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Abstract.

We propose a general method of reducing differential equations with a
distributed delay function to finite or infinite systems of ordinary differential
equations. The idea of the method goes back to the so-called ”W-method”
developed by N. V. Azbelev and his students (see e. g. [1] and references
therein). As particular cases we obtain the famous ”linear chain trick”, on one
hand, and the Krasovskii - Hale form of delay equations, on the other.
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In the paper, we explain also how this method can be used in mathematical
modelling. We consider two examples: stability of delay differential equations
and singular perturbations of delay differential equations.

1 Introduction

The W-method was primarily developed by N. V. Azbelev and his students to
study boundary value problems and asymptotic properties of functional differ-
ential equations (see e. g. [1], [2] and references therein). The underlying idea
is to represent a property of the solutions of the studied functional differential
equation in terms of certain properties of an integral operator coming from an-
other differential equation, which already has the required property. In case of
asymptotic properties this idea is also combined with admissibility of the pairs
of the appropriate functional spaces. The method is well-known to be efficient
in both cases. The resulting integral transforms are sometimes called ”the W -
transforms”.

In the two next sections we will give a short presentation of the method in
its two (of the three known) forms.

2 Stability, admissibility and the W-transform

The first version of the W-transform is mainly used in the stability theory.

Suppose we are studying a linear functional (delay) equation which, in
general, can be represented in the following form:

ẋ(t) = (V x)(t), t > 0

x(s) = ϕ(s), s ≤ 0,
(1)

where V is a continuous Volterra operator.

If we want to apply Lyapunov’s method we usually need to rewrite Eq. (1)
in the Hale-Krasovskii form:

ẋ(t) = Ṽ xt, t > 0 (2)

where Ṽ is a certain functional on the space of the initial functions ϕ.

To apply the W-method we need another representation of Eq. (1) based
on a certain splitting of the operator V , which moves the initial function ϕ to
the right hand side of Eq. (1).
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Setting

(V +x)(t) := (V x+)(t), t > 0

(V −x)(s) := (V x−)(s), s < 0,

where
x+ := x1[0,+∞), x− := x1(−∞,0) = ϕ1(−∞,0),

we obtain the following form of Eq. (1):

ẋ = V +x+ V −ϕ, t > 0

x(0) = x0 := ϕ(0).
(3)

Example 2.1

ẋ =

∫ t

−∞
x(s)dsR(t, s) =

∫ t

0
x(s)dsR(t, s) +

∫ 0

−∞
ϕ(s)dsR(t, s).

�

Denoting f := V −ϕ we obtain

ẋ = V +x+ f, t > 0

x(0) = x0 := ϕ(0).
(4)

By this, the initial function ϕ becomes a part of the right hand side of Eq.
(4).

Definition 1 . We say that the pair of normed functional spaces (D,B) is
admissible for Eq. ẋ = V +x+ f if for any f ∈ B and any x0 ∈ Rn the solution
x of (4) belongs to the space D and

||xf(·, x0)||D ≤ c̄(||x0||Rn + ||f ||B).

Asymptotic properties of Eq. (1) can be now replaced by admissibility
properties for Eq. (4), which can be studied by the W-transform. To do it, we
introduce another, simpler equation that already has the required admissibility
property:

ẋ = Q+x+ g, t > 0

x(0) = x0.
(5)

The representation formula for solutions of Eq. (5) gives

x(t) = U(t)x0 + (Wg)(t), (6)
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where

(Wg)(t) =

∫ t

0
C(t, s)g(s)ds.

This operator defines essentially the W-transform which is to be applied to (4).
This can be done in two manners.

The left W-transform.

ẋ = Q+x+ V +x−Q+x+ f

⇒ x = Ux0 +W (V + −Q+)x+Wf,

or (I −Θ)x = Ux0 +Wf,

where Θ := W (V + −Q+).

The right W-transform.

Q+x+ g = ẋ = V +x+ f

⇒ g = (V + −Q+)(Ux0 +Wg) + f,

or (I − Θ̃)g = f + (V + −Q+)Ux0,

where Θ̃ := (V + −Q+)W.

Proposition 1 . Assume that I −Θ is invertible in D (or I − Θ̃ is invertible
in B). Then (D,B)-admissibility for Eq. (5) implies (D,B)-admissibility for
Eq. (4).

