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Abstract

In this paper we presented the partial differential equations for the wave-pockets in
the Minkowski 4-dimensional spaces, and their relationship with the Schrödinger equation
for the elementary particles[7]. In this paper we show that the Schrödinger equation does
not describe the propagation of a single wave-pocket of an elementary particle but to the
stream of particles.
Because of that it has only a statistical meaning that can be applied to the stream of
particles, and only its probabilistic interpretation to a single particle is well founded. That
is, it is not a wave description of a single particle, but represents only its probabilistically
determined position in a given space.

In physics and mathematics, Minkowski space (or Minkowski time-space [4])

is the mathematical setting in which Einstein’s theory of special relativity is
most conveniently formulated. In this setting the three ordinary dimensions of

space are combined with a single dimension of time to form a four-dimensional
manifold for representing a time-space.

In theoretical physics, Minkowski space is often contrasted with Euclidean
space. While a Euclidean space has only spacelike dimensions, a Minkowski
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space also has one timelike dimension. His famous article ”Space and Time”,

begins with the following text: ”The conceptions about time and space, which I
hope to develop before you to-day, has grown on experimental physical grounds.

Herein lies its strength. The tendency is radical. Henceforth, the old conception
of space for itself, and time for itself shall reduce to a mere shadow, and some

sort of union of the two will be found consistent with facts.”
Differently from the pseudo-Euclidean Minkowski space [4], where time is imag-
inary and Euclidean three dimensions real, here we define the basic time-space

four mutually orthogonal vectors ej, 0 ≤ j ≤ 3, by the following matrix:












e0

e1

e2

e3













=













1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 i













, with imaginary number i =
√
−1.

Note that the matrix above is a particular case of the Minkowski tensor using
a four-dimensional time-space, which combines the real dimension of time with

the three imaginary dimensions of space.
Consequently, a vector of position in this space-time 4-dimensional system,

w.r.t. a given referential coordinate system, is given by
−→r4 = cte0 + xe1 + ye2 + ze3 = cte0 +

−→r ,
where t is the time (i.e., ct is the timelike component of −→r4 , where c is the ve-
locity of light in the vacuum) and −→r = xe1+ye2+ze3 is an ordinary Euclidean
vector with x, y, z three spatial coordinates.

Its infinitesimal amount is defined by d−→s = cdte0 + dxe1 + dye2 + dze3, where
dt, dx, dy and dz are infinitesimal amounts of time-space dimensions.

Thus, in this 4-dimensional system the time is real while the three orthogonal
space coordinates are imaginary. This choice is adopted in order to have that

the distance
ds2 = d−→s d−→s = (cdt)2 − dx2 − dy2 − dz2,
for all local time-space reference systems of observations of quantum events be

the positive real value (where space dimensions are limited).
Let us denote by −→r T (t) = x(t)e1 + y(t)e2 + z(t)e3 the vector that lies on the

Euclidean 3-dimensional particle’s trajectory. The 4-dimensional velocity of a
given material point (tangent on its trajectory) in this Minkowski space is then

defined by
−→v4 =

d−→s
dt = ce0 + vxe1 + vye2 + vze3 = ce0 +

−→v ,

where −→
v = ∂

∂t
−→
r T (t) = vxe1 + vye2 + vze3 is the standard definition of the ve-

locity in the 3-dimensional Euclidean space, with vx =
dx
dt , vy =

dy
dt , vz =

dz
dt and
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v = |−→v | =
√

v2x + v2y + v2z ≤ c. The unitary 3-dimensional velocity vector is

defined by
−→
iv =

−→v
v .

Then we have that |−→v4| =
√

c2 − v2x − v2y − v2z = c
√

1− β2, where β = v
c .

The trajectory of a material point that moves in the Minkowski 4-dimensional

space by a velocity −→
v4 is defined by the unitary tangent vector of this trajectory

−→τ =
−→v4

|−→v4| =
−→v4

c
√

1−β2
= 1√

1−β2
e0 +

vx

c
√

1−β2
e1 +

vy

c
√

1−β2
e2 +

vz

c
√

1−β2
e3.

Then the vector E0
−→τ , where E0 = m0c

2 is the energy of the elementary par-
ticle with rest mass m0 > 0, is the well defined invariant (independent of a

referential system in special relativity theory) 4-dimensional energy-momentum
vector for massive particles in the Minkowski spaces, that is,

E0
−→τ = mc2e0 + cmvxe1 + cmvye2 + cmvze3 = Ee0 + c−→p ,

where m = m0√
1−β2

is the relativistic mass for a given velocity v of this particle,

E = mc2 is its total relativistic energy, and −→p = m−→v is its 3-dimensional
momentum.

Thus, both fundamental properties of a particle, its energy and its momentum,
are two physical values that are propagated on the particle’s trajectory with

the velocity v. Consequently, the energy and momentum on the particle’s tra-
jectory are the functions that depend only on the time t.

An 4-dimensional angular wavenumber vector
−→
k4, and its correspondent 4-

dimensional momentum vector −→p4, in this four-dimensional time-space are given
by−→
k4 = kte0 + kxe1 + kye2 + kze3, and

−→p4 = ~
−→
k4.

In what follows we will denote by
−→
k = kxe1+kye2+kze3 the spatial component

of the angular wavenumber vector, with k2 = |−→k |2 = k2x + k2y + k2z , so that

k24 =
−→
k4
−→
k4 = k2t − k2.

