatz to calculate the symme-
tries:

u(x, t) = α(x, t) + β(x, t)w (z(x, t))

where α, β and z(x, t) are unknown functions. This ansatz is inserted into the
differential equation (13) and order by w, powers of w and derivatives of w. We
find:

cβ

(
∂z

∂x

)4
d4w

dz4 +

(
4c

∂β

∂x

(
∂z

∂x

)3

+ 6cβ

(
∂z

∂x

)2
∂2z

∂x2

)
d3w

dz3 +(
β

(
∂z

∂t

)2

+ aβ

(
∂z

∂x

)2

+ 2bαβ

(
∂z

∂x

)2

+ 6c

(
∂z

∂x

)2
∂2β

∂x2 +

12c
∂β

∂x

∂z

∂x

∂2z

∂x2 + 3cβ

(
∂2z

∂x2

)2

+ 4cβ
∂z

∂x

∂3z

∂x3

)
d2z

dz2 +(
2
∂β

∂t

∂z

∂t
+ β

∂2z

∂t2
+ 2a

∂β

∂x

∂z

∂x
+ aβ

∂2z

∂x2 + 4bβ
∂α

∂x

∂z

∂x
+ 2bαβ

∂2z

∂x2+

6c
∂2β

∂x2

∂2z

∂x2 + 4c
∂z

∂x

∂3β

∂x3 + 4c
∂β

∂x

∂3z

∂x3 + cβ
∂4z

∂x4

)
dw

dz
+
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(
8bβ

∂β

∂x

∂z

∂x
+ 2bβ2 ∂2z

∂x2

)
w

dw

dz
+(

∂2β

∂t2
+ a

∂2β

∂x2 + 4b
∂α

∂x

∂β

∂x
+ 2bβ

∂2α

∂x2 + 2bα
∂2α2

∂x2 + c
∂4β

∂x4

)
w +

2bβ2
(

∂z

∂x

)2

w
d2w

dz2 + 2bβ2
(

∂z

∂x

)2(
dw

dz

)2

+(
2b

(
∂β

∂x

)2

+ 2bβ
∂2α2

∂x2

)
w2 + (16)

∂2α1

∂t2
+ a

∂2α

∂x2 + 2bα
∂2α

∂x2 + c
∂4α

∂x4 + 2b

(
∂α

∂x

)2

= 0.

We now have to derive an ordinary differential equation for w(z) from (16).
Therefore the factors in front of several derivatives and powers of w(z) have to be
only functions of z. So we get conditions for α(x, t), β(x, t) and z(x, t). So each
solution of (16) will lead to a similarity solution. We refer the reader to the cited
paper of Clarkson [23] and references included therein to get more information.
During the following calculations we have the following arbitrariness:

1. The factor in front of the highest derivative has to be normalized. So it
follows that they are of the type

βΓ(z)
∂4z

∂x4

with the arbitrary function Γ(z) remaining to be determined.

2. We name the unknown functions of z with a Greek letter so that we can
denote the result after transformations like derivation, integration, expo-
nentiation, scaling etc. with the same letter. (So we denote for example
the derivative Γ′(z) with Γ(z))

3. Without loosing any generality we make the following statements about
α(x, t), β(x, t), z(x, t)and w(z(x, t)):

(a) Is α(x, t) given by

α = α(x, t) + β(x, t)Ω(z),

we can set Ω ≡ 0 after the transformation

w(z) → w(z)− Ω(z).
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(b) If α2(x, t) has the form

β = β0(x, t)Ω(z),

we can set Ω(z) ≡ 1 via the transformation w(z) → w(z)
Ω(z) .

(c) We determine z(x, t) with the equation

Ω(z) = z0(x, t)

where Ω(z) is invertible. We put Ω(z) = z via the substitution z →
Ω−1(z).

If we look at equation (16) we find that the coefficients of w d2w
dz2 and

(
dw
dz

)2
are

equal. So we make the ansatz

cβz4
xΓ(z) = 2bβ2z2

x.

It follows
β =

c

2b
z2
xΓ(z).

Now we are looking at the coefficient of w′′′. For this the equation

cβz4
xΓ(z) = 4cβxz

3
x + 6cz2

xzxx

is valid where Γ(z) is to be determined. We put in β and βx and divide by z5
x.