Proof. Consider the simpler case of the left W-transform. The result is
then readily seen from the formula (I − Θ)x = Ux0 + Wf . Indeed, if the
pair (D,B) is admissible for the reference equation (5), then, according to the
representation (6), Ux0 +Wf ∈ D. Invertibility of the operator (I −Θ) shows
that any solution x of Eq. (4) belongs to the space D, too.

A similar argument can be used in the case of the right W-transform. �

3 Reference equations in a different state space

In [6] a different approach to applying the W-transform to functional differ-
ential equations was suggested. The purpose was to justify a general method
of reducing differential equations with a distributed delay function to finite
or infinite systems of ordinary differential equations. This mens that the W-
transformed equation will not be an integral equation any more, but a system
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of ordinary differential equations. The price we should pay for this is that the
reference equations should be defined in a different state space.

Let us shortly describe this approach.

We are assumed given a nonlinear n-dimensional delay differential equation

x′(t) = f(t, (<x)(t)), t ∈ I+, (7)

x(τ) = ϕ(τ), τ ∈ I−, (8)

with a delay operator < to be specified below. Here I+ is either (0, T ], or
(0,∞), while I− is either [−H, 0], or (−∞, 0], where T and H are both positive
numbers. The interval I−, where the ”initial function” ϕ is defined, is deter-
mined by the delay operator <: if e.g. Equation (7) includes only expressions
like x(t− hi), i = 1, ...,m, then H = maxhi.

The state variable x is an n-vector, that is x(t) ∈ Rn for any t. Any
solution x(t) of (7) is supposed to be absolutely continuous for positive t.

We will also write
I := I− ∪ I+. (9)

In order to describe assumptions on the delay operator < we, as in the previous
section, have to split it into two parts:

< = <− + <+, (10)

where

(<+x)(t) =

∫ t

0
dsR(t, s)x(s), t ∈ I+, (11)

and

(<−ϕ)(t) =

∫
I−

dsR(t, s)ϕ(s), t ∈ I+. (12)

The measurable ν × n-matrix R(t, s), t ∈ I+, s ∈ I is assumed to have two
properties.

R1. The function

ϕR(t) :=

∫
I−

dsR(t, s)ϕ(s) (13)

is locally Lebesgue-integrable on the interval I+.

R2. For any finite s, A ∈ I+ the entries rij(·, s) (1 ≤ i ≤ ν, 1 ≤ j ≤ n)
of the matrix R(·, s) as well as the functions Vars∈[0,A]rij(·, s) are Lebesgue-
integrable on I+.
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If Property R2 is fulfilled, then the operator <+ will be bounded as a linear
operator from the space D1([0, A];Rn) (of all absolutely continuous functions
from [0, A] to Rn) to the Lebesgue space L1([0, A];Rν) (see [1] for the details).
We will denote the norm of this operator by RA. It can easily be checked (see
again [1]) that

RT ≤ RA (T ≤ A) and lim
A→+0

RA = 0. (14)

The function f(·, ·) : [0, T ] × Rν → Rn will in the sequel be assumed to
have three properties.

f1. The function f(·, u) is measurable for any u ∈ Rν.

f2. The function f(·, 0) is bounded on I+, i. e. |f(t, 0)| ≤ C, for some
constant C.

f3. f is Lipschitz: there exists a constant L such that

|f(t, u)− f(t, v)| ≤ L|u− v| (15)

for all t ∈ I+.

Note that Conditions f2 - f3 imply that |f(t, u)| ≤ L|u|+C for any t ∈ I+
and u ∈ Rν.

In what follows we assume that the initial functions ϕ are taken from a
fixed Banach space S, called in the sequel ”the space of initial functions”.

In contrast to the previous section, the reference equation

(Lz)(t) = y(t), t ∈ I+. (16)

will now be defined in a given separable Banach space B, so that z(t) ∈ B

for any t ∈ I+. We assume L to be a linear operator generating an ordinary
differential equation in the space B. This situation admits a rigorous de-
scription if one uses the notion of a local operator. The definition below is a
slight modification of that used in [9] (see also [10]).