The mutually independent space-components are defined as usual by kx =
2π
λx
, ky =

2π
λy
, kz =

2π
λz
, where λx, λy, λz are spatial wavelengths w.r.t the axes x, y

and z respectively, and λ = 2π
k is the (total) spatial wavelength. Let ω = 2πν be

an angular frequency that depends on the space-components, ν = 1
T
with a time

period T . Thus, λt = cT is the time-like wavelength and kt =
2π
λt

= ω(k)
c depends

on the space-components in
−→
k4, so that it holds that dk4 = dk = dkxdkydkz,

and −−→
k4
−→r4 = kxx+ kyy + kzz − ω(k)t, and

−→
k4
−→v4 = ω(k) +

−→
k−→v .

Remark: from the relativistic theory we have that for each massive elemen-
tary particle (with rest mass m0 greater than zero) it holds that ω(k) =
±c

√

k2 + (m0c \ ~)2, where ~ = h
2π

is the Dirac’s constant, for the Planck’s
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constant h = 6.6210−34Js.

Note that we assume that ω can be positive or negative (clockwise or counter-
clockwise angular frequency), so that the energy of the particle is E = ~|ω|,
where | | denotes the absolute value. In the rest of this paper we will consider
the cases when ω is positive.

Notice that if we represent an elementary particle, with energy E = ~ω and

momentum −→
p = ~

−→
k [1], by a single harmonic Ae−i

−→
k4

−→r4 in this four-dimensional

space, where
−→
k4 =

ω
c e0+

−→
k = E

~ce0+
−→p
~
, then we obtain that k24 = (ωc )

2− k2 = 0
for particles with rest mass equal to zero (photons, gravitons, etc..), and k24 > 0

for the massive particles (with rest mass m0 greater than zero). In fact, we
obtain that |k4| = ω0

c where ω0 = m0c
2

~
is the invariant angular frequency for

particles (analog to the invariant rest mass m0 of particles). Thus, similarly

to the 3-dimensional angular wavenumber vector
−→
k that in physics means the

particle’s momentum, the 4-dimensional angular wavenumber
−→
k4 has a physical

meaning as the particle’s relativistically invariant angular frequency.

�

The plan of this paper is the following: In Section 1 is introduced the concept

for wave-pockets of matter-events in the Minkowski space, and are defined its
integral expressions for the energy and momentum. Then in Section 2 are pre-

sented the definitions of partial differential equations of the first and the second
order for these matter’s wave-pockets. Finally, in Section 3 is elaborated the
relationships with the Schrödinger differential equation of elementary particles

and is demonstrated that it can be derived from differential equations for wave-
pockets, defined in Section 2, as special case of the coherent dense stream of

particles of the same type. Consequently, it is demonstrated that Schrödinger
differential equation of elementary particles has only the well known statistical

meaning if applied to a single elementary particle.

1 Introduction to wave-pockets of matter-events in the

Minkowski space

In [8] was presented that in any given instance of time t, any matter-event in

this time-space is a particular time-space perturbation Ψ(−→r4), can be mathe-
matically given by the following Fourier transformation:

Ψ(−→r4) = Ψ(x, y, z, t) =
∫

C(k4)e
i(−−→

k4
−→r4)dk4 =

=
∫

A(k)ei(−
−→
k−→r −ω(k)t)dk = (where A(k) = C(k4) = C(

√

(ω(k)
c
)2 − k2 ))
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=
∫ ∫ ∫ +∞

−∞ A(k)ei(kxx+kyy+kzz−ω(k)t)dkxdkydkz.
It is a space-distribution of a particle in a given instance of time t, and it
changes in time, that is, the amplitudes A(k) are generally dependent on time

as well.
Mathematically, these matter-events are complex functions, composed by one

real and one imaginary component. The amplitudes A(k) of the harmonics, in
a given instance of time t, are given by inverse Fourier transformation,
A(k) =

∫ ∫ ∫ +∞
−∞ Ψ(x, y, z, t)e−i(kxx+kyy+kzz−ω(k)t)dxdxdz.

The elementary particles are pocket waves that propagate in this four-
dimensional space.

Thus, for such particular stationary cases we have that dω(k)/d
−→
k is constant

(that is, it does not depend on the variable vector
−→
k ), equal to the particle’s ve-

locity −−→v = −vxe1−vye2−vze3 (negative sign is the consequence that ei, i ≥ 1

are imaginary, thus the scalar products of (only) spatial vectors are negative),
that can depend on the time t as well.

Consequently, for any fixed instance of time t, by integration we obtain that,

(0)
∫

−→
k−→
k0

dω = ω(k)− ω(k0) = −
∫

−→
k−→
k0

−→
v d

−→
k = −−→

v
∫

−→
k−→
k0

d
−→
k = −−→

v (
−→
k −−→

k0),

where the constant
−→
k0 =

−→p
~
for a given momentum −→p = pxe1 + pye2 + pze3 of

a particle that is collinear with the velocity −→
v , that is, −→p−→

v = −pv. Because
of that we can write −→p = p

−→
iv ,

−→v = v
−→
iv , where

−→
iv is unitary vector tangent to

the trajectory of a particle (i.e.,
−→
iv
−→
iv = −1). Thus,

ω(k) = ω0 + vx(kx − px
~
) + vy(ky − py

~
) + vz(kz − pz

~
),

where ω0 denotes the constant ω(k0) that does not depend on k but may depend

on time as we will see in what follows.
The phase velocity of a particle’s pocket-wave, observed in a given referential

system, is defined by ϑ = ω0

k0
.

The constant ω0 is determined as follows in the following two cases, by consid-

ering that the angular frequency ω(k) for its particular values is correlated by
De Broglie to the total energy o particle E = ~ω(k):

• Case for massive particles (with rest mass m0 > 0), denominated as mass-
particles as well: when −→v = 0 then the energy of this particle is E = m0c

2,

that is, the energy in the rest-state of this particle. Consequently, from (0)
we have that ω0 = ω(k) = m0c

2

~
.

