
dx
dt6

¾-

?

DIFFERENTIAL EQUATIONS
AND

CONTROL PROCESSES
N 3, 2018

Electronic Journal,
reg. N ΦC77-39410 at 15.04.2010

ISSN 1817-2172

http://diffjournal.spbu.ru/
e-mail: jodiff@mail.ru

Hydrodynamic equilibrium and stability for Particle’s Energy-density
Wave-packets: State and Revision

Zoran Majkić
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Abstract

We consider the 3-dimensional (3-D) model of the massive particles, represented as
the rest-mass energy-density wave-packets, which is analog to the common physical ob-
jects which we experiment in our every-day life, if we consider a physical object with a
mass m for example, as a matter/energy-density contained in this 3-D form, such that
the integration of this energy-density contained in this 3-D volume is equal to the energy
E = mc2.
This is a complete revision and improvement of previous work [10] or the analysis of
particle’s internal dynamic during particle’s accelerations and hence we use the three con-
servation laws for the compressive fluids: energy/matter conservation, momentum con-
servation and internal energy conservation laws. Consequently, we show the new method
for computation of the hydrostatic equilibrium of a massive elementary particle during
inertial propagation in a vacuum with a stable spherically symmetric rest-mass energy den-
sity distribution, such that with this stationary distribution the internal self-gravitational
force is constant and equal in each point inside the particle. Then we show how the self-
gravitational forces generated by the rest-mass energy-density of massive particles in 3-D
provide the auto-stability process during the small perturbations, which cause particle’s
accelerations, and their return to the inertial propagation in the vacuum.

Keywords: Quantum Physics, Non point-like particles, Particle’s internal dy-
namics
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1 Introduction

The standard QM with the probabilistic wavefunctions and their statistical en-
semble interpretation is based on the classical concept of a point-like particle and
do not have the theory able to describe an individual particle with its trajectory
and given momentum and energy in any fixed instance of time. Because of that
as noted by Einstein it was an incomplete theory, differently from the classic
mechanics which has both statistical theory (for example the thermodynamic
of a gas) and theory for each individual object (Newton, Euler-Lagrange equa-
tions for the motion of an individual object). In the proposed completion of QM
(provided recently in [10]) instead, an individual massive particle’s wave-packet
always occupies a nonzero 3-D volume. It holds also for bosons when they
become unstable after an initial ’space explosion’ and, consequently, assume
the massive particle behavior and a finite but non-zero matter/energy-density
volume in open 3-D space. Consequently, in this theory [10] for elementary
particles based on energy-density wave-packets, the point-like particles are only
the stable-state bosons when they propagate with speed of light in the vacuum,
and with their energy-density distributed in higher compactified dimensions. In
the Kaluza-Klein approach, such particles with different quantized charges can
be simply obtained by addition of closed compactified dimensions where the
matter can propagate in one or in opposite direction and hence producing the
positive/negative quantized charge. Thus, as in the string theory, I assumed
the existence of a number of closed dimensions as well [11], which differentiate
the spin-zero neutral (basic feature) particles described by the complex scalar
wave-packets Ψ in what follows.
It was shown [7, 8, 9, 10] that, generally, any massive particle can be defined
in the Minkowski time-space by the complex wave-packet

Ψ = Φ(t,−→r )e−iϕT (1)

where −→r = q1e1 + q2e2 + q3e3 (for the 3-D Minkowski space orthonormal basis
vectors ej, with ej ·ej = −1 for 1 ≤ j ≤ 3 and e0 ·e0 = 1 for the time-coordinate
q0 = ct) composed by two sub components: by the shape Φ(t,−→r ) of particle’s
body that is a real function which defines the real rest-mass energy-density
Φm ≡ ΨΨ = Φ2(t,−→r ) ≥ 0, and by the ’phase (pilot) wave’ with phase ϕT ,
e−iϕT = e−

i
~ (
−→p (−→rT−−→rT (0))+Et), which is a complex function defined only for the

particle’s barycenter −→rT (t) ≡ 1
1Φ

∫ −→r Φm(t,−→r )dV , of the massive elementary

particle with the total energy E and momentum −→p which may change in time
as well, and 1Φ ≡

∫
Φm(t,−→r )dV is the particle’s invariant energy (equal to rest-
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mass energy m0c
2 for massive particles and energy E0 of a boson, measured in

the frame in which massive source of this boson is in rest). Thus,

m0 =

∫
m0(t,

−→r )dV =

∫
Φm(t,−→r )

c2 dV (2)

where m0(t,
−→r ) ≡ Φm(t,−→r )

c2 is the rest-mass density.
From the fact that a field is a quantity defined at every point (t,−→r ) of the
4-D time-space manifold M, such a quantity can be a complex number of the
wave-packet Ψ = Φ(t,−→r )e−i(−→p (−→rT−−→rT (0))+Et)/~ or a real number of the energy-
density Φm(t,−→r ) = Φ2(t,−→r ) = ΨΨ (for a massive particle iΦm(t,−→r ) is its
matter-density, where i is the constant which transforms the rest-mass energy
into the ’matter’).
In any fixed instance of time t, this complex time-oscillation of the ’pilot-wave’
exists only in a very limited space volume, in the points −→r where particle’s
density Φm(t,−→r ) > 0, that is, only where is present the matter/energy of this
particle (notice that the complex ’pilot wave’ is defined only on the particle’s
barycenter). So, it is a local oscillation embedded inside the matter of the
particle, and has no any propagation outside its matter, and hence it is not a
plain wave. In fact, if a particle is in the rest state (−→v = 0) we have the time-
invariant distribution Φ around its barycenter −→rT , and its complex-oscillation is
located in a very small volume around its barycenter, and does not propagate
anywhere outside the matter/energy of this a particle, differently from the plain
wave which propagates always in the whole space.
However, during acceleration generally each infinitesimal amount of energy-
density Φm(t,−→r ) moves with different speed −→w(t,−→r ) w.r.t. the group velocity−→v (t) = d

dt
−→rT (t) = v1e1 + v2e2 + v3e3, with v = ‖−→v ‖ =

√
v2

1 + v2
2 + v2

3
of particle’s energy-density wave-packet and we can show that is satisfied the
following relationship

−→v (t) =
1

1Φ

∫
−→w(t,−→r )Φm(t,−→r )dV (3)

so we can introduce the variation-velocity of the particle’s matter flux−→u (t,−→r ) = −→w(t,−→r ) − −→v (t) at each space-time point (t,−→r ) inside particle’s
matter (where Φm(t,−→r ) > 0). As shown in [10] during an inertial propagation
when the particle is in a hydrostatic equilibrium we have that Φm is spherically
symmetric around particle’s barycenter and with −→u (t,−→r ) = 0 in every point
inside particle’s matter, so that every infinitesimal amount of Φm propagates
with the constant wave-packet group velocity −→v . Only during the particle’s
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accelerations we have that −→u (t,−→r ) 6= 0, so that particle’s matter changes dy-
namically its shape in time.
In the assumption [10] of the topology of the matter of an elementary massive
particle, the wave-packet do not undergo a spreading, also when it changes its
matter density distribution (i.e., its energy-density Φm), and tends to its stable
stationary spherically symmetric distribution during inertial propagation in the
vacuum. That is, the matter has some internal self-gravitational autocohesive
force analogously to the peace of fluid in the vacuum, so that at any instance of
time, the 3-D space topology of particle’s matter distribution, and consequently
its compressible energy-density Φm is simply connected, closed, continuous and
differentiable.
Analogously to the Euler first equation of fluid dynamics (continuity equation),
which represents the conservation of mass, here we have the analog equation
for the conservation of matter (that is of the particle’s rest-mass energy):