Definition 2 An operator L : D → L1
loc(I+, B), defined on a subset D of the

space Cloc(I+, B) is called local if for any x, y ∈ D, t0 ∈ I+, ε > 0 satisfying
x(t) = y(t) for t ∈ [t0− ε, t0 + ε]∩ I+, one has (Lx)(t) = (Ly)(t) for almost all
t ∈ [t0 − ε, t0 + ε] ∩ I+.

The definition gives a precise meaning to the intuitive expression ”indepen-
dence from the past” and covers e. g. differentiation and multiplications by
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linear operators. The most typical example of a linear equation with a local
operator is therefore an ordinary differential equation of the form

z′(t) = A(t)z(t) + y(t), t ∈ I+, (17)

where A(t) : B → B, t ∈ I+ is a family of bounded linear operators. In this
section we will mostly deal with this equation, but the usage of more general
reference equations can also be of interest (see e. g. Section 6 for further
details).

The reference equation 16 is supplied with the usual initial condition

z(0) = z0 ∈ B. (18)

In the sequel we shall assume that for any admissible function y and any
z0 ∈ B the reference equation (16) has the unique solution

z(t) := W t(y, z0) (19)

We do not describe here a functional space of all possible y, nor specify we a
nature of dependence of z on y and z0, as it is not important for the general
scheme.

Remark 3.1 The nature of the W-transform just defined is somewhat different
from what we had in Section 2. Indeed, the space state of the reference equation
(16) does not coincide with that of Equation (7).

Now we explain how the reference equation (16) can be related to the delay
equation (7). The idea is to use (16) for a representation of the delay operator
<.

Given an operator < in Equation (7) and an initial condition (8), we assume
that there exist

W1. A reference equation (16), supplied with an initial condition (18),
which generates a bounded operator W t(y, z0) for any t ∈ I+;

W2. A family of linear vector-functionals lt : B → Rν, t ∈ I+;

W3. Linear bounded maps p : Rn → B and q : S → B;

such that
(<x)(t) = ltW t(px, qϕ), t ∈ I+, (20)

for any x ∈ C(I+,R
n) and any ϕ satisfying R1.
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We claim that if the representation (20) holds true, one can apply the W-
method to reduce the delay equation (7) to a system of ordinary differential
equations (in a Banach space).

Theorem 1 Under assumptions W1 - W3 Equation (7), supplied with the ini-
tial condition (8), is equivalent to the following system of ordinary differential
equations in the space B ×Rn:

(Lz)(t) = px(t)

x′(t) = f(t, ltz(t))

(t ∈ I+) (21)

with the initial conditions
z(0) = qϕ

x(0) = ϕ(0).

(22)

System (21) - (22) is related to Equation (7) via

z(t) = W t(px, z0), z0 = qϕ.

Proof. If x(t) satisfies (21) for t ∈ I+ and equals ϕ(t) for t ∈ I−, then by (20)
and (19) we have

x′(t) = f(t, ltz(t)) = f(t, ltW t(px, z0)) = f(t, (<x)(t)).

If x(t) satisfies (7) and (8), then, putting z(t) = W t(px, qϕ) we observe that
z(t) solves the reference equation (16) with y = px and the initial condition
z(0) = qϕ, while x(t) solves the second equation of System (21) with the initial
condition x(0) = ϕ(0). �

Below we consider some examples illustrating this general framework.

4 An example: the linear chain trick

This is a well-known algorithm (see e.g. [5]) to reduce specific delay differential
equations of the form (7) to finite dimensional systems of ordinary differential
equations. The idea of the method is to represent the delay operator < as a
finite linear combination of ”elementary” delay operators which admit a simple
description. We present here a slightly modified version of the ”trick” which is
adjusted to our objectives.
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In this section we demonstrate how the linear chain trick fits into the
general scheme of the W-method described in the previous section.

Assume that the kernel R(t, s) of the integral operator < (see (11)) can be
represented as follows:

dsR(t, s) = G(t− s)ds, (23)

where

G(u) =
m∑

i=1

ciG
i
α(u) (24)

and

Gi
α(u) =

αiui−1

(i− 1)!
e−αu (25)

The coefficients ci are supposed to be ν × n-matrices and α > 0.