Consequently, for the total energy of these mass-particles that propagates

with velocity v = |−→v |, with β = v
c , it holds that,

E =
√

(m0c2) + (pc)2 =
√

(~ω0)2 + (pc)2 = m0c
2√

1−β2
= ~ωv,
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where ωv = ω0/
√

1− β2 is a computed angular frequency relative to the
velocity v of this particle w.r.t. the reference system of an observer (for

different observes in different referential systems, that move with different
velocities, this computed value of the same observed particle is different).

For an observer in a given fixed position (the origin of its coordinate system,
for example), this observed particle’s frequency is by Lorentz low slowed

down by the factor
√

1− β2, so that the really observed particle’s angular
frequency of the observed wave-pocket Ψ(−→r4) given above is constant and

equal to ωv
√

1− β2 = ω0. Thus, ω0 is the angular frequency of this massive
particle equal in any inertial system (without acceleration), that is, an
invariant as is the rest-mass m0.

• Case for massless particles (with rest mass m0 = 0): they propagate, as
usual, with very high velocity c ≥ v > 0 equal to the maximal velocity

of light if this particle propagates in the vacuum, thus the zero value of

equation (0) we can obtain when
−→
k =

−→
k 0 =

−→p
~
. Consequently, the value

of E is the total energy of this particle with the given momentum −→p , so
that ω0 = ω(k) = ω( p

~
) = E

~
. The total energy of massless particles is

defined by E = ~ωo = (~k0)ϑ = pϑ. When a particle propagates in the
vacuum then ϑ = c, so that E = pc.

When the total energy changes in time, to a fixed observer this angular
frequency appears to change as well (for example, the relativistic effects
for red-shifting of photons for a fixed observer). Thus, differently from

massive particles where for a fixed observer ∂ω0

∂t = 0, here ω0 can change in
time, if a particle changes its total energy during the propagation.

Consequently, for the wave-pocket of an elementary particle, and given refer-

ence system, we have that

(1) Ψ(x, y, z, t) =
∫

A(k)ei(−
−→
k−→r −ω(k)t)dk =

= (
∫

A(k)e−i(
−→
k−→r −−→v (

−→
k−−→

k0)t)dk)e−iω0t =

= (
∫

A(k)e−i(
−→
k−−→

k0)(
−→r −−→v t)dk)ei(−

−→
k0

−→r −ω0t) =

= Φ(−→r , t)ei(−
−→
p
−→
r

~
−ω0t) = Φ(−→r , t)ei p~(−

−→
iv
−→r −ϑt).

In what follows we introduce the spatial vector −→u = −→r −−→v t, that is equal to
zero for the time-space points of particle’s trajectory.
The ”corpuscular” geometric wave-pocket shape (matter’s distribution) of a

particle, that appears to a fixed observer, is given by

Φ(−→r , t) = Φ(x, y, z, t) =
∫

A(k)e−i(
−→
k−−→

k0)(
−→r −−→v t)dk =

=
∫

A(|−→k +
−→
k0|)e−i

−→
k−→u dk =

Electronic Journal. http://www.math.spbu.ru/diffjournal 51



Differential Equations and Control Processes, N 3, 2011

(here we denote by B(k) the value A(|−→k +
−→
k0|)),

=
∫ ∫ ∫ +∞

−∞ B(k)ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz =

=
∫ ∫ ∫ +∞

−∞ B(k)ei(kxux+kyuy+kzuz)dkxdkydkz.
In the case when a particle propagates in the vacuum with a constant velocity
−→
v (stationary case), then the coefficients B(k) does not change in time, i.e.
∂B(k)
∂t = 0, so that the ”corpuscular” geometry (matter distribution) does not

change in time and Φ(−→r , t) = Φ(−→u ) = Φ(−→r −−→v t) = Φ(x−vxt, y−vyt, z−vzt)
is a wave-pocket that propagates with a velocity −→v .
Thus, based on standard Fourier transformation, the function Φ(−→r , t) is a real

function, differently from Ψ(x, y, z, t that is complex. The real and imaginary
components of Ψ(x, y, z, t) are determined by the oscillation of the complex os-

cillator component ei(−
−→
p
−→
r

~
−ω0t), that is an oscillation identical to the complex

plain wave (like, for example, the complex electromagnetic plain wave). The

amplitudes B(k) of the harmonics can be obtained by the inverse Fourier trans-
formation, for each given instance of time t, by:

B(k) =
∫ ∫ ∫ +∞

−∞ Φ(x, y, z, t)e−i(kxux+kyuy+kzuz)dkxdkydkz.
Thus, generally any particle is determined by the pocket-wave Ψ(x, y, z, t)
composed by two sub components: by the corpuscular matter distribution

Φ(x, y, z, t) that is a real function, and by the ’phase wave’ eiϕ that is a complex

function of the particle’s phase ϕ = −
−→p−→r
~

− ω0t.
For any matter-perturbation of an elementary particle that propagates in the 3-
dimensional space with a velocity that changes in the time, because of external

forces that influence this particle, the 3-dimensional wave-pocket distribution
Φ(x, y, z, t) changes as well, but it must satisfy the conservation matter prin-

ciple, that is, at each given time instance t it must be satisfied the following
invariance property:

(2) 1Φ =
∫ ∫ ∫ +∞

−∞ Φ(x, y, z, t)dxdydz =
∫ ∫ ∫ +∞

−∞ Φ(x, y, z, 0)dxdydz > 0,
where 1Φ is a time-invariant constant value of an elementary particle (not neces-

sarily equal to 1), and V (t) is a finite cube (or sphere) which contains the whole
”corpuscular” wave-pocket in a given instance of time t, and dV = dxdydz.
We define the minimal (limit) cube Vm(t) = lim(23△X△Y △Z), such that in

this time-instance t, Φ(x, y, z, t) = 0 for (x ≤ −△X or x ≥ △X or y ≤ −△ Y
or y ≥ △Y or z ≤ −△ Z or z ≥ △Z).
The real function Φ(x, y, z, t) is the ”corpuscular” geometric wave-pocket form
of a particle that propagates in the ordinary 3-dimensional space with a veloc-

ity −→
v = vxe1 + vye2 + vze3). In the stationary case, when it propagates in the

vacuum with a constant velocity, it has constant distribution, that propagates
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as pocket-wave Φ(−→u ) = Φ(−→r −−→v t) = Φ(x− vxt, y − vyt, z − vzt).