∂Φm(t,−→r )

∂t
+∇ · (Φm(t,−→r )−→w(t,−→r )) = 0 (4)

In what follows ∇ = e1
∂
∂x + e2

∂
∂y + e3

∂
∂z is the gradient (for x ≡ q1, y ≡ q2 and

z ≡ q3) so that the Laplacian is defined by 4 = −∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
In Section 2.5 in [10], dedicated to the wave-packet stability, is considered the
spherical expansion of the rest-mass energy density Φm (that is, of the rest-mass
density Φm

c2 ), during the unstable particle’s states where the variation-velocity−→u (t,−→r )) 6= 0. I tried to explain why in the stable particle’s states, during an
inertial propagation with the constant speed −→v in the vacuum (sufficiently far
from another particles), we have no internal motion of the rest-mass density
of the particle, that is, we have that −→u (t,−→r )) = 0 in each point inside parti-
cles rest-mass density distributions (where −→r is the vector from the barycenter
to the observed point). Unfortunately, this Section 2.5 was written just when
my proposal for the books [10, 11] was after so lot of time finally accepted by
Nova Science to be published (after a lot of time that I tried to publish this
completion of QM) and I did not have time to control and to stress, from differ-
ent point of views, this section well and unfortunately I did not have anybody
other (student or collaborator) to control it for me1. Consequently, immedi-
ately after the press of this first volume [10], I realized (by using the Gauss
theorem) that was impossible to have equal to zero the self-gravity force inside

1I am sorry, for me in that moment, after so lot of time that I tried to publish the principal results of this
new theory (and this Section 2.5 was only an addendum; all other part of this theory are independent of it), I
preferred do not to lose this offered opportunity from Nova Science Publishers and to dedicate all my time to
divide this theory in two thematic volumes and to obtain the printable version of them as soon as possible.
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the spherically-symmetric particle’s mass density during particle’s hydrostatic
equilibrium (during an inertial propagation of a massive particle), and that
particle’s stability must be explained differently.
This paper is in effect the revision of the errors in Section 2.5 in [10]. The ex-
planation of particle’s stability needs much more mathematical apparatus and
another Euler’s equation (or more complex Navier-Stokes momentum equa-
tion) derived from the Cauchy momentum equation. Both new equations in-
troduce the common concepts of the pressure inside particle’s matter opposed
to particle’s self-gravitational forces inside its matter, in order to guarantee the
particle’s hydrostatic equilibrium (analogously to the equation of hydrostatic
equilibrium in the stars, for example).
In next section we will confront the conservation law (4) for an individual
massive particle with the statistical Boltzmann equation to verify in which con-
ditions the Boltzmann equation, which describes the statistical behaviour of
a thermodynamical system not in state of equilibrium, can be reduced to the
properties of the continuous and simple-connected particle’s matter iΦm. After
that, we will analyze the particle’s stability by using the Cauchy stress 2-tensor
(in his momentum equation) in the approximation of the Newton field-theoretic
theory of gravitation applied to the particle’s mass density.

2 Hydrostatic equilibrium of a massive particle

The duality relationship between the statistical Schrödinger equation (where
complex wavefunction ψ represents the probabilistic density) appropriate for
an ensemble of particles and the deterministic new equation for an individual
elementary particle was discussed in details in [10]. Here we will discuss the
relationship between the continuity equation (4) for an individual elementary
particle and the Boltzmann equation for the fluids composed by the particles,
with the probability density function ψ(t,−→r ,−→p ),

∂ψ

∂t
= (

∂ψ

∂t
)f + (

∂ψ

∂t
)d + (

∂ψ

∂t
)c (5)

where (∂ψ
∂t )f corresponds to the forces exerted on the particles in the fluid by an

external influence (not by particles themeselves), (∂ψ
∂t )d represents the diffusion

of particles in this fluid, and (∂ψ
∂t )c corresponds to the forces inside this fluid

and acting between particles in collisions.
The Boltzman equation can be used for the fluids composed by the particles
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with positions (t,−→r ) and momentum −→p , that is, for the thermodynamical
fluid system not in state of equilibrium. It can be used to determine how
physical quantities change, such as heat energy and momentum, when fluid is
in transport, and hence can also derive other properties of the fluids such as
viscosity, thermal conductivity, etc..
Let us consider this fluid composed by particles, each particle experiencing

an external force field
−→
f (t,−→r ) not due to other particles in this fluid, and

suppose that at time-instance t some number of particles have the position−→r = q1e1 + q2e2 + q3e3 within an infinitesimal region dV = dq1dq2dq3 and
momentum −→p = m−→w(t,−→r ) = p1e1 + p2e2 + p3e3, with mass m and velocity
−→w(t,−→r ), within d3−→p = dp1dp2dp3 = m3dw1dw2dw3. If the force

−→
f (t,−→r )

instantly acts on each particle, then at time t+δt their position will be −→r +δ−→r
and momentum −→p + δ−→p = −→p +

−→
f δt = m(−→w + δ−→w). Hence, in the absence of

collisions, it holds that
δΨ ≡ ψ(t + δt,−→r + δ−→r ),−→p + δ−→p )dV d3−→p − ψ(t,−→r ,−→p )dV d3−→p
is equal to zero, where we used (see the discussion under Liuville’s theorem in
my book [10]) that the phase-space volume dV d3−→p is constant. However, since
collisions occur, the particle’s density in the phase-space volume change, so
δψdV d3−→p = (∂ψ

∂t )cδtdV d3−→p ,
where δψ is the total change of ψ and, in the case of the limit δt → 0 and
δψ → 0, from the result above we obtain

(
∂ψ

∂t
)c = limδt→0

δψ

δt
=

dψ

dt
≡ ∂ψ

∂t
−−→w∇ψ −

−→
f

m
∇wψ (6)

where ∇wψ ≡ ∂ψ
∂−→w =

∑3
i=1 ei

∂ψ
∂wi

and
−→
f = d−→p

dt = md−→w
dt . Note that in the case

when (∂ψ
∂t )c = 0 the equation above is the Vlasov equation.