In practice these assumptions mean that we exclude delay terms like x(t−h)
as the corresponding kernel in the integral representation (11) is discontinuous.
The linear chain trick is only applicable to some classes of smooth delay func-
tions and differential equations with distributed delays.

We also assume given a set I− being either (−∞, 0], or [−H, 0], where H
is a positive number. The case of a finite H describes bounded time lags,
otherwise one obtains equations with an unbounded time lag.

Clearly, the basis functions Gi
α have the following properties:

1. Gi
α(∞) = 0,

2. Gi
α(0) = 0, i ≥ 2.

3. G1
α(0) = α

(26)

It is also straightforward that

d
duG

i
α(u) = αGi−1

α (u)− αGi
α(u) (i ≥ 2)

d
duG

i
α(u) = −αGi

α(u) (i = 1).

(27)

We proceed with defining the reference equation for the linear chain trick.
It will be an equation in the finite-dimensional Banach space B = Rmn given
by

z′(t) = Az(t) + y(t), (28)
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where

A =


−αEn 0 0 . . . 0

αEn −αEn 0 . . . 0

0 αEn −αEn . . . 0
...

... . . . . . . ...

0 0 . . . αEn −αEn

 (29)

is a block matrix with En being the n× n-identity matrix.

The linear vector-functional l : B = Rmn → Rν will be independent of t:

l = (c1, c2, . . . , cm), (30)

where ci are the ν × n- matrices in the representation (24) of the kernel of the
delay operator, so that lz =

∑m
i=1 cizi(zi ∈ Rn).

The linear operators p : Rn → B and q : S → B will be defined as

px =


αx

0
...

0

 (31)

and

qϕ =

 (qϕ)1

. . .

(qϕ)m

 , (32)

respectively, where

zi(0) = (qϕ)i := (−1)i−1 αi

(i− 1)!

∫ 0

−∞
τ i−1eατϕ(τ)dτ, i = 1, ...,m. (33)

These expressions also show that we can for instance choose the space S of
initial functions to consist of all bounded measurable functions ϕ defined on
the interval (∞, 0] (if I− = [−H, 0] we may assume that ϕ(τ) = 0 for τ < −H).

As the matrix A in (28) is quasi-diagonal, we can explicitly find (see e.g.
[4, Ch. 5.3]) the fundamental solution Z(t) of the homogeneous equation cor-
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responding to the reference equation (28):

Z(t) = eAt = e−αt


En 0 0 . . . 0

αtEn En 0 . . . 0
(αt)2

2! En αtEn En . . . 0
...

... . . . . . . ...
(αt)m−1

(m−1)!En
(αt)m−2

(m−2)!En . . . αtEn En

 , (34)

so that the general solution of the reference equation (28) will be

z(t) = W t(y, z0) = W t
0(y) + Z(t)z0, (35)

where

W t
0(y) =

∫ t

0
Z(t− s)y(s)ds =

∫ t

0
eA(t−s)y(s)ds.

To set up the W-transform of the solution x(t) we notice that according to (33)
and (34) we can write

z0 = qϕ =

∫ 0

−∞
eA(−τ)(pϕ)(τ)dτ,

as p drops all but the first coordinate of the block vector z = (z1, ..., zm)T (see
the definition 31). As x(τ) = ϕ(τ) for τ < 0, we obtain

z(t) = W t(px, qϕ) =
∫ t

0 Z(t− s)px(s)ds+ Z(t)qϕ

=
∫ t

0 e
A(t−s)px(s)ds+

∫ 0
−∞ e

A(t−τ)(pϕ)(τ)dτ

=
∫ t

−∞ e
A(t−s)px(s)ds.

(36)

>From (23)-(25) and (34) it is now clear that

(<x)(t) =
∫ t

−∞ dsR(t, s)x(s)

=
∫ t

−∞

(∑m
p=1 cpG

p
α(t− s)

)
x(s)ds

=
∫ t

−∞(c1, c2, . . . , cm)
(
eA(t−s)px(s)

)
ds

= l
(∫ t

−∞ e
A(t−s)px(s)ds

)
= lW t(px, qϕ)
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due to Definition (30) of the vector-functional l.

These calculations explain why the delay operator < admits the required
representation (20), which implies that Equation (7) can be reduced to the
system of ordinary differential equation (21). At the same time the calculations
show how the initial condition (8) can be rewritten as the initial conditions (22).