Analogously to the Schrodinger’s approach, used to derive its equation based
on total energies of particles, with the mapping E → i~ ∂

∂t , that does not take in

consideration the spatial matter-distribution of a particle (considering in stan-
dard quantum theory only the pointlike particles), here, differently, we define

the total energy E in a given time instance t, of the time-space perturbations
defined by wave-pockets (1) and (2), by taking in consideration its real spatial
matter distribution. Thus, by definition of a spatial integral as follows [6]:

(3) E(t) = |
∫ +∞
−∞ i~∂Φ(

−→r ,t)e−iω0t

∂t dV |/1Φ = |
∮

Vm(t) i~
∂Φ(−→r ,t)e−iω0t

∂t dV |/1Φ,
where dV = dxdydz.

Thus, the energy of the particles is and integral over Euclidean space, so it is
only dependent on time in the 4-dimensional Minkowski space, so that ω0 =

E(t)
~

is only dependent on time (for massive particles it is a constant).
In [6] for the massive particles it was obtained that their momentum p is an

integral over Euclidean space, thus only dependent on time, i.e.,
(4) p(t) = |

∮

Vm(t)(−i~
−→v
c ∇)Φ(x− vxt, y − vyt, z − vzt)dxdydz|/1Φ,

and, consequently, k0(t) =
p(t)
~

as well.

2 Partial differential equations for wave-pockets

Let ∇ = e1
∂
∂x + e2

∂
∂y + e3

∂
∂z be the gradient, so that the Laplasian is defined

by △ = −∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Then the derivation of the wave-pocket along

its trajectory with the unitary tangent vector
−→
iv on the trajectory, collinear

with the vector of its velocity −→v = v
−→
iv =

−→
iv
√

v2x + v2y + v2z , is denoted by

the operator
−→
iv∇. The propagation and geometric form of the wave-pocket

Ψ(x, y, z, t) = Φ(−→r , t)ei(−
−→
p
−→
r

~
−ω0t), of an elementary particle that propagates

with velocity −→v , are defined by the following differential equations [8]:

(e.1) eiω0t ∂Φe
−iω0t

∂t = −i∂(ω0t)
∂t )Φ +−→v1∇Φ + ΦD(

−→r , t), where,
−→v1 = ∂

∂t(
−→v t), ΦD(

−→r , t) =
∫ +∞
−∞

∂B(k)
∂t ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz is

equal to zero when this particle is in a stationary state, that is, when ∂B(k)
∂t = 0.

(e.2) ∂Ψ
∂t = −iωpΨ+−→v1∇Ψ+ΨD(

−→r , t),
where ΨD(

−→r , t) = ΦD(
−→r , t)ei(−

−→
p
−→
r

~
−ω0t).

(e.3) (v1c )
2△Ψ− 1

c2
∂2Ψ
∂t2 − ((

ωp

c )
2 + i 1c2

∂ωp

∂t − i
−→v1

c2~
∂−→p
∂t )Ψ− (i

2ωp

c2
−→v1 − 1

c2
∂−→v1

∂t )∇Ψ =
= ΥD(

−→r , t),
where ωp = ω1+

−→p−→v1

~
, with ω1 =

∂
∂t(

−→p−→r
~

+ω0t) =
−→r
~

∂−→p
∂t +

∂
∂t(ω0t), v1 =

√

−−→v1
−→v1,
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can change in time during the propagation. The right side of (e.3), ΥD(
−→r , t) =

1
c2 (

−→v1∇ΦD− i2ω1ΦD + ∂ΦD

∂t )e
i(−

−→
p
−→
r

~
−ω0t), is different from zero only in unstation-

ary cases when ΦD(
−→
r , t) 6= 0.

In the stationary case, when ωp and ω1 = ω0 are two constants, this equation
can be given in a simpler D’Alambert-like form:

(e.4) (v1c )
2△Ψ1 − 1

c2
∂2Ψ1

∂t2 = − 1
c2
∂−→v1

∂t ∇Ψ1 − i
−→v1

c2~
∂−→p
∂t Ψ1,

where Ψ1 = eiωptΨ(−→r , t).
Notice that ∂ω0

∂t 6= 0 only for the massless particles in their unstable states and
very-very short interval of times △t ≈ 0, when they change their total energy

E = ~ω0 during the collisions with another particles (the Compton effects). In
what follows we will denote by E = ~ωp the energy associated to this angular

frequency ωp.
The stationary case is obtained when a particle propagates with constant total
energy E and constant value E = ~ωp. Thus, in such a stationary case we have

that ΦD(
−→r , t) = 0,ΨD(

−→r , t) = 0. It is easy to verify that the stationary case
is one, for example, of the following two cases:

1. When a particle propagates with constant momentum−→p , velocity−→v (thus,
∂−→v
∂t = ∂−→p

∂t = 0), and total energy E (in that case ω0 is constant for massless
particles as well). Thus, without any acceleration. In that case ωp is

constant as well, with constant E = ~(
−→r
~

∂−→p
∂t +

∂
∂t(ω0t)+

−→p−→v1

~
) = ~ω0+

−→p−→v =

~ω0 − pv.