After rescaling of Γ(z) we get

zxΓ(z)− zxx

zx
= 0.

This equation will be integrated over x. During this calculation we partially
integrate the first term and apply remark 2. After exponentiating the result
under condition 2) we get Γ(z) = xΘ(t)+Σ(t), using 3), we have z = xθ(t)+σ(t).
and β = c

2bθ
2(t). The next step considers coefficients of w′′. The corresponding

equation is

cβz4
xΓ(z) = β(zt)

2 + aβzxx + 2bαβz2
x + 6cβxx(zx)

2 + 12cαxzxzxx +

3cβ(zxx)
2 + 4βczxzxxx.

After inserting all results, we solve this equation with resprect to α and use
remark 1). It follows

α = − 1

2bθ2

(
x
dθ

dt
+

dσ

dt

)2

.
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Putting this into the differential equation (16) we get

θ6 (wiv + ww′′ + (w′)2)+
c

2b
θ2
(

x
d2θ

dt2
+

d2σ

dt2

)
w′ +

c

b
θ
d2θ

dt2
w +

αtt + aαxx + 2bααxx + cαxxxx + 2b(αx)
2 = 0.

Taking the coefficients of the derivatives and powers of w and determine
them as functions of z, we end up with

θ6γ1(z) =
c

2b
θ2
(

x
d2θ

dt2
+

d2σ

dt2

)
(17)

θ6γ2(z) =
c

b
θ
d2θ

dt2
(18)

θ6γ3(z) = − a

bθ2

(
∂θ

∂t

)2

+
1

bθ3

(
dσ

dt
+ x

dθ

dt

)2
d2θ

dt2
+ (19)

4

bθ3

dθ

dt

(
dσ

dt
+ x

dθ

dt

)(
d2σ

dt2
+ x

d2θ

dt2

)
−

1

bθ2

(
d2σ

dt2
+ x

d2θ

dt2

)2

− 1

bθ2

(
dσ

dt
+ x

dθ

dt

)(
d3σ

dt3
+ x

d3θ

dt3

)
Since x in (17) is linear, we make the following ansatz for γ1: γ1(z) = Az + B.

From the comparison of coefficients it follows

d2θ

dt2
=

2b

c
θ5A (20)

d2σ

dt2
=

2b

c
(Aσ + B) θ4. (21)

We put this into equation (18) and get γ2(z) = 2A. Finally let us examine (20).
We insert α and its derivatives and compare the coefficients. For γ3(z) me make
the ansatz γ3(z) = α̃x2 + β̃x + γ̃ With (20) and (21) we find

α̃ = −4b

c2 θ8A2,

β̃ = −8b

c2 θ7A2σ − 8b

c2 ABθ7,

γ̃ = − a

bθ2 −
4b

c2 θ6A2σ2 − 8b

c2 θ6ABσ − 4b

c2 θ6B2.
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The final result is

u(x, t) =
c

2b
θ2w(z)− 1

2bθ2

(
x
∂θ

∂t
+

∂σ

∂t

)2

, (22)

z(x, t) = xθ(t) + σ(t);
d2θ

dt2
=

2b

c
θ5A;

d2σ

dt2
=

2b

c
(Aσ + B) θ4, (23)

w(iv)+ ww′′ +(w′)2 + (Az + B)w′ + 2Aw =
4b

c2 (Az + B)2 +
a

bθ8

(
dθ

dt

)2

.(24)

We can show [23] that the general form of all differential equations of the form

w(iv) + ww′′ + (w′)2 + f(z)w′ + g(z)w = h(z)

where f(z), g(z), h(z) are analytic functions which possess the Painlevé property
is of the type

w(iv) + ww′′ + (w′)2 + (Az + B)w′ + 2Aw = 2 (Az + B)2 (25)

For equation (25) it is possible to distinguish several cases for the constants A

and B. We put in (24) a = 0.

For example if we choose A = 0 and B = 0, it follows from (20) and (21)
that

θ(t) = a1t + a0; σ(t) = b1t + b0

and

u(x, t) =
c

2b
(a1t + a0)

2 w(z)− 1

2b

(
a1x + b1

a1t + a0

)2

,

z = x (a1t + a0) + b1t + b0,

w′′ +
1

2
w2 = c1z + c0.