It is convenient to represent the statistical Boltzmann equation above, where
ψ is a probability density (like the Schrödinger wavefunction in QM), in the
following form:

∂ψ

∂t
+∇ · (−→wψ) = (

∂ψ

∂t
)c +

−→
f

m
∇wψ + ψ(∇ · −→w) (7)

It was proven only in 2010 that exact solutions to the Boltzmann equation are
always mathematically well-behaved [6]. This means that if a system obeying
the Boltzmann equation is perturbed, then it will return to equilibrium, rather
than diverging to infinity or behaving otherwise. However, this existence proof
is not helpful for solving the equation in realistic scenarios. Indeed, such state-
ments only tell us whether the solution subject to specified conditions exist,
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but not how to find them. In practice, numerical methods are used to find
approximate solutions to the various forms of the Boltzmann equation.
Let us consider how we can apply this statistical equation (for a non-continuous
flow composed by the fluid’s molecules) to the continuous flow (simple con-
nected) of the particle’s matter density. In this case we replace the probabilistic
density ψ in (7) by the rest-mass energy density Φm and the infinitesimal mass
m by rest-mass density Φm/c2 in a time-space point (t,−→r ), and hence we obtain
the conservation law (4) of internal dynamic assumption (Definition 5 in [10]),

0 = ∂Φm

∂t +∇ · (−→wΦm) = (∂Φm

∂t )c +
−→
f

Φm/c2∇wΦm + Φm(∇ · −→w),

for each point (t,−→r ) where Φm(t,−→r ) 6= 0. Thus, we obtain for each massive
particle that

Φm(∇ · −→w) = −(
∂Φm

∂t
)c −

−→
f

Φm/c2∇wΦm (8)

In the case of the hydrostatic equilibrium we have that the force
−→
f = 0 and

that we have no collisions inside particle’s material body, that is (∂Φm

∂t )c = 0,
and hence must be Φm(∇ · −→w) = 0, that is in any point of the particle’s body
where Φm(t,−→r ) 6= 0 must be ∇·−→w(t,−→r ) = 0, that is, the fluid velocity −→w must
be constant vector (for any fixed time t) in each point inside particle’s body, and
that means that this constant velocity is just the group velocity of the particle
during inertial propagation of the particle. Consequently, we obtained that the
hydrostatic equilibrium of a massive particle holds only during an inertial prop-
agation with constant velocity vector −→w(t,−→r ) = −→v corresponding to the group
velocity of the particle’s wave-packet. In such a hydrostatic equilibrium the
Boltzman expression (5) reduces to the simple expression ∂Φm

∂t = (∂Φm

∂t )f , which
represents the simple diffusion of the particle’s rest-mass energy Φm density
which, as we will show in what follows, becomes spherically symmetric w.r.t
particle’s barycenter.
For the coordinate system with the center in particle’s barycenter, which will
be used in the rest of this paper, this condition of an inertial propagation corre-
sponds to the case when the variation-velocity −→u (t,−→r ) is equal to zero. That
is, in this coordinate system during this hydrostatic equilibrium we have that
the matter density of particle’s body (thus also its rest-mass energy density
Φm) is in rest and do not change during such an inertial propagation.
However, from the fact that, based on the General Relativity (GR), the rest-
mass energy density generates a local gravitational field (that is, a local time-
space curvature), this local gravitational force will involve each infinitesimal
amount of its rest-mass density Φm/c2. Thus, also during the stable static dis-
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tribution (hydrostatic equilibrium) of the rest-mass density of a particle during
an inertial propagation in the vacuum, inside particle’s material body there ex-
ists the internal self-gravitational force. Let us show that it is different from zero
also inside particle’s mass density. It is enough to consider the non-relativistic
case, when the constant velocity of particle satisfies v << c, so that there is
not any external field which would generate the accelerations, and to consider
that the local time-space of the vacuum in which propagates this particle is a
flat Minkowski time-space. Thus, in such a situation, this isolated particle with
rest-mass m0 can be considered as a generator of the local Newtonian gravi-
tation, with the coordinate center in particle’s barycenter, described in what
follows:

Newton’s field-theoretic theory of gravitation: Newton’s theory was pre-
sented as a two-body interaction theory, by importation of concepts and meth-
ods borrowed from electrostatics.
Let the density distribution of gravitating matter, relative to an inertial frame,
be described by the function ρ(−→r ), and let a test particle of mass (”gravita-
tional charge”) m reside momentarily at −→r , so that the force experienced by

this test particle be
−→
F = m−→g (−→r ), where the acceleration −→g (−→r ) is the gravi-

tational analog of an electrostatic field
−→
E . The force-law proposed by Newton

is conservative, so ∇ × −→g = 0, and hence we can introduce the gravitational
potential φ so that −→g = −∇φ (9)

Hence, in mimicry of the electrostatic equation ∇ · −→E = ρ (charge density
regulates the divergence of the electric field), we obtain the differential for of
the Gauss’s law for gravity

∇ · −→g = −4πGρ (10)

where G is the gravitational constant and the minus sign reflects the fact that
the gravitational interaction is attractive. Thus from (9) and (10) we obtain
the gravitational Poisson equation:

4φ = −4πGρ (11)

If the mass-density ρ is completely inside a sphere of radius r then, by inte-
grating, we obtain that the total mass interior to V is equal to m0 ≡

∫
V ρdV =∫

V
1

4πG∇·−→g dV = 1
4πG

∮
S
−→g dS, i.e., it is equal to the gravitational influx trough

the surface of this sphere S = 4πr2. Taking that ρ is concentrated in the center
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of this sphere with radius r, we obtain m0 = 1
4πG4πr2g(r), that is

−∇φ = −→g (r) = −Gm0

r2 er (12)

where er is the unary radial vector and, hence, the solution of this differential
equation defines the scalar gravitational field of an isolated point mass m0:

φ(r) = −Gm0

r
(13)

For distributed mass-density ρ we have that

φ(−→r ) = −G

∫
ρ(
−→
r′ )

|−→r −−→r′ |
dV (14)

which gives back (13) in the point-like case when ρ(
−→
r′ ) = m0δ(

−→
r′ ).

The spherical symmetry of the gravitational potential makes each star’s mass-
density ideally spherically symmetric w.r.t. the center of coordinate system
fixed in star’s barycenter.
Let the mass of spherical shell of radius R and surface S = 4πR2, with constant
mass-density ρ, be M = Sρ = 4πR2ρ. Then it is demonstrated that for any
small test mass m, at any point inside this sphere, the net gravitational force
on it is identically zero.
Physically, this is very important because any spherically symmetric mass dis-
tribution ρ(r) outside the position of the test mass m can be build up as a series
of such shells.
If a given test mass m is inside a spherically symmetric distribution of mass

ρ(r) =

{
σ(r) > 0, if 0 ≤ r ≤ r0;

0 otherwise
(15)

at distance r < r0 from the center of this distribution, that part of the mass
outside its radius r does not contribute to the net force on it, but only the mass
mr =

∫
Vr

ρ(r′)dV ≤ m0 ≡
∫

ρ(r′)dV , contained inside this sphere of radius r

with the volume Vr = 4π
3 r3.