2. When a particle routes with constant radius R around a fixed center, with
constant angular velocity ν = |−→v |

R
= v

R
, constant value of the momentum

p = |−→v |, and total energy E. In this case we can obtain ωp constant in
a particular coordinate system: coordinate center of the reference system

x, y of the plain in which this particles routes. Then, the position of the
trajectory of this particle in a given moment t is equal to −→r = R

−→
iθ , where−→

iθ is a unitary radial vector with angle θ = νt w.r.t the axis x. In this
case the acceleration ∂−→v

∂t = −|∂−→v∂t |
−→
iθ , and

∂−→p
∂t = −|∂

−→p
∂t |

−→
iθ are radial vectors

that have the constant values and are orthogonal to the vectors of velocity
−→v and momentum −→p . So that, −→p−→r = 0, −→p ∂−→v

∂t = 0, and

ωp =
∂
∂t(

−→p−→r
~

+ ω0t) +
−→p−→v1

~
= +ω0 +

1
~

−→p (−→v + t∂
−→v
∂t ) = ω0 +

1
~

−→p−→v =
= ω0 − pv

~
.

Here both ω0 and pv are constant, and, consequently, we obtained the
stationarity condition

∂ωp

∂t
= 0 in all points of the trajectory of this particle,

with constant E = ~ω0 +
−→p−→v = ~ω0 − pv.
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Notice that in both stationary cases above we obtained that this particular

constant energy is equal to E = ~ωp = ~ω0+
−→p−→v = ~ω0−pv. If ωp = ω1+

−→p−→v1

~

is computed for current space-time positions on the particle’s trajectory, then,

in this particular case, ω1 is taken as a derivation ∂
∂t of the current particle’s

phase ϕ = −
−→p−→r
~

− ω0t (we have that Ψ(−→r , t) = Φ(−→r , t)eiϕ) and express the
particle’s phase-changing on its trajectory.

Notice that the energy changes only during collisions with another particles
(Compton effects; we consider a ”field” as a statistical result of the iterations

with bosons of this particular field), so that after it this particle continue to
propagate again as a stationary particle, but with new values of total energy E,
velocity−→v , momentum−→p , and new stable wave-pocket geometry (distribution)

Φ(−→r −−→v t), so that it can be described by the simpler stationary-case differential
equations:

(e.1.1) eiω0t ∂Φe
−iω0t

∂t = (−iω0 +
∂(−→v t)
∂t ∇)Φ

(e.2.1) ∂Ψ
∂t

= − i
~
EΨ+ ∂(−→v t)

∂t
∇Ψ,

where, when a velocity −→v is constant, we have that ∂(−→v t)
∂t = −→v + t∂

−→v
∂t = −→v .

Notice that we have particular stationary cases when −→
v is not constant, as for

instance, for a stationary electron that rotates around the nucleus of an atom
with a constant radial acceleration (in that case −→p−→v and total energy of this

electron are constant, thus E = E +−→p−→v is constant as well).
It was shown [6] that, in the case of these massless elementary particles that

propagate in vacuum with the velocity of light c, we have that this ”corpuscular”
wave pocket in the stable(general) state corresponds to the Dirac function (with

A(k) = B(k) = 1/(2π)3), δ(−→r − −→c t) = δ(x − cxt, y − cyt, z − czt) = δ(x −
cxt)δ(y − cyt)δ(z − czt). It is reasonable assumption that the volume of a

distribution Φ (where it is greater than zero) of a massive particle (with rest
mass m0 greater than zero) is always greater than zero, so that it is a reason
that such particles can not reach the limit velocity of light. In the analog way,

the massless particles (with rest mass equal to zero) must have, in their stable
state, this volume equal to zero, so that their distribution Φ is equal to Dirac

function above, and they are able to propagate with the velocity of light in the
vacuum. The non stable states of particles with rest mass m0 = 0 can have

more complex wave-pocket forms and it happen only in a very short instances
of time, when the particle enters in strongly unsymmetric space region, as will
be explained in what follows. In such situations its velocity of propagation

becomes less than the velocity of light in the vacuum so that this particle can
have a similar behavior as massive particles with Φ that occupies a limited but
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nonzero volume (so called spatial explosion of excited bosons). This unstable

state of the particles with m0 = 0 tends to come back into the stable state with
Dirac function geometry for distribution Φ.

The interactions between any two pocket-waves (particles) can be obtained only
by their local collisions, and depending on their energy and velocities they can

produce a kind of Compton effects (elastic collisions) where they survive the
collisions by chaining their momentum and energy (with conservation of total
momentum and energy), or can make total fusion between them with possible

creation of new stable particles (in Feynman’s diagrams). In order to be able
for two pocket-waves to have a collision, and mutual interference, at least one

of them must have a volume Vm(t) (in a given instance of time of mutual
collision) greater than zero. So, from this point of view, it can not happen that

the distance between any two particles becomes equal to zero, so that we avoid
classic infinitary problems of gravitational and electronic fields and forces where

the particles are pointlike, so that it is possible to have the distances between
particles equal to zero with, consequently, infinite values of gravitational (or
electric) forces.