The last differential equation is equivalent to the first Painlevé transcendent.
With this procedure, we can determine similarity reductions which possess the
Painlevé property. It follows that the Boussinesq equation passes the ARS-Test.

We observe that it is very difficult to show if a partial differential equation
passes the ARS-Test because we have to find all symmetry reductions.

2 The Theorem of Strampp and Symmetry analysis

First of all we will examine how a Laurent-series (6) of the Painlevé test changes
under a similarity reduction. We look at an equation of the form

ut = K (u, ux, · · · , urx) (26)
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where K is a polynomial in u and the spatial derivatives up to order r, x ∈ IR2.
The independent variables are x1 = x and x2 = t. Furthermore, we assume that
equation (26) possesses the Painlevé property and the series (6). The generator
of u in (26) is assumed to allow the ansatz

v = ξx(x, t)
∂

∂x
+ ξt(x, t)

∂

∂t
+ ηu(x, t, u)

∂

∂u

resulting into specific infinitesimals. Knowing the infinitesimals, we apply Fuchs’s
procedure [25] to reduce equation (26) to

ηu(x, c, v)− ξx(s, c)
d

dλ
v = ξt(s, c)K

(
v, v′, ..., v(n)

)
. (27)

It can be shown that the related Laurent-series are of the form [26]

u(x, t) =

(
x−

{
s0 − h(t)

g(t)

})α ∞∑
j=0

uj

(
x−

{
s0 − h(t)

g(t)

})j

, (28)

where uj = cj G(t) g(t)j−a for j 6= a and ua = caG(t) + H(t). If we compare
(28) with (6) we find, that (28) does not allow other resonance spots than we
found in (11).
For example, we consider the Burgers equation [26]

ut + uux + uxx = 0. (29)

The Laurent-series is given by

u = Φ−1
∞∑

j=0

ujΦ
j.

The generators for (29) are

v1 = γ
∂

∂x
+

∂

∂t
; γ = const, (30)

v2 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, (31)

v3 = xt
∂

∂x
+ t2

∂

∂t
+ (x− tu)

∂

∂u
, (32)

v4 = t
∂

∂x
+

∂

∂u
. (33)

From generator (30) it follows that u(x, t) = v(λ); λ = x− γt. We find

v′′ + (v + γ)v′ = 0. (34)
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With (31), we get u(x, t) = 1√
t
v(λ), λ = x√

t
and

v′′ + vv′ − 1

2
λv′ = 0. (35)

If we consider (32), we calculate u(x, t) = λ+ 1
t (v − λ) , λ = x

t . The correspond-
ing reduced differential equation is

v′′ + vv′ − (λv)′ + λ = 0. (36)

Generator (33) leads to u(x, t) = v + x
λ , λ = t and

λv′ + v = 0. (37)

If we inspect equations (34), (35) and (36) we find that they allow the following
Laurent expansion over a movable pole:

v(λ) = (λ− λ0)
−1

∞∑
j=0

cj(λ− λ0)
j (38)

where c2 is an arbitrary constant. Using this equation for (34), (35) and (36),
we get the following series for similarity solutions.
In case of (34):

u(x, t) = (x− γt− λ0)
−1

∞∑
j=0

cj (x− γt− λ0)
j ,

for relation (35):

u(x, t) =
(
x− λ0

√
t
)−1 ∞∑

j=0

cjt
− j

2

(
x− λ0

√
t
)j

,

and for the reduction (36):

u(x, t) = c0 (x− λ0t)
−1 + λ0 + (c1 − λ0) t−1 +

(
c2t

−2 + t− 1
)
(x− λ0t)

+
∞∑

j=3

cjt
−j (x− λ0t)

j−1 .

Another possibility to construct solutions when making a similarity analysis is
the following procedure:
Let x1 = x and x2 = t be the independent variables. Let us use a linearized
form of equation (26) for the solution u, given by

vt = K ′(u)v =
∂

∂ε
K (u + εv)

∣∣
ε=0. (39)
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Each solution v of this equation is a symmetry or an infinitesimal transformation
of u, meaning that (26) is invariant under u + εv which is motivated by the
following theorem by Strampp [27]:

Theorem 2.1 Let
ut = K

(
u, u(r)

)
, (40)

be a given partial differential equation where K is a polynomial in u and in the
spatial derivatives up to order r. Furthermore, we know the expansion of u in
the form

u =
∞∑

j=0

ujΦ
j+α. (41)

Equation (40) passes the Painlevé test.