¤
Let us apply this theory, instead to a star, to a massive elementary particle
in its hydrostatic equilibrium (during inertial propagation of the particle) with
ρ = Φm/c2 spherically symmetric around its barycenter (center of the spheri-
cal coordinate system in what follows). Thus, during the hydrostatic equilib-
rium (an inertial propagation) of a massive particle with spherically symmetric
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energy-density Φm(r) inside the sphere with the radius r0 (i.e., inside the par-
ticle’s material body), we have the following self-gravitational force, for each
r ≤ r0, generated by the particle’s mass inside the volume V = 4π

3 r3,

−→g = erg(r) = −er
G

r2

∫

V

Φm

c2 dV = −er
4πG

r2

∫ r

0

Φm(s)

c2 s2ds (16)

This self-gravitational force, directed into the barycenter of the particle, in
order to avoid the generation of a black hole, must be balanced by the opposite
force of the material fluid substance hΦm of the particle’s body. The force on
the mass in an infinitesimal cylindric volume drdS (with the base surface dS)

g(r)m = g(r)Φm(r)
c2 drdS must be balanced by the pressure difference P (r)dS −

P (r + dr)dS = −dP
dr drdS, so in the hydrostatic equilibrium we obtain that

g(r)Φm(r)
c2 = dP

dr , that is, the internal force F (r) in the particle’s body during its
hydrostatic equilibrium is

F (r) =
dP

dr
= −4πG

r2

Φm(r)

c4

∫ r

0
Φm(s)s2ds (17)

This is in complete according with the fact that Einstein did not believe into
the reduction of gravity to geometry [1] 2.
We need that the body of the particle hΦm provides also the physical internal
pressure P (r) (which is a non-geometrical property) in order to guarantee the
hydrostatic equilibrium of the massive particles. The hydrostatic equilibrium of
a massive elementary particle demonstrated that the body of this particle hΦm

is a material substance, which is fluid and elastic, and which can not be reduced
to the time-space geometry. This real physical material substance generates a
curved time-space curvature inside and around it (the micro-island curvature),
but this material substance can not be simply ’generated by time-space curva-
ture’. That is, a massive elementary particle can not be reduced to the pure
geometry: see also the debate of Einstein with Willem de Sitter who considered
a solution of Einstein’s GR in which there is no matter, as an exponentially
expanding empty universe), as claimed by Emile Meyerson that Einstein’s GR
theory was the identification of matter with space (in his book La Deduction
Relativiste, 1925).

2In effect, if we erroneously assume (as in my previous error in Section 2.5 in [10]) that during inertial
propagation (hydrostatic equilibrium) of the particle, the self-gravitational force inside particle’s body is zero
then we would not need any internal pressure in the particle’s body and hence would be possible to reduce
ontologically the elementary particle into the time-space geometry (from the fact that the particle’s stability
could be completely explained by particle’s self-gravity (time-space curvature)). Moreover, without internal
pressure of particle’s body it will not be possible to have the elastic Compton collisions of the particles.
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Hence, based on the concept of the equilibrium inside particle’s body, we ex-
pect that the internal force F (r) during the hydrostatic equilibrium is constant
in each point inside particle’s body. So, we obtain the following hydrostatic
equilibrium differential equation:

Lemma 1 The hydrostatic equilibrium of a massive particle with spherically
symmetric material body density, with the radius r0 and energy density Φm(r) >
0 for 0 < r ≤ r0, has to satisfy the following first-order differential equation

dΦm

dr
− 2

r
Φm − 4πG

c4F
Φ3

m = 0 (18)

where the internal force F = −4πG
c2

Φm(r)
r2

∫ r

0 Φm(s)s2ds is a real constant. We
obtain also the following second-order differential equation:

d2Φm

dr2 + (
4

r
− 3

Φm

dΦm

dr
)
dΦm

dr
+ 2

Φm

r2 = 0 (19)

Proof : During the hydrostatic equilibrium of the massive elementary particle,
we require that dF (r)

dr = 0 for the internal force F (r) given by (17). So, by
differentiation of equation (17) and by considering that d

dr(
∫ r

0 Φm(s)s2ds) =
Φm(r)r2, we obtain the equation 0 = r2Φm +(dΦm

dr − 2
rΦm)

∫ r

0 Φm(s)s2ds, that is:
∫ r

0
Φm(s)s2ds = −r2Φ2

m/(
dΦm

dr
− 2

r
Φm) (20)

and hence by repeating the differentiation of both sides of this equation and by
considering that d

dr(
∫ r

0 Φm(s)s2ds) = Φm(r)r2, we obtain

Φm(r)r2 = − d

dr
[r2Φ2

m/(
dΦm

dr
− 2

r
Φm)] (21)

So, by differentiation of the right-hand side of this equation, we obtain our
second-order differential equation (19), which the density Φm(r) has to satisfy
during the hydrostatic equilibrium. The equation (18) is obtained in an analog
way, but by expressing the equation (17) in the form

∫ r

0 Φm(s)s2ds = − Fc4

4πG
r2

Φm

and then by differentiating both sides on r and by considering that F is con-
stant.
¤
Perfect elasticity assumption: Although elasticity is most commonly associ-
ated with the mechanics of solid bodies or materials, even the early literature on
classical thermodynamics defines and uses ”elasticity of a fluid” in ways compat-
ible with the broad definition provided in the Introduction above. Throughout

Electronic Journal. http://diffjournal.spbu.ru 11



Differential Equations and Control Processes, N 3, 2018

the theory of massive elementary particle [10] it is assumed that the particle’s
bodies undergoing the action of external forces are perfectly elastic, i.e., that
they resume their initial form (in its hydrostatic equilibrium) completely after
removal of forces.
The elastic body of an elementary particle has no any molecular internal struc-
ture and hence the particle’s matter is homogeneous and and continuously dis-
tributed over its volume so that the smallest element cut from the body pos-
sesses the same specific physical properties as the whole body. That is, it is
assumed that the particle’s body is isotropic, i.e., that the elastic properties are
the same in all spatial directions. Moreover, we have no any thermodynamic
dissipation inside particle’s body during its elastic deformations, that is, we
have no thermal losses of particle’s internal energy during such elastic deforma-
tions caused by the external forces: the particle’s kinetic energy converted into
its internal elastic potential energy V during elastic deformations have no any
side-effects of thermal losses.
The essence of elasticity is the reversibility. Forces applied to an elastic ma-
terial transfer energy into the material which, upon yielding that energy to
its surroundings, can recover its original shape. Elastic energy occurs when
objects are compressed and stretched, or generally deformed in any manner.
For an massive elementary particle it corresponds to energy stored by chang-
ing the internal forces of particle’s hydrostatic equilibrium based on particle’s
self-gravitational force.
Such properties of the particle’s body differentiate it from the structural ma-
terials composed by the molecular structures as all material object used in our
every-day practice.

3 Other two conservation laws in fluid dynamics of the

elementary particles

Here we will consider another two conservation laws for the internal dynamic
inside the material substance of an massive elementary particle, not considered
previously in [10] (Section 2.5).
Hence, from the fact that inside the particle’s material body we have a pres-
sure (17) that makes the balance with internal self-gravitational force (16), our
theory of massive elementary particles needs also the Cauchy conservation of
momentum equation (here we will use the simpler convective form derived from
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the second Newton’s equation)3, in the coordinate system with the center in
the particle’s barycenter so that matter density speed −→w is equal to the that
variation-velocity −→u = u1e1 + u2e2 + u3e3, describes the non-relativistic mo-
mentum transport in any continuum (the kinematics of materials modeled as a
continuous mass Φm/c2 of a massive elementary particle)rather than as discrete
particles in a time-space point (t,−→r ):

Φm

c2

d−→u
dt

= ∇ · σ +
Φm

c2
−→g (26)

where σ is the stress 2-tensor and both surface (such as viscous forces) and body
forces are accounted for in one total force Φm

c2
−→g to an infinitesimally small point

at (t,−→r ) (for example,this total force may be expanded into an expression for
the frictional and gravitational forces acting at a point in a flow).
This equation is appropriate for the Φm because Φm/c2 is just a continuous
rest-mass density of a massive elementary particle, and exists as a continuum
(as specified by the topological properties in [10] of the massive elementary
particles), meaning that the matter hΦm of the massive elementary particle is
continuously distributed in 3-D space (for any fixed instance of time t) and fils