The particles with Vm(t) equal to zero are, for example, the particles with
Φ(x−vxt, y−vyt, z−vzt) equal to the Dirac function δ(x−vxt, y−vyt, z−vzt) =
δ(x− vxt)δ(y − vyt)δ(z − vzt).
Thus, for any two particles with the ”corpuscular” form given by Dirac function,

it is impossible to have the collisions in their stable states, but only when they
are excited and are involved in their temporary ”spatial explosions”. Such
explosions can happen also when two stable particles are very close one to

another so that the ideal spatial symmetry for a free particle in the vacuum
does not hold more: it explains why, for example, photons can interact with

gravitons (i.e., gravitational field) and may have the gravitational redshifts.
Because of that, it will be natural consequence that the massless particles, as

bosons (gravitons, photons, etc..) in their stable states, will have the volume
Vm(t) equal to zero (with Dirac function for their distribution Φ). In that

case they can be used as intermediators between the massive particles (that
have the rest mass and the volume Vm(t) greater than zero), that is, to be the
quantum-correspondence for the ”fields” (the statistical events as gravitational,

electromagnetic, etc., that are statistical results of actions of a high number of
bosons), by avoiding in more common situations the significant interference

between themselves.
In the stationary cases, the basic equation (e.4) can be divided into following

cases:
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• When the velocity v = 0, we obtain a simple equation:

(e.4.0) ∂2Ψ1

∂t2 = 0, that is, ∂2Ψ
∂t2 = −ω2

0Ψ,
with a simple solution, Ψ(x, y, z, t) = Φ(x, y, z)e−ω0t.

• When the velocity −→v and the momentum −→p are constant vectors dur-

ing the propagation, different from zero, then −→v1 = −→v , so we obtain
D’Alambert equation where v is a constant value:

(e.4.1) △Ψ1 − 1
v2
∂2Ψ1

∂t2 = 0,

with the solution Ψ1(x, y, z, t) = Φ(−→r −−→v t)e−i
−→
p

~
(−→r −−→v t), thus,

Ψ(x, y, z, t) = Ψ1e
−ωpt = Φ(−→r −−→v t)ei(−

−→
p
−→
r

~
−ω0t).

• The case when the velocity −→v with v > 0 and the momentum −→v change

only the direction (they are collinear vectors in each instance of time)

during a propagation, but not their values, so that −∂(−→p−→v )
∂t = ∂(pv)

∂t = 0 and

v1 = v is constant as well (this case includes the second case in Example
2 as well: when the velocity of massive particle with rest mass m0 is
−→
v = v(− cos θe1 + sin θe2), where θ = νt = v

Rt is the angle w.r.t the
axis x of a particle that routes around the coordinate center with constant
angular velocity ν = v

R
on circular orbit with a radius R).

Thus, from (e.4) we obtain an extended D’Alambert equation where v2 =
|−→v−→v | > 0 is a constant value: (e.4.2) △Ψ1 − 1

v2
∂2Ψ1

∂t2
= Θ(−→r , t),

where Θ(−→r , t) = − 1
v2
(∂

−→v1

∂t
∇Ψ1 + i

−→v1

~

∂−→p
∂t
Ψ1). Thus, we obtain a general

solution Ψ1(
−→
r −−→

v t) = Φ(−→r −−→
v t)e−i

−→
p

~
(−→r −−→v t).

Notice that the massive particles that does not change the total energy E dur-
ing a propagation are always in the stationary states. In all cases, the geometric

form (the distribution Φ) of a particle in a given time-instance t depends on the
particular boundary conditions for the differential equations as well. In the case

when they are far from another massive particles (usually it can be considered
if another particles are far from this particle in order of one millimeter), then

Φ is symmetric w.r.t. the direction of propagation. Otherwise, the boundary
conditions for these differential equations can drastically change, with the result
that Φ can become enormously bigger than in normal situations, that is, they

can instantaneously ”explode”, because the single harmonics of the Fourier rep-
resentation of Φ(x, y, z) in a given time-instance t are contemporarily present

in the whole 3-dimensional Euclidean space.
Let us consider, for example, the case m0 = 0 of particles with rest mass equal

to zero:
In their stable state, enough far from another particles, they have the
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Dirac function for geometric wave-packet form [6], Ψ(x, y, z, t) = δ(−→r −
−→v t) expi(−−→p−→r −Et)/~.
But there are the situations when a stable, stationary, photon becomes excited

for a short interval of time, as in the situations when is sharply broken the space
symmetry during its propagation(thus, the boundary conditions for the differ-

ential equations of particle’s propagation are drastically changed). In all these
situations a photon may change its momentum, direction of propagation and
its velocity, without changing its total energy, because these ”interactions” are

not based on collisions with another particles (as Compton effects, or fusions),
but on instantaneous space explosions of their geometric wave-pocket form Φ

(which is the zero-volume Dirac function id their stable states) caused by an
instantaneous changing of the amplitudes B(k) of its wave-pocket harmonics

B(k) exp−i−→k (−→r −−→v t) in the presence of a local sharply broken space sym-

metry. These ate typical cases for the particle’s ”explosions”, when we take in
consideration the general equations (e.1) and (e.2) for movements of particles

where the component ΦD(
−→
r , t) is dominant, caused by the fact that in such

dynamic framework we have that ∂B(k)
∂t 6= 0 caused by a dynamical changing

the boundary conditions in the local space around this particle.

3 Stream of particles: statistical meaning of Schrödinger

equation

It is well known that the relativistic version of the Schrödinger equation for the
elementary particles is postulated by the following Klein-Gordon second-order

differential equation:
(e.7) △ψ − 1

c2
∂2

∂t2
ψ = (ω0

c
)2ψ,

whose solution can be given by ψ = ϕ(x, y, z, t)e−iω0t.
The solution for a propagation of the elementary particles in the stationary

cases, when ω0 and ωp are constant in time, presented previously, can be pos-
tulated in the similar way, by using the particle’s second-order D’Alambert-like

differential equation:
(e.4) (v1c )

2△Ψ1 − 1
c2
∂2Ψ1

∂t2 = − 1
c2
∂−→v1

∂t ∇Ψ1 − i
−→v1

c2~
∂−→p
∂t Ψ1,

where Ψ1 = eiωptΨ(−→r , t),
with Ψ1 = eiωptΨ, where Ψ(x, y, z, t) describes an elementary particle that prop-
agates with a velocity −→v and a momentum −→p , and, possibly, with an accelera-

tion ∂−→v
∂t , such that ωp =

E+−→p−→v
~

= E−pv
~

, where E is the potential energy of this
particle (equal to m0c

2) if m0 > 0, and total energy otherwise.
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Then, the solution of (e.4) is Ψ1(
−→r −−→v t) = Φ(−→r −−→v t)ei