If we stop the series at a spot a > 0 then ua−1 is an infinitesimal transfor-
mation of ua.

The prove of the theorem can be found in [27].

Let us apply this theorem to the KdV equation to calculate solutions con-
necting the WTC-test and infinitesimal transformations. The KdV-equation ist

ut + uux + uxxx = 0 (42)

The system of the broken series reads

Φ−5 : −2u2
0
∂Φ

∂x
− 24u0

(
∂Φ

∂x

)3

= 0, (43)

Φ−4 : −3u1u0
∂Φ

∂x
− 6u1

(
∂Φ

∂x

)3

+ 18
∂u0

∂x

(
∂Φ

∂x

)2

+

18u0
∂2Φ

∂x2

∂Φ

∂x
+ u0

∂u0

∂x
= 0, (44)

Φ−3 : −2u2u0
∂Φ

∂x
− u2

1
∂Φ

∂x
+ u1

∂u0

∂x
+ 6u1

∂2Φ

∂x2

∂Φ

∂x
+ u0

∂u1

∂x
− 2u0

∂3Φ

∂x3 −

2u0
∂Φ

∂t
+ 6

∂u1

∂x

(
∂Φ

∂x

)2

− 6
∂2u0

∂x2 − 6
∂u0

∂x

∂2Φ

∂x2 = 0, (45)
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Φ−2 : −u2u1
∂Φ

∂x
+ u2

∂u0

∂x
+ u1

∂u1

∂x
− u1

∂3Φ

∂x3 − u1
∂Φ

∂t
+ u0

∂u2

∂x
−

3
∂2u1

∂x2

∂Φ

∂x
− 3

∂u1

∂x

∂2Φ

∂x2 +
∂3u0

∂x3 +
∂u0

∂t
= 0, (46)

Φ−1 : u2
∂u1

∂x
+ u1

∂u2

∂x
+

∂3u1

∂x3

∂u1

∂t
= 0, (47)

Φ0 : u2
∂u2

∂x
+

∂3u2

∂x3 +
∂u2

∂t
= 0. (48)

The generators are:

v1 =
∂

∂x
, v2 =

∂

∂t
, v3 = t

∂

∂x
+

∂

∂u
, v4 = x

∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
.

Let us make a linear combination of all the generators as an ansatz

v = α
∂

∂x
+ β

∂

∂t
+ γ

(
t

∂

∂x
+

∂

∂u

)
+ δ

(
x

∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u

)
and transform it to the form

v =

[
(γ − 2δu) +

∂u

∂x
(α + γt− δx)− ∂u

∂t
(β + 3δt)

]
∂

∂u
, (49)

using

v =

[
ηα −

∑
i

∂uα

∂xi
ξi

]
∂

∂uα
.

(see [28] p. 261 theorem 5.2.3-1). After setting u = u2 in 49 we apply this equa-
tion to u2. Therefore we can represent u1 with the help of Strampp’s theorem
as

u1 = (γ − 2δu2)−
∂u2

∂x
(α + γt + δx)− ∂u2

∂t
(β + 3δt) (50)

If we insert the solution u2 = 0 into (50), it follows that u1 = γ and with (44)
we find ∂2Φ

∂x2 = 1
12γ. An integration of the last relation leads to ∂Φ

∂x = 1
12γx+ g(t).

If we integrate once more, we get Φ = 1
24γx2 + g(t)x+h(t). Using this equation

we find:

u0 = −12

[
1

12
γx + g(t)

]2

.

Inserting this result into system (41) - (47) we find that γ = 0, g(t) = c1, h(t) =
c2, c1, c2 = const. Thus the final result is

u1 = 0, (51)

u2 = 0, (52)

u0 = −12c2
1, (53)

Φ = c1x + c2. (54)

Electronic Journal. http://www.neva.ru/journal 36



Differential Equations and Control Processes, N 4, 2002

The solution in original coordinates for u reads

u =
−12c2

1

(c1x + c2)
2 =

−12

(x + c̃1)2 .