We have therefore shown that the classical linear chain trick is a particular
case of the general W-transform described in the previous subsection. In what
follows we will consider more examples of how the W-method can be used.

5 Another example: an alternative approach to stability

In this section we explain how the W-transform, described in Section 3, can
be used in the stability theory. Not intending to analyze here all possible
notions of stability, we just outline the algorithm and give its justification in
two particular (though important) cases. We notice also that the method was
used in the paper [3] to investigate stability of nonlinear integro-differential
equations.

In the rest of the section we assume that I+ = (0,∞) and that the reference
equation (16) has the following representation of its solutions:

z(t) =

∫ t

0
Z(t, s)y(s)ds+ Z(t, 0)z0, (37)

where the kernel Z(t, s) is bounded in B for any t ≥ s ≥ 0.

Theorem 2 Assume that the operator Z(t, s) in (37) admits the following
exponential estimate

‖Z(t, s)‖ ≤Me−γ(t−s), γ > 0, t ≥ s ≥ 0. (38)

The global uniform asymptotical (resp., global exponential) stability of solutions
of Equation (7) is then equivalent to the global uniform asymptotical (resp.,
global exponential) stability of solutions of System (21).

Proof. Let us fix an arbitrary positive number K and assume that ‖ϕ‖S ≤
K.

Consider first the case of exponential stability. Clearly, we are only to check
that if a solution x(t) of Equation (7) satisfies

‖x(t)‖ ≤ Ce−ct

Electronic Journal. http://www.neva.ru/journal 63



Differential Equations and Control Processes, N 4, 2003

for any ϕ such that ‖ϕ‖S ≤ K, then its W-transform z(t) = W t(px, qϕ) satis-
fies:

‖z(t)‖ ≤ De−dt, (39)

where the constants d and D are independent of ϕ.

Using (38) we have

‖z(t)‖ ≤M‖p‖
∫ t

0 e
−γ(t−s)e−csds+KM‖q‖e−γt

= 1
γ−c(e

−ct − e−γt) +KM‖q‖e−γt

≤ De−dt,

where d = min{c, γ} and D = max{KM‖q‖, |γ − c|−1}.
Now, let us consider the case of the uniform asymptotic stability. Again it

is sufficient to show that if x(t) := sup‖ϕ‖≤K |x(t)| goes to 0 as t → ∞, then
this also holds for z(t) = W t(px, qϕ). As

‖z(t)‖ ≤M‖p‖
∫ t

0
e−γ(t−s)x(t)ds+KM‖q‖e−γt,

the result will be implied from the following

Lemma 5.1 Given γ > 0 and a scalar integrable function v(t) such that v(t) →
0 as t→∞, one has

u(t) :=

∫ t

0
e−γ(t−s)v(s)ds→ 0 (40)

as t→∞.

To prove the lemma we notice first that the function u(t) satisfies the
differential equation

u′(t) + γu(t) = v(t) (41)

and the initial condition u(0) = 0. The definition of the function u(t) given
in (40) shows that u(t) is bounded on [0,∞) as v(t) is bounded there. This
implies, in particular, that there exists a sequence tk →∞ such that u′(tk) → 0,
k →∞. At the same time v(tk) → 0, and we obtain that u(tk) → 0, too. Now
we use another integral representation of the solution u(t):

u(t) = u(σ) +

∫ t

σ

e−γ(t−s)v(s)ds, t ≥ σ.
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>From this we get the following estimate:

|u(t)− u(σ)| ≤ γ−1 sup
t≥σ

|v(t)|. (42)

On the other hand, since v(t) → 0 as t → ∞ and u′(tk) → 0 as k → ∞, then,
given a positive ε, there exists a natural number N for which

|u(tN)| < ε

2
and |v(t)| < εγ

2
for t ≥ tN .

Setting σ = tN in (42) we obtain that |u(t)| < ε for t ≥ tN . The lemma and
hence Theorem 2 are proved. �

6 The Hale-Krasovskii form of delay equations

By the Hale-Krasovskii form (we do not insist on this terminology) of the delay
equation (7) we mean the following representation:

x′(t) = f̃(t, xt), (43)

where xt(τ) = x(t + τ) and f̃(t, ψ) = f
(
t,

∫
I−
dτR(t, t+ τ)ψ(τ)

)
. The initial

condition for this equation looks as usual, i.e. as in (8).