−→
p

~
(−→r −−→v t), where real

function Φ(−→r − −→v t), at any fixed time instance t is a geometric distribution
of this particle in that moment. It depends on the boundary conditions for

the differential equation (e.4) for this particle in this given time-instance t. If
this particle propagates in the vacuum, than Φ is symmetric w.r.t the direction

of propagation, but if in a given moment t this particle propagates nearly to
another massive particles, than the boundary conditions change and depend
on the spatial presence (their distributions) of these particles. Consequently,

the geometric distribution of a massive particle can change (see the equation
(e.3) for the general case) also when it propagates with constant velocity −→v , in

presence of another massive particles.
This fact is very important when a particle that propagates in the vacuum,

encounter some material obstacle, so that Φ, in the momentum when is bro-
ken this space symmetry, can drastically change and increment its volume, in
a short interval of time. It is important to denote that such a changing of the

geometric distribution is instantaneous in all points of the space, and has no
any constraint as, for example, the maximal velocity of energy transportation,

that is equal to the velocity of light from relativistic theory of Einstein.
From the fact that Ψ1 = eiωptΨ, we obtain that any elementary particle has the

following wave-pocket geometric form (that was previously postulated in (1)):

Ψ(x, y, z, t) = Φ(−→r −−→v t)ei(−
−→
p
−→
r

~
−ω0t)

In the case when the velocity of propagation is constant, equal to zero, then we
obtain the solution Ψ(x, y, z, t) = Φ(x, y, z)e−iω0t, where ω0 = E

~
and E is the

potential energy of this particle.
There is the following relationship between Klein-Gordon and our differential

equations:

Proposition 1 The Klein-Gordon equation corresponds to the differential

equation (e.4) of an elementary particle if its velocity of propagation is equal to
zero.

Proof: In the case when −→v = 0 and ∂−→v
∂t = 0, so that ωp = ω0 is constant, then,

from (e.4), we obtain that:

0 = ∂2Ψ1

∂t2 =

= (−ω2
0Ψ+ ∂2Ψ

∂t2 + i2ω0
∂Ψ
∂t )e

iω0t =

= (−ω2
0Ψ+ ∂2Ψ

∂t2 + i2ω0(
−→v∇Ψ− iω0Ψ))eiω0t =

= (ω2
0Ψ+ ∂2Ψ

∂t2 )e
iω0t.

Thus, we obtain the equation

Electronic Journal. http://www.math.spbu.ru/diffjournal 59



Differential Equations and Control Processes, N 3, 2011

(e.8) ∂2Ψ
∂t2

= −ω2
0Ψ,

that is equal to Klein-Gordon equation when △ψ = 0, that is, when the mo-
mentum p = 0, and consequently, the velocity is equal to zero, and with the

solution Ψ(x, y, z, t) = Φ(x, y, z)e−iω0t.
Then we have that it holds the Schrödinger equation for the total energy,

EΨ = i~∂Ψ∂t , and the total energy formula (3) introduced in this paper,

E = |
∫

i~
∂Φ(x−vxt,y−vyt,z−vzt)e−iω0t

∂t dV |/1Φ =

= |
∫

i~∂Φ(x,y,z)e
−iω0t

∂t
dV |/1Φ =

= |
∫

i~(−iω0)Φ(x, y, z)e
−iω0tdV |/1Φ =

= ~ω0(
∫

Φ(x, y, z)dV )/1Φ = ~ω0,

from the fact that for the particles is satisfied the normalization principle (2),
1Φ =

∫

Φ(x, y, z)dV .

�

But, if the velocity of a particle is equal to zero, then we can not have any

phenomena of the plain waves, and as we will see, in the interesting cases when
−→v is different from zero, the equation (e.4) of propagation of particles is com-
pletely different from the equation Klein-Gordon, and consequently, from the

Schrödinger equation.
The wave-particle-duality, the fundamental component of the new quantum for-

malism in Bohrs opinion, was reformulated by incorporating the results of some
experiments accomplished in the last decades of twentieth century.

The Bohrs complementarity principle stated the mutual exclusiveness and joint
full completeness of the two (classical) descriptions of quantum systems; af-
ter Einstein-Podolsky-Rosenpaper, the wave-particle duality, or wave-particle

complementarity, could be expressed by stating that it is impossible to build up
an experimental arrangement in which we observe at the same time both cor-

puscular and wave aspects. In a two-slit experiment, they would correspond,
respectively, to the which-way knowledge and the observation of interference

pattern. Bohr showed this mutual exclusivity in numerous examples [5], and
linked it to the unavoidable disturbance inherent in any measurement event.

Not everyone agreed with this interpretation, or with Born and Heisenberg’s
statement about wave-particle-duality. Einstein and Schrödinger were among
the most notable dissenters. Until the ends of their lives they never fully ac-

cepted the Copenhagen doctrine. Einstein was dissatisfied with the reliance
upon probabilities. But even more fundamentally, he believed that nature ex-

ists independently of the experimenter, and the motions of particles are precisely
determined. It is the job of the physicist to uncover the laws of nature that
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govern these motions, which, in the end, will not require statistical theories.

The fact that quantum mechanics did seem consistent only with statistical re-
sults and could not fully describe every motion was for Einstein an indication

that quantum mechanics was still incomplete.
Recently it was demonstrated that intermediate particle-wave behaviors exist

and, in addition to that, there are single experiments in which both classical
wave-like and particle-like behaviors are showed total and simultaneously on
an individual system [2]. For instance, in the Boses double-prism experiment ,

tunneling and perfect anticoincidence were observed in single photon states.
Consequently, the meaning of the wave-particle duality must incorporate the

simultaneous use of the two classical descriptions in the interpretation of ex-
periments, loosing their original mutual exclusivity , which is incorporated as

an extreme case in the new interferometric duality, a continuous quantum con-
cept.