If we check the conditions from [13], we get

grad Φ = c1 6= 0

for c1 6= 0 at every arbitrary spot x0. Furthermore we see that the solution u is
meromorph. Now we can use this solution as a new solution u2 and apply the
transformaation [1] u3 = f(x− εt) + ε to gain another solution

u2 =
−12

(x + c1t + c2)2 − c1

We can repeat the last two steps again and again to create solutions.

3 Definition of Optimal Systems

We regard a system of differential equations (5) for which we have calculated
the r-parametric maximal symmetry group. For every s-parametric subgroup
H one is able to find a family of similarity solutions. The assumption is that
s ≥ min{r, n′}, s, r, n′ ∈ IN. n′ is the number of independent variables of F and
r is the order of derivatives. Since in many cases there exists an infinite number
of such subgroups it is impossible to calculate all similarity solutions relative to
s-parametric subgroups. In this set there are similarity solutions which result
from other similarity solutions of the same set applying a transformation of
the symmetry group. It would be profitable to have a minimal list of similarity
solutions such that with these elements one can get all other similarity solu-
tions via transformation. Such a minimal list is called an optimal system and
their elements are essentially different similarity solutions. The related inner-
authomorphism can be defined by conjugation [29] and leads to a comparison
of two elements g1, g2 of the Lie-group G.

Since two equivalence classes are either identical or disjunct, the set of all
s-parametric subgroups is split into two disjunct equivalence classes.

We define an optimal system following Olver [1]. This definition reduces the
task to classify subgroups of the maximal symmetry group S. Furthermore, we
treat the problem to classify the subalgebras contained in the subgroups of the
maximal symmetry group S. This is possible because there is a connection via
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the adjoint representation of the Lie group and the adjoint representation of
the Lie algebra:

ad(v)(w) :=
d

dε
Ad (exp (εv)) (w) = [w, v]

with

Ad (exp (εv)) = eε ad(v) (w0) =
∞∑

j=0

εj

j!
(ad (v))j (w0)

= w0 + ε [w0, v] +
ε2

2
[[w0, v] , v] + · · · (55)

It can be also shown [1]:

Hs and H̃s are two connected s-parametric subgroups of the Lie group
G with the corresponding s-dimensional Lie algebras Hs and H̃s, which are
subalgebras of the Lie algebra G of G. Hs and H̃s are conjugated subgroups

of G, Hs
G∼ H̃s, if and only if there exists an inner automorphism Ad(g) ∈

Int(G)(g ∈ G) for the related subalgebras

Hs = Ad (g)
(
H̃s

)
.

This directly leads to the definition of conjugated subalgebras and optimal
systems [1].

To apply the calculation of optimal systems let us consider the KdV equa-
tion. Contrary to the presentation of Olver [1] we don’t use invariants in our
calculation.

The Lie algebra’s basis corresponding to the KdV equation is given by

v1 =
∂

∂x
, v2 =

∂

∂t
, v3 = t

∂

∂x
+

∂

∂u
, v4 = x

∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
. (56)

The commutator table reads

v1 v2 v3 v4

v1 0 0 0 −v1

v2 0 0 −v1 −3v2

v3 0 v1 0 2v3

v4 v1 3v2 −2v3 0
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First we determine the adjoint representation Ad of the symmetry group by
(55) and get

Ad (eε1v1) =


1 0 0 −ε1

0 1 0 0

0 0 1 0

0 0 0 1

 , Ad (eε2v2) =


1 0 −ε2 0

0 1 0 −2ε2

0 0 1 0

0 0 0 1

 ,

Ad (eε3v3) =


1 ε3 0 0

0 1 0 0

0 0 1 2ε3

0 0 0 1

 , Ad (eε4v4) =


eε4 0 0 0

0 e3ε4 0 0

0 0 e−2ε4 0

0 0 0 1

 .

The adjoint representation of an arbitrary element g of the group is gained from
the product of the matrices above.

Adg =


eε4 ε3e

3ε4 −2ε2e
−2ε4 −ε1 − 2ε2ε3

0 e3ε4 0 −3ε2

0 0 2e−2ε4 2ε3

0 0 0 1

 .

For the following calculations let us make the ansatz

1

a
Adg


α1

α2

α3

α4

 =


β1

β2

β3

β4

 , (57)

1

a


eε4α1 + ε3e

2ε4α2 − 2ε2e
−2ε4α3 − ε1α4 − 2ε12ε3α4

e3ε4α2 − 3ε2α4

2e2ε4α3 + 2ε3α4

α4

 =


β1

β2

β3

β4

 .