This form itself is not an ordinary differential equation, but it is well-
known that the solutions of (43) have a number of properties that are typical
for solutions of ordinary differential equations. The aim of this section is to
show that the representation (43) can be rewritten as an ordinary differential
equation in the space S of initial functions. This result can for instance be
used to explain rigorously why the solutions of (43) have the same properties
as solutions of ordinary differential equations. Also in this section we are again
going to apply a properly chosen W-transform. Let us only stress that it is not
the aim of this paper to treat the Hale-Krasovskii representation in its general
form. Nor will we treat general spaces of initial functions. Our intension
is much more modest: we just want to show how one can derive the Hale-
Krasovskii form from the delay equation (7) by making use of the W-method,
what kind of ordinary differential equation one will get, and how one should
define an appropriate reference equation.

We start with the Banach space B. Informally speaking, this space will
consist of bounded functions ϕ, defined on I−, that are continuous for all
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t ∈ I− except probably t = 0, where ϕ is supposed to have a left-hand limit
ϕ(−0). Formally we can write

B = C(I−, R
n)×Rn, (44)

meaning that the values at t = 0 are taken from the second factor. The first
factor is endowed with the uniform norm.

Such a B is quite a natural choice as in the Hale-Krasovskii paradigm it
also serves as the space S of initial functions, so that we, in general, do not
have continuity at t = 0 and have therefore to split the initial condition as it is
described in Remark 3.1. Of course, continuous initial functions are included
in this representation as a special case.

The operator p : Rn → B just drops the first component (making it zero)
in (44) and by this isometrically maps the space Rn onto the second factor in
this representation. The operator

q : S (= B) → B

is simply the identity.

The family lt of linear vector functionals lt : B → Rν will be defined as
follows:

ltψ =

∫
I−

dτR(t, t+ τ)ψ(τ) =

∫
I−

dτR(t, t+ τ)ψ̃(τ) +R(t, t)ψ0, (45)

where ψ̃ ∈ C(I−, R
n) and ψ0 ∈ Rn. This is a crucial step in the Hale-

Krasovskii approach. The kernel R(t, s) is assumed here to make this functional
bounded (see for instance Properties R1-R2 from Section 1).

In what follows we will also use τ as the variable of the functions belonging
to the space B as in the Hale-Krasovskii approach it is always assumed that
S = B. Thus, functions z : I+ → B can be regarded as functions of two
variables t and τ , as any such function z(t, τ) generates a function t 7→ z(t, ·)
mapping I+ into B.

Now, the reference equation (16) will be defined via a unbounded, linear
and local operator L acting on functions z : I+ → B, treated as functions of
two variables z(t, τ), in the following way:

(Lz)(t, τ) =


∂z(t,τ)

∂t − ∂z(t,τ)
∂τ , if t ∈ I+, τ ∈ I−, τ < 0,

z(t, 0), if t ∈ I+, τ = 0.

(46)
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It is important to stress once again that according to the definition of the
underlying space B the values z(t, 0) for all t are taken from the second factor
in the representation 44.

A shorter way to define the operator L reads as follows

Lz := χ{τ<0}

(
∂z

∂t
− ∂z

∂τ

)
+ zχ{τ=0}, (47)

where χA(s) = 1 for s ∈ A and χA(s) = 0 otherwise. s:

It is straightforward that L is a local operator in the sense of Definition 2.

A linear subspace where L is formally defined consists of z for which Lz
belongs to the space L1

loc(I+, B). As we will see, this unbounded linear operator
generates a bounded W-transform which can be described explicitly.

Summing up and using the definition of the operator p gives the following
form of the reference equation:

∂z(t,τ)
∂t − ∂z(t,τ)

∂τ = y(t, τ)χ, if t ∈ I+, τ ∈ I−, τ < 0,

z(t, 0) = y(t, 0), if t ∈ I+, τ = 0.

(48)

It is well-known that the general solution to the partial differential equation
∂z(t,τ)

∂t = ∂z(t,τ)
∂τ is given by z(t, τ) = Φ(t + τ) for some Φ. Of course, one has to

interpret this solution as generalized if Φ is not smooth.