In fact, our results demonstrate that Ψ of any elementary particle is always
a pocket-wave (with a ”corpuscular” space-geometric distribution Φ(x, y, z, t))
delimited in the space at each time instance, but that has contemporarily an

oscillation in the complex space (’phase wave’), expressed by its complex com-

ponent ei(−
−→
p
−→
r

~
−ω0t).

Now we will show that each relatively dense stream of particles of the same
type, velocity, energy and direction of propagation compose a complex plain

wave, as, for example, an electromagnetic plain wave when these particles are
photons.

Proposition 2 Any dense stream of elementary particles of the same type,
velocity, energy and direction of propagation compose a perfect plain wave.

Proof: Let us suppose a stream of particles that propagates along the x axis,

with the distance between two consecutive particles in this stream of particles
is △x << λ, where λ = 2π~

p and p is the momentum of each particle.
Then we have that this stream of particles in the moment t = N△t, N >> 1

(where n = N is the last emitted particle in the source at x = 0, and n = 0 is
the first emitted particle from this source), is equal to:
∑

Ψn(x, y, z, t) =
∑

n=0,1,..,N Φn(x− v(t− n△t)ei(2πλ v(t−n△t)−ω0(t−n△t)) =

=
∑

n=0,1,..,N Φn(x− (N − n)v△t)ei(2πλ v(N−n)△t−ω0(N−n)△t) =

=
∑

j=N,N−1,..,0Φn(x− jv△t)ei(2πλ vj△t−ω0(j△t),
Thus in the limit case when △t 7→ 0, we obtain that:

lim△t 7→0Re(
∑

Ψn(x, y, z, t)) = ARe(
∫ 0

αN△t e
iαt′dαt′) =
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(where α = 2π
λ
v − ω0, t

′ = j△t )
= A

∫ 0

αN△t cos(αt
′)dαt′ =

= A sin(2π
λ
vt− ω0t) = (from t = N△t)

= A sin(2πλ x− ω0t) = A sin( p
~
x− ω0t),

where A is a constant proportional to the density of this stream of particles.

Thus, this stream of particles is represented by the plain wave A sin(2πλ x−ω0t),
with wave-length λ and angular frequency ω0.
�

The non dense streams will compose a kind of amplitude-modulated complex
plain waves.

Consequently, it is valid the following lemma:

Lemma 1 The Schrödinger equation can be obtained by application of the en-

ergy conservation over a complex plain wave Aei(
p
~
x−ω0t) of a given stream of

particles.

Proof: Let us consider the stream ψ = Aei(
p
~
x−ω0t) of the massive particles,

where ω0 =
m0c

2

~
. If we apply the relativistic energy equation for the elementary

particles (the stream is composed by a finite number of them) E2 = (m0c
2)2 +

(cp)2 to this plain wave, we obtain the Klein-Gordon equation:

(e.7) △ψ − 1
c2
∂2

∂t2ψ = (ω0

c )
2ψ,

whose solution can be given by ψ = φ(x, y, z, t)e−iω0t, with △ψ = e−iω0t△φ, so
that we obtain the first and second time derivation:
∂ψ
∂t = (−iω0φ+ ∂φ

∂t )e
−iω0t,

∂2ψ
∂t2

= (−ω2
0φ− i2ω0

∂φ
∂t
)e−iω0t,

by assuming that ∂2φ
∂t2 is infinitesimal. Then, if we substitute this last equation

into (e.7), we obtain the Schrödinger equation in the absence of potential [3]:

(e.9) △φ+ i2m0

~

∂
∂tφ = 0.

�

It is easy to see that the Klein-Gordon equation (e.7) is very different from the

equations (e.3) and (e.4) for a propagation of a single massive particle, if its
velocity v is different from zero.

In order to reduce the stationary case (e.4) to Klein-Gordon equation, and,
consequently, to Schrödinger equation, it would be necessary that this particle

satisfies the following conditions: to propagate with velocity of light in the
vacuum v = c, to have ωp = 0, that is ω0 =

pc
~
, and with −i−→c

~

∂−→p
∂t = ω2

0 (while
∂−→v
∂t = 0 for the real component of the right part of equation (e.4)), that is

impossible.
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4 Conclusion

Thus, Schrödinger equation in any case can not represent the propagation of a

single particle. Thus, we have to deal with the reasonable doubts about some
of the previously obtained results for the single particles, that are based on the

deductions from the Schrödinger equation. Especially when they result with
fundamentally non classical characters of a quantum state of a particle( as for

example in the case of the Wigner function for a single photon with negative
probabilities).
Consequently, the Schrödinger equation obtained by application of the energy

conservation over a complex plain wave Ae
p
~
x−ω0t, corresponds to its application

not to a single particle but to the complete stream of particles.

Because of that it has only a statistical meaning that can be applied to the
stream of particles, and only its probabilistic interpretation to a single particle

is well founded. That is, it is not a wave description of a single particle, but
represents only its probabilistically determined position in a given space.

From this point of view, the current interpretation of Schrödinger equation is
confirmed, and explains its utility, but it has only a statistical meaning, and its
non-determinism is only the consequence of this statistical meaning applicable

to single particles.
The underlying particle’s theory, presented in this paper demonstrates that Ein-

stein’s idea was correct, and that the differential equations derived previously
in this paper demonstrate their deterministic and classical corpuscular nature.

Only the streams of these particles in the determined conditions (the equal en-
ergy, momentum and direction of propagation) result in the simple plain waves.
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