We are trying to simplify the right hand side by determining εi. We have to
distinguish several cases referring to α4

1. α4 6= 0 :
We begin with the third component and set it to zero and solve it for ε3.
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The result is

ε3 = −e−2ε4α3

α4

It follows β3 = 0. After having set the second component to zero the
solution for ε2 is

ε2 =
e3ε4α2

3α4

and β2 = 0. Now we set the first component zero and solve it for ε1. We
get

ε1 =
eε4α1 + ε3e

3ε4α2 − 2ε2e
−2ε4α3 − 2ε2ε3α4

α4

and β1 = 0. For the vector β in equation (57), we find

β = (0, 0, 0, 1)

with α4

a = 1.

2. α4 = 0:
The appropriate equation is

1

a


eε4α1 + ε3e

3ε4α2 − 2ε2e
−2ε4α3

e3ε4α1

2e−2ε4α3

0

 =


β1

β2

β3

β4

 .

In this case we have to distinguish some subcases too:

(a) α2 6= 0, α3 6= 0
You take the second component and put

e3ε4α2 =

{
+1 for α2 > 0

−1 for α2 < 0

This ansatz is necessary because we have to take into account log-
arithms of this equation to get a solution for ε4. This operation is
defined only for positive values. We find

e3ε4 =
1

|α2|

and β2 = ±1.
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From the same reasons, we choose the same ansatz for the third com-
ponent and get β3 = ±1. Then the first component will be set zero
yields

ε3 =
−eε4α1 + 2ε2e

−2ε4α3

α2e3ε4

It follows β1 = 0. We obtain two different linear independent results:

β = (0, 1, 1, 0) for α2 > 0; α3 > 0

β = (0, 1,−1, 0) for α2 > 0; α3 < 0.

All other possibilities of combination are linear dependent.

(b) α2 = 0; α3 6= 0:
The equation which corresponds to this case is

1

a


eε4α1 − 2ε2e

−2ε4α3

0

2e−2ε4α3

0

 =


β1

β2

β3

β4

 .

From the third component it follows that

2e−2ε4α3 = ±1

and β3 = 1. Putting the first component to zero this leads to

ε2 =
eε4α1

2e−2ε4α3
,

and β1 = 0. We get
β = (0, 0, 1, 0) .

(c) α2 = 0; α3 = 0; α1 6= 0
The equation for this case can be written as

1

a


eε4α1

0

0

0

 =


β1

β2

β3

β4

 .
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We put the first component to zero and get

eε4 =
1

α1

and β1 = 1 and come to

β = (1, 0, 0, 0) .

(d) α3 = 0; α2 6= 0; α1 6= 0:
The appropriate equation is

1

a


eε4α1 + ε3e

3ε4α2

e3ε4α2

0

0

 =


β1

β2

β3

β4

 .

If we set the second component equal to one, we get β2 = 1. If we
require the vanishing of the first component, we obtain

ε3 = − eε4α1

e3ε4α2

and the result for β is
β = (0, 1, 0, 0) .

All other possible cases and settings lead to linear dependent vectors
β

As a result we find the following optimal system ΘG
1 :

H = {v4} ,H = {v2 + v3} ,H = {v2 − v3} ,H = {v3} ,H = {v2} ,H = {v1} .

Knowing this system, we can derive solutions of the KdV-equation via reduc-
tions, and the methods discussed in section 3.

Similar calculations were carried out by us for the non-linear Schrödinger
equation. The results will be published elsewhere.

4 Conclusions

These calculations demonstrated that there are two different possibilities to
calculate solutions for non-linear partial differential equations. With the help
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of the Painlevé test, we gain solutions by Laurent- series. With the similarity
analysis, we can determine the Lie algebra related to the equation and the clas-
sification of the Lie algebra allows to derive self-similar solutions. However, we
demonstrated that both solution procedures are connected. With the Painlevé
ansatz, we determined a system of partial differential equations resulting from
the broken series. The similarity analyse leads directly to the generators of the
equation. If we make an ansatz of the linearcombination of these generators
we get recursively solutions. Putting this into the system of partial differential
equations we can calculate all unknown functions.
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Test. World Scientific Singapore.
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