To set up the associated W -transform we put y = px which gives

∂z(t,τ)
∂t − ∂z(t,τ)

∂τ = 0, if t ∈ I+, τ ∈ I−, τ < 0,

z(t, 0) = x(t), if t ∈ I+, τ = 0.

(49)

Initial conditions to (49) can be obtained from the definition of the operator q
in this section:

z(0, τ) = ϕ(τ), τ ∈ I−, τ < 0,

z(0, 0) = x0 (= ϕ(0)), τ = 0.

(50)

In order to find Φ in the general representation z(t, τ) = Φ(t + τ) we use the
second equation in (49) and the initial conditions (50). This results in two
equalities: Φ(t) = x(t) for t ∈ I+ and Φ(τ) = ϕ(τ) for τ ∈ I−.
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Thus, we obtain the W-transform of the solution x(t) of Equation (7):

z(t, τ) := W t(px, qϕ)(τ) = x(t+ τ), (51)

where z(t, τ) and x(t + τ) should be understood as functions of the variable t
with the values in the functional space B of functions of the variable τ , i. e. as
the functions z(t, ·) and x(t + ·), respectively. One should also remember that
in (51) one has x(τ) = ϕ(τ) for τ ≤ 0.

The W-transformed delay equation (7) becomes then

∂z(t,τ)
∂t − ∂z(t,τ)

∂τ = 0, if t ∈ I+, τ ∈ I−, τ < 0,

z(t, 0) = x(t), if t ∈ I+, τ = 0,

x′(t) = f
(
t,

∫
I−
dτR(t, t+ τ)x(t+ τ)

) (52)

(see also the general description of the W -transformed system given in (21)).
The last equation in this system (without delay) is the Hale-Krasovskii form as
it is defined in (43).

Also the initial conditions to (52) can be obtained from the general for-
mulas (22). In particular, the component z(t) satisfies (50), which in this case
immediately implies that x(τ) = ϕ(τ) if τ < 0 and x(0) = x0.

7 Singular perturbed delay differential equations in bio-

logical applications

Singular perturbed systems of delay differential equations arise in many appli-
cations. In the paper we demonstrate how Azbelev’s transform can be applied
to a system of delay equations coming from gene regulatory networks.

Assume we are given a system of delay differential equations of the following
form

ẋ = f(x, Z) = F (Z) +G(Z)x. (53)

Following [8] we assume F and G to be the vectors of multilinear polynomials
(i.e. linear in each variable), and Z to be a vector of the Hill-type switching
functions Si(<(xi), θi, qi) with values in [0, 1]. Here θi > 0 is a threshold of
<(xi), < is a time delay operator and qi is a parameter characterizing the
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steepness of the switching functions (when qi → 0 then Si approaches the
Heaviside function).

As the real switches occur in short but nonzero time intervals we consider
system (53) in the case where 0 < q � 1. Of a particular interest is the case
when q → 0.

As an example of (53) one can consider a system

ẋ1 = S(<1(x1), θ1, q) + S(<2(x2), θ2, q)

−2S(<1(x1), θ1, q)S(<2(x2), θ2, q)− γ1x1

ẋ2 = S(<1(x1), θ1, q)S(<2(x2), θ2, q))− γ2x2.

(54)

It is shown in [8] that even in the case of no delays involved (<ix = x) it
is necessary to use two time-scales to define a solution for the limit equation
(q = 0), as there occur the so-called ”sliding motions” parallel to switching
domains (xi = θi in this example). In the same paper it was shown how this
difficulty can be tackled for ordinary differential equations.

Here we propose to use the W-transform to overcome the difficulties that
arise in this model. Below we illustrate our approach by looking at a special
delay function. More general functions can easily treated, too, but we omit
this analysis for the sake of simplicity. Let us only remark that considering
distributed delays for the operator < is more realistic from the biological point
of view.

It is also natural from the biological point of view to assume that the delay
operator is regular, i. e.

dsR(t, s) = G(t− s)ds, (55)

for some kernel (”the memory function”) G(u) ≥ 0, defined on [0,+∞). This
form of delay preserves smoothness of solutions on the whole time interval,
which can break down even in the case of ”simple” delays like x(t− h).