3The derivation of another Cauchy equation comes from the momentum conservation law, when applied to a
fixed control volume V bounded by surface S (with

−→
dS = −→n dS for the unary vector −→n orthogonal to dS) inside

the flow. Newton’s second law states that during a short time interval dt, the impulse of a force
−→
F applied to

the mass of the flow will produce the following momentum change in that affected mass:

d−→p
dt

+−→p out −−→p in =
−→
F (22)

where for ρ = Φm/c2, −→p =
∫

V
ρ−→p dV ,

−→
F =

∫
V

(ρ−→g + ∇ · σ)dV , where σ is 2-order tensor introduced in fhat
follows, −→p out is added because mass leaving the control volume carriers away momentum provided by

−→
F , which−→p does not account for. The −→p in is subtracted because mass flowing into the control volume is incorrectly

accounted in −→p and hence must be discounted. Both terms are evaluated by a surface integral of the momentum
flux over the entire boundary S, −→p out − −→p in =

∮
S

ρ(−→u−→n )−→u dS =
∫

V
(e1∇ · (ρu1

−→u ) + e2∇ · (ρu2
−→u ) + e3∇ ·

(ρu3
−→u ))dV =

∫
V
∇· (ρ−→u ⊗−→u )dV where −→u ⊗−→u = [u1u2u3]T · [u1u2u3] is the dyad of the velocity (second order

tensor), so that we obtain the following integral momentum equation:

d

dt

∫

V

ρ−→u dV +
∫

V

∇ · (ρ−→u ⊗−→u )dV =
−→
F =

∫

V

(∇ · σ + ρ−→g )dV (23)

that is,
∫

V
∂
∂t (ρ

−→u )dV +
∫

V
∇ · (ρ−→u ⊗ −→u ))dV =

−→
F =

∫
V

(∇ · σ + ρ−→g )dV , which must be valid for any (also
infinitesimal) control volume V , so that we obtain the second form of the Cauchy differential equation

∂

∂t
(ρ−→u ) +∇ · (ρ−→u ⊗−→u ) = ∇ · σ + ρ−→g (24)

Which in our case where (from (27) and without viscosity) σ = −P · 1 for the internal pressure P , we obtain

∂

∂t
(
Φm

c2
−→u ) +∇ · (Φm

c2
−→u ⊗−→u ) = ∇ · σ +

Φm

c2
−→g = −∇P +

Φm

c2
−→g (25)
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the entire region of space it occupies (with a simply connected topology), so it
can be continually subdivided into infinitesimal quantities.
In effect, the matter density of particle’s body hΦm, which is a continuous
material substance, must have the elastic property. That is, this body returns
to its rest shape (hydrostatic equilibrium) after applied stresses are removed.
For example, this property if a fundamental physical property of the material
elementary particles during the collisions with the Compton effects.
Following the classical dynamics of Newton and Euler, the motion of parti-
cle’s material body hΦm is produced by the action of externally applied forces
(during the interaction with the bosons of the fundamental field-forces, weak,
strong and electromagnetic, or with the external gravitational force) which are

assumed to be of the two kinds: surface forces
−→
F S (during absorption of bosons

or during the collisions with the Compton effects) and the body forces
−→
F B

(an external gravitational force or the forces generated during emissions of the
bosons (as emission of the photon by an electron)).

Surface forces
−→
F S, expressed as a force per unit area, act on the bounding sur-

face of the elementary particle’s body, as a result of the mechanical interaction
between the parts of the body to either side of the boundary surface (Euler-
Cauchy stress principle), which uses the Cauchy stress tensor (second order)

σ ≡




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 =




−→
T e1

−→
T e2

−→
T e3




where
−→
T ej = T

ej

1 e1 + T
ej

2 e2 + T
ej

3 e3, for j = 1, 2, 3, are stress vectors associated
with each Cartesian coordinate unit vector ei. Hence, for any imaginary sur-
face perpendicular to the unit vector −→n = n1e1 + n2e2 + n3e3, the stress vector−→
T n = T n

1 e1 +T n
2 e2 +T n

3 e3, acting on the plane with the normal unit vector −→n ,
can be expressed by−→
T n = −→n · σ = [n1n2n3] · σ,
at each point (t,−→r ).
The distribution of internal contact forces through the volume of particle’s body
(for example during the elastic collisions of elementary particles with Compton
effects) is assumed to be continuous.−→
T n(t,−→r ) is the contact force density (or Cauchy traction field) that represents
this distribution in a particle’s matter density hΦm at a given time t. It is not
a vector field because

−→
T n(t,−→r ) depends also on the local orientation of the

surface element dS as defined by its normal unit vector −→n . Any differential
area dS with normal unit vector −→n of a given internal surface S, bounding a
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portion of the particle’s body, experiences a contact force
−→
F S arising from the

contact between both portions of the body on each side of S, and is given by
d
−→
F S =

−→
T ndS.

In the case of the external gravitational (body) forces
−→
F B , the intensity of the

force is proportional to the rest-mass density Φm/c2 of the particle. In the case
of the interactions with the bosons, during absorption/emission of the bosons,
we have more complex events which accelerate/decelerate this massive elemen-
tary particle by temporary expansion/compression of its body shape (that is,
of its matter distribution hΦm(t,−→r )).
The effect of stress in the particle’s continuum flow of Φm(t,−→r ) is represented
by the gradient of the internal pressure ∇P and divergence ∇·τ which describes
viscous forces based on the 2-tensor τ , so that the stress tensor σ is given by

σ = −P · 1 + τ (27)

where 1 is the identity 3× 3 matrix.

Conservation of the momentum law: Consequently, from (26) we obtain
the following Cauchy momentum equation (in convective form derived from the
second Newton’s law) in a time-space point (t,−→r ) inside particle’s body where
Φm(t,−→r ) 6= 0,

d−→u
dt

=
c2

Φm
∇ · τ − c2

Φm
∇P +−→g (28)

In what follows we will consider that there is no any significant viscosity inside
particle’s body, so that ∇ · τ = 0, and hence the equation above is equal to
the Euler momentum equation (otherwise we would obtain the Navier-Stokes
momentum equation).
Here we consider that −→g is equal to the particle’s self-gravitational internal
force (by considering that locally it is much bigger than the external gravita-
tional force). Obviously, the stress terms on the right-hand side of the equation
above are yet unknown (they are the hidden variables of an elementary particle
which can not be measured in every point (t,−→r ) inside particle’s body where
Φm(t,−→r ) 6= 0), so that this equation can not be used to solve the dynamic
phenomena of the perturbations of particle’s hydrostatic equilibrium. However,
they are useful in order to understand the internal dynamics of the particle’s
rest-mass energy flow during the accelerations of the particle (when particle is
not more in the hydrostatic equilibrium because the vaiation-velocity −→u (t,−→r )
of the flow (in the coordinate system with the center in the particle’s barycen-
ter) in equation above is not more zero and depends on time as well). Moreover,
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this equation will be used in next section for consideration of small perturba-
tions of particle’s hydrostatic equilibrium with small spherical expansions of
particles body in connection with relatively small decelerations of the particle.
In effect, a particle’s body is considered stress-free if it is in the hydrostatic
equilibrium (during inertial propagation of the particle), required to hold the
fluid body together and to keep its spherically symmetric density shape Φm,
in the absence of external interferences. Thus, in that equilibrium state, we
have that −→u (t,−→r ) = 0 in all points inside particles body, so that d−→u

dt = 0 and
the equaiton above (in the absence of viscosity) reduces to the equation (17)
of the pressure with spherically symmetric distribution during the hydrostatic
equilibrium.
¤
Let us consider now the enthalpy conservation and the specific internal energy
of massive elementary particle. During the accelerations of an elementary par-
ticle (and its spherical expansion/compression), the internal pressure P which
was static and spherically symmetric inside particle’s body during previous in-
ertial propagation (with the hydrostatic equilibrium), balansing the opposite
self-gravitational force, now changes in time during spherical expansion (when−→u (t,−→r ) 6= 0) of particle’s matter density hΦm, so that dP

dt 6= 0.
Thus, we have to consider the conservation of energy in such internally unstable
dynamics. It is well known that the general conservation of energy for the fluids
in ordinary classical mechanics is given by the following equation

ρ
dh

dt
=

dP

dt
+∇ · (k∇T ) + φ (29)

where h is a specific entalpy, k is the thermal conductivity of the fluid, T is
temperature and φ is the viscous dissipation function.
In our case of the elementary particle’s matter density fluid hΦm with ρ =
Φm/c2, we have no any kind of internal thermodynamic phenomena and viscos-
ity dissipation, so that this general equation above reduces to

dh

dt
− c2

Φm

dP

dt
= 0 (30)

where the specific enthalpy is given by h = e+ P
ρ = e+ c2P

Φm
, for any point (t,−→r )

inside particle’s body where Φm(t,−→r ) 6= 0, where e is the specific internal
energy density. So, we obtain
de
dt = dh

dt − d
dt(

c2P
Φm

) = (dh
dt − c2

Φm

dP
dt )− c2P

Φ2
m

dΦm

dt ,

and hence from (30) and the rest-mass energy conservation (4), that is from
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dΦm

dt = ∂Φm

∂t −−→u∇Φm = −∇ · (Φm
−→u )−−→u∇Φm = −Φm(∇ · −→u ), we obtain

Conservation of internal energy law:

de

dt
= −c2P

Φm
∇ · −→u (31)

which is the ’third Euler’s equation’ (obtained a century later).
Note that the specific internal energy e keeps account of the gains and losses of
energy of the system that are due to changes in its internal state. The inter-
nal energy of a given state of a massive elementary particle cannot be directly
measured.
However, it is fundamental concept which explains the principles of ’internal
energy V ’, introduced [10] in the Definition 5 (internal dynamic assumption)
and described in Section 2.6 in [10], dedicated to phenomena of ’virtual parti-
cles’ (which does not satisfy the energy relationship E2 = m2

0c
4 + c2p2 for the

massive particle with the total energy E and momentum p), to the phenomena
of massive bosons and to the physical explanation of Higgs mechanism. In all
these more complex internal dynamic phenomena of the massive particles, it
is valid the energy equation (E + V )2 = m2

0c
4 + c2p2, where E is the measur-

able total energy of the particle (which during 3-D space breaking of an inertial
propagation of the particle (considered as a closed system) can remain constant ;
but this breaking of 3-D symmetry will produce the changing of particle’s body
shape [10]). V is a potential internal energy (based on this specific internal
energy e in the equation above) used, for example, during the spatial expansion
of the particle’s body (during strong excitations) when has to be spent some
energy against the autocohesive self-gravitational force inside particle’s body
which dynamically changes particle’s shape (with the density flow velocity −→u )
and its internal pressure P .

4 Stability of massive particles: perturbations of their

hydrostatic equilibrium

In the case of the particle’s accelerations, if it is generated by an external
gravitational force, we have that the particle is moving in a curved time-space
which changes this stable rest-mass density distribution of particle’s hydro-
static equilibrium . Consequently, an infinitesimal particle’s matter/energy
density at a point (t,−→r ) begins to move, so that we obtain that the variation-
velocity in this point is different from zero, i.e., −→u (t,−→r ) 6= 0, and hence
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−→w(t,−→r ) ≡ −→v (t) +−→u (t,−→r ) becomes different from the (group) velocity of the
particle −→v (t). The same fact verifies if the particle propagates in some external
(electromagnetic, weak or strong) field, when the acceleration is the conse-
quence of the interactions of the particle with the bosons of this field. Again
this resulting acceleration changes particle’s body-shape and internal rest-mass
density distribution by introducing the variation-velocity −→u (t,−→r ) 6= 0 different
from zero and hence, from the conservation of the momentum law (28) in the
absence of the viscosity, we obtain

d−→u (t,−→r )

dt
= − c2

Φm(t,−→r )
∇P (t,−→r ) +−→g (t,−→r ) (32)

where −→g (t,−→r ) is the internal autocohesive self-gravitational acceleration
and ∇P (t,−→r ) the gradient of internal pressure inside particle’s body where
Φm(t,−→r ) 6= 0.

Active principle of particle’s auto-stability: The self-gravitational forces,
generated by the rest-mass energy density Φm, constitute also the physical
principle of the auto-stability of the particles. After any acceleration, when a
particle again begins to propagate in the vacuum without external fields, the
self-gravitational internal forces reestablish again the stable and stationary rest-
mass density of the hydrostatic equilibrium with −→u = 0 and hence the equation
(32) reduces to

∇P (r) =
Φm(r)

c2
−→g (r) (33)

for the self-gravitational acceleration vector −→g (r) given previously by equa-
tion (16), so that from the equation above, we obtain again the hydrostatic
pressure equation (17). This fact is obtained naturally: if there are external
forces that accelerate the particle, they generate an internal movement with
velocity −→u 6= 0 of its rest-mass density satisfying the equation (32), as a re-
action to these forces; if external forces are eliminated, then residual internal
self-gravitational forces will produce again the movement of particle’s rest-mass
density up to the moment when the obtained new density distribution becomes
equal to that of hydrostatic equilibrium. This auto-equilibrium is realized in a
very short interval of time, when the particle passes from an acceleration into
an inertial propagation.
This fact demonstrated that the gravitational force is fundamental force in any
elementary particle, and the self-gravitational force of the particle generates
a curved time-space region around each particle (so called micro-island time-
space curvature). It is considered in details in [11] (Chapter 1), dedicated to
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non-separability of the Quantum Mechanics theory from the General Relativ-
ity.
Another important property of the massive particle’s auto-stability must be
the property which does not permit that the reduction of the radius r0 of the
particle’s density Φm becomes less than the Schwarzschild radius rs = 2Gm0

c2

and hence does not permit a creation of a black hole (otherwise such a mi-
cro black hole would grow, by Compton interactions with other particles, and
the whole Universe would become composed by only the black holes). Conse-
quently, we can assume that there exists a natural limit to the particle’s density
compressibility which guarantee that a particle can not be transformed into a
black hole, and we can optionally extend the Topology Assumptions with the
following compressibility assumption:

Definition 1 Limit Compressibility Assumption:
For any massive particle with density distribution Φm, at each point (t,−→r ) where
Φm(t,−→r ) > 0, it must hold that

Φm(t,−→r ) ≤ Φ∞ (34)

where the finite positive real constant Φ∞ is the maximal possible density.

The consequence of such a limited compression of the particle’s density is that:

• At any finite 3-D region where Φm reaches this maximal possible den-
sity Φ∞, the internal self-gravitational force (oriented toward particle’s
barycenter) in this region can not move any infinitesimal amount of this
limit-compressed density in this region;

• During any inertial propagation of the particle, for which we obtain a
spherically symmetric density distribution of Φm > 0, with a barycenter in
the center of a sphere with radius r0, we have that the density Φm is equal
to this limit-compressed density Φ∞ at least with an infinitesimally small
radius rm << r0. This nucleus is generated during transition from accel-
erated particle into the auto-stable state of inertial particle’s propagation.
It is based on the fact that the variation speed −→u of the particle’s density
during the acceleration will be oriented toward the particle’s barycenter
during reestablishment of the particle’s auto-stability during inertial prop-
agation. The only contra-force to this density flow toward the particle’s
barycenter (of self-gravitational forces) is the gradient-pressure and this
resistance caused by maximal possible density.
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Based on this optional compressibility density principle above, during the hy-
drostatic equilibrium we have that

Φm(t, r, ϕ, θ) ≡
{

σ(r), if rm ≤ r ≤ r0(m0);

Φ∞ 0 ≤ r ≤ rm

(35)

where σ(r) is a continuous decreasing energy-density function such that σ(rm) =
Φ∞. Obviously, we can have also that rm = 0 if during the compression of
the particle (in very strong interaction dynamics) its radius r0 remains always
greater than the Schwarzschild radius rs, so that matter/energy density inside
the particle’s body never reaches this maximum limit Φ∞.

Let us denote by R0 ≡ 3

√
3m0c2

4πΦ∞
> 0, the minimal possible radius r0 of the

particle when its whole density is maximal, so that in such a case r0 = rm =
R0 > 0. The stability of elementary particles requires that R0 be greater than
the Schwarrzchild’s radius rs = 2m0G

c2 , in order to avoid particle’s transformation
into a black-hole, and hence this principle creates the following upper limit value
for the maximal possible density Φ∞,

Φ∞ <
3c4

32πG3

1

m2
0

(36)

which must be satisfied for all elementary particles, thus also for that which
has the maximal value of its rest-mass m0.
It is easy to verify that this ”non-ideal” compressibility energy-density distribu-
tion in (35) satisfies the continuity equation (37). In fact, also for r ≤ rm where
Φm is constant and equal to maximal density Φ∞, we have that ∂Φm

∂t = ∂Φ∞
∂t = 0

and for constant energy-density speed −→w(t,−→r ) = −→v (during inertial propaga-
tion with the constant particle’s speed −→v ), ∇·(Φm

−→v ) = Φ∞∇·−→v = Φ∞ ·0 = 0,
so that ∂Φm

∂t = −∇ · (Φm
−→w), as expected.

Thus, the differential equations (38) and (39) in next section can be considered
only for the region rm ≤ r ≤ r0 where Φm depends on r.
That is, if in the hydrostatic equilibrium the particle has this ”nucleus”, inside
it we have a linearly decreasing gravitational force oriented to the barycenter,
which can not move the energy-density because it has the maximal possible
and uniform density and can not be compressed more, and the energy-density
also in this part of particle is in stationary state. Consequently, in the whole
particle’s energy-density distribution we have the stationary condition that the
variation speed −→u (t,−→r ) = 0. During the inertial propagation in a fixed referen-
tial system in which this particle propagates with the constant (group) speed −→v ,
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each infinitesimal amount of particle’s energy-density propagates with the same
velocity −→v along rectilinear particle’s trajectory (in a locally flat Minkowski
time-space).
The perturbations of massive particles can be extremely strong, like in the case
of the sharp 3-D space symmetry breaking during an inertial propagation (as
in the case of the double-slit experiments for the electrons [10] with a rapid
transversal (cylindric) explosion of particle’s body in a wide disk-like shape or-
thogonal to the direction of particle’s trajectory and parallel to the very large
massive obstacle in front of this particle), or relatively small perturbations dur-
ing non-relativistic interactions with external fields (the bosons) of external
gravitational forces. During extremely strong excitations, the particle’s body
can become very large for an extremely short interval of time with very low
matter/energy density and without any ”nucleus” composed by maximal den-
sity around particle’s barycenter. However, after such a shot-time 3-D space
explosion of the particle’s body, when again particle begins to propagate in
the ordinary vacuum 3-D space symmetry without any external solicitation,
the self-gravity will invert the direction of the flow velocity −→u (t,−→r ) toward
particle’s barycenter, so we will have the strong compression forces inside parti-
cle’s body, and the hypothesis in Definition 1 would guarantee that the particle
would not be transformed into a black-hole, by constitution (at least a mini-
mal) ”nucleus” around particle’s barycenter. In that cases it is reasonable to
assume that inside an infinitesimaly small sphere with radius rm << r0 around
particle’s barycenter we do not have any movement of particle’s density but
only in the rest of the particle’s volume.
In next section we will consider this case of the small ordinary perturbations
(with consecutive de/accelerations) which ideally generate a spherically sym-
metric expansions/compressions of particle’s body w.r.t. its spherically sym-
metric hydrostatic equilibrium body shape.

5 Simple example model of auto-stability for small

spherical perturbations

Let us consider now the auto-stability of a massive elementary particle around
its hydrostatic equilibrium. Let us consider an inertial propagation of a particle,
during which it is in the hydrostatic equilibrium with a spherically symmetric
energy density Φm, assuming that the center of the spherical coordinate system
(with coordinates −→r ≡ (r, ϕ, θ)) is in particle’s barycenter, up to the time in-
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stance t = 0, and that for t > 0 particle is influenced by a small perturbation
(with acceleratin/deceleration) in a short interval of time. Hence we have that
Φm(t, r) is a spherically symmetric for all t ≤ 0, that is, that Φm(0, r) 6= 0 for
r ≤ r0 represents the initial hydrostatic equilibrium of the particle’s material
body with radius r0 and velocity −→u = 0 in all point inside particle’s body.
Thus, let us consider the solution of the differential equation (4) for the rest-
mass energy density Φm (by considering that in this coordinate system the
group velocity −→v (t) = 0 so that −→w(t,−→r ) = −→v (t) + −→u (t,−→r ) = −→u (t,−→r ) =
urer + uϕeϕ + uθeθ), for t > 0, during this small perturbation which produces
a relatively small spherical expansion/compression of the particle’s body.
In this simple idealized model, we consider the case when the particle is acceler-
ated but during this acceleration preserves its 3-D spherical symmetry of its sta-
tionary inertial-propagation state (hydrostatic equilibrium) with |−→u (t,−→r )| > 0
only for r ≥ rm where rm is an infinitesimal radius inside the body in which
this perturbation does not change the density (we do not require that the den-
sity inside this infinitesimally small sphere has the constant value or that is
equal to Φ∞), i.e., 0 ≈ rm << r0. So, the equation (4), rewritten in spherical
coordinates (r, ϕ, θ), becomes equal to

−∂Φm

∂t
= ∇ · (Φm

−→w) =
1

r2 sin θ
(sin θ

∂

∂r
(r2urΦm) + r

∂(uϕΦm)

∂ϕ
+

∂(uθΦm sin θ

∂θ
)

(37)
which, in this case of the small spherical expansion with uϕ = uθ = 0 and
ur = u(t, r), reduces to the simple equation

−∂Φm(t, r)

∂t
=

1

r2 (
∂

∂r
(r2u(t, r)Φm(t, r)) =

1

r2 (2ruΦm + r2∂u

∂r
Φm + r2u

∂Φm

∂r
)

(38)
considered for r ≥ rm > 0 and t > 0 (because otherwise both sides of this
equation are trivially equal to zero).
Let us seek a solution for such a spherical expansion/compression of the par-
ticle’s body for t ≥ 0, by separating the variables, Φm(t, r) = T (t)R(r), where
T (t) is a dimensionless function while R(r) is a 3-D energy density function
[Joule/cm3] and u(t, r) = uT (t)uR(r) where uT (t) ≥ 0 is a function in [sec−1]
and uR(r) is a 1-D function [cm](which express a distance). The functions T (t)
is the time evolution of the rest-mass energy density and hence we fix its ini-
tial value at t = 0 by T (0) = 1. We fix also uT (0) = 0, with uT (t) > 0 for
0 < t < 4t where 4t is the short time-interval during which an external force
generates this perturbation.
Notice that uT (t) is not the time evolution of the radial velocity, and also uR(r)
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is not a velocity; only their product represents the radial velocity. Thus, at t = 0
we have still the hydrostatic equilibrium with Φm(0, r) = T (0)R(r) = R(r) if
r ≤ r0; 0 otherwise, and the energy flux velocity u(0, r) = uT (0)uR(r) = 0
(because from above uT (0) = 0). Consequently, the equation (38) reduces into
the following differential equation, for r > rm > 0 (note that differently from
Φm(0, r), for R(r) we allow any finite big value for r) and t > 0,

1

uT (t)T (t)

∂T (t)

∂t
= k = −uR(r)

R(r)

∂R

∂r
− 2

r
uR(r)− ∂uR(r)

∂r
(39)

where k is a dimensionless constant real value (because left-hand side depends
only on the free time-variable t and right-hand side depends only on the free
variable r (radial coordinate); all functions different from uR(r) are positive,
while the radial velocity component uR(r) ≥ 0 for the spherical expansion
and uR(r) ≤ 0 for the spherical compression of the particle’s energy-density
distribution inside a sphere of time-dependent radius r0(t) during particle’s
accelerations.
In what follows we consider that the radial velocity u(t, r) = uT (t)uR(r) is
determined by the total external force which causes this perturbation, so that
other dynamic variables can be expressed by using uT (t) and uR(r).
From the left-hand side of the equation above, we obtain the following solution
for the time-dependent component of the energy-density distribution T (t) > 0
for any t ≥ 0:

T (t) = ek
∫ t

0
uT (s)ds (40)

Thus, from the fact that all functions at the right-hand side of this equation are
positive and t ≥ 0, in order to obtain that the T (t) component of the energy
density diminishes with time during particle’s spherical expansions (because the
total rest-mass energy is invariant), we conclude that:

• During the spherical expansion, when uR(r) ≥ 0, we must have that k < 0
(energy density diminishes with time in any point inside the particle’s
energy-density sphere with radius r0(t) that increases with time);

• During the spherical compression, when uR(r) ≤ 0, we must have that
k > 0 (energy density increases with time in any point inside the particle’s
energy-density sphere with radius r0(t) which decreases with time).

Remark: the value |k| is proportional to the external force which causes this
spherical perturbation from the particle’s hydrostatic equilibrium. In effect,
a bigger value of |k| will produce stronger changes of T (t) which represents
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the time-evolution of the particle’s rest-mass energy density caused by applied
external force field (gravitational or other fundamental quantum field forces
mediated by the bosons). Consequently, it is a fundamental parameter which
represents the strength of this external force, and will be considered in what
follows as a given (non derived) parameter in all equations.
¤
From the right-hand side of equation (39), we obtain the following dependance
of the energy-density distribution component R(r) ≥ 0 on the radial velocity
component uR(r), for 0 ≈ rm ≤ r (for which uR(r) 6= 0) :

1

R(r)

∂R(r)

∂r
= −(

k

uR(r)
+

2

r
+

1

uR(r)

∂uR(r)

∂r
) (41)

Notice that for 0 ≤ r < rm the rest-mass energy density Φm(t, r) does not
change in time and remains equal to that in the hydrostatic equilibrium.

Lemma 2 From the fact that | 1
uR(r)| is a finite value for all r ≥ rm, the general

solution of differential equation (41), for r ≥ rm, is

R(r) =
k2

r2uR(r)
e
−k

∫ r

rm
1

uR(s)ds
(42)

where k2 6= 0 is a (positive or negative) real constant (in [Joule]) such that
k2

uR(r) > 0. The radial component of the flow velocity uR(r) for rm ≤ r, depends

on the rest-mass density Φm(0, r) of the particle in the hydrostatic equilibrium
as follows:

1

uR(r)
(
∂uR

∂r
+ k) = −(

2

r
+

1

Φm(0, r)

∂Φm(0, r)

∂r
) (43)

Proof : It is easy to verify that (42) is the solution of the differential equation
(41) where partial derivatives can be substituted by total (material) deriva-
tives because their arguments are the functions of only one variable r, and the

fact that d
dre

−k
∫ r

rm
1

uR(s)ds
= e

−k
∫ r

rm
1

uR(s)ds
( d

dr(−k
∫ r

rm

1
uR(s)ds) = − k

uR(r)e
−k

∫ r

rm
1

uR(s)ds

holds because the function 1
uR(s) in the integral is finite in the range of the inte-

gration. From the fact that the value e
−k

∫ r

rm
1

uR(s)ds
is dimensionless, r2uR(r) is a

3-D volume and R(r) is an 3-D energy density, we obtain that the real constant
k2 has the unit of energy (in [Joule]).

Let us denote shortly e
k

∫ r

rm
1

uR(s)ds
by the function f(r), so that 1

f(r)
∂f
∂r = k

uR(r) .

Hence, in the hydrostatic equilibrium when R(r) = Φm(0, r), for rm ≤ r ≤ r0,
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where r0 is the radius of the particle in the hydrostatic equilibrium, and from
(42), we obtain (a) uR(r)f(r) = k2

r2Φm(0,r) , and by differentiation ∂
∂r

k2

r2Φm(0,r) =
∂uR(r)f(r)

∂r = ∂uR

∂r f(r) + uR(r)∂f
∂r = (∂uR

∂r + k)f(r), and by division of this equation
by equation (a), we obtain

1
uR(r)(

∂uR

∂r + k) = ∂
∂r

k2

r2Φm(0,r)(
k2

r2Φm(0,r))
−1 = −(2

r + 1
Φm(0,r)

∂Φm(0,r)
∂r ),

that is, the equation (43).
¤

Example 1 The equation (43) gives us the possibility to obtain the radius-
dependent component uR(r) of the radial velocity u(t, r) if we know the hydro-
static equilibrium solution of the particle’s rest-mass energy density Φm(0, r)
as, for example, in these three cases of the spherical expansion(when uR(r) >

0, k2 > 0 and k < 0):

1. For the energy density Φm(0, r) = K
r where, from m0c

2 =
∫

ΦmdV =

4π
∫ r0

0 Φmr2dr, we obtain K