Usually, the kernel is assumed to be normalized:∫ ∞

0
G(u)du = 1.

A simple (though of practical importance) example of such a kernel is given by

G(u) = ae−au, (56)
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where a > 0.

If one uses two time scales: slow and fast, then it is easy to check how the
delay operator (<x)(t) =

∫ t

−∞G(t−s)x(s)ds with the kernel (56) behaves under
the transition from the fast to the slow time τ = qt with a small q. Intuitively,
it will give a ”big” delay. Indeed, < becomes (<hx)(t) =

∫ τ

−∞Gq(τ − σ)x(σ)dσ,
where Gq(u) = aqe−aqu. The normalization condition

∫∞
0 Gq(u)du = 1 holds

true for all q, but the memory function G(u) will go to 0 slower, so that the
time-delay will be bigger.

Let us explain our approach by considering a 2×2-system generalizing (54):

ẋ1 = f1(x1, x2, Z1, Z2)

ẋ2 = f2(x1, x2, Z1, Z2).

(57)

We study a piece of the trajectory (x1(t), x2(t)) in the vicinity of the threshold
t = θ2. This means that the variable x2 can be subject to rapid changes (we
say that it is a switching variable), while x1 is a regular variable, as nothing
dramatic can happen to it near the threshold t = θ2.

We denoted Zi = S(<ixi, θi, q), where S(xi, θi, q) are the Hill functions (see
[8]). As q → 0, the Hill function S(x, θ, q) converges to the Heaviside function
with the unit jump which occurs at t = θ.

The delay operators <i are given by

<i(x) =

∫ t

−∞
Gi(t− s)x(s)ds = ai

∫ t

−∞
e−ai(t−s)x(s)ds,

where ai > 0, i = 1, 2 are two given constants.

Applying the linear chain trick to (57) one gets the following system

ẋ1 = f1(x1, x2, Z1(y1), Z2(y2))

ẋ2 = f2(x1, x2, Z1(y1), Z2(y2))

ẏ1 = −a1y1 + x1

ẏ2 = −a2y2 + x2.

(58)

To simplify the notation we put Si = S(x1, θi, q), q > 0. Then, changing
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variables Z2 = S2(x2) yields the system

ẋ1 = f1(x1, S
−1
2 (Z2), Z1(y1), Z2)

ẏ1 = −a1y1 + x1

ẏ2 = −a2y2 + S−1
2 (Z2)

qŻ2 = Z2(1−Z2)
S−1

2 (Z2)
f2(x1, S

−1
2 (Z2), Z1(y1), Z2).

(59)

Now we let q → 0. This results in two different systems which complete each
other. The first system (”the reduced equations”) is obtained from (59) by
setting q = 0. This gives the dynamics of the regular variable x(t) near the
threshold θ2. According to the classical Tikhonov’s theory this passage to
the limit is possible if, roughly speaking, there exists an asymptotically stable
stationary point of the last equation in (59). This is the case for the system
(54).

Another system is derived from (59) by making use of the stretching trans-
formation t = qτ producing the corresponding boundary layer system:

x1
′ = qf1(x1, S

−1
2 (Z2), Z1(y1), Z2)

y1
′ = q(−a1y1 + x1)

y2
′ = q(−a2y2 + S−1

2 (Z2))

Z2
′ = Z2(1−Z2)

x2
f2(x1, S

−1
2 (Z2), Z1(y1), Z2)

(60)

where the derivative is taken with respect to the ”slow” time τ .

Although this system involves two more equations, as compared to the
original system (58), all the additional equations include the small parameter
q. This means that setting q = 0 gives the boundary layer equation of the same
dimension as if the system were without delays. This boundary layer equation
is identical with the last equation in (60), where x2 is replaced by θ2.

As it is shown in [8] the combination of the boundary layer equation and
the reduced equations gives a consistent description of the system’s dynamics
when q = 0. The aim of our presentation in this paragraph was to show that a
similar result under similar assumptions is true for delay systems with regular
kernels.
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Math. J., 1964, N19(94),pp 99-109.

[10] Schragin I. V. Abstract Nemytskii operators are locally defined operators
// Soviet Math. Dokl., 1976, N17, pp 47-49.

Electronic Journal. http://www.neva.ru/journal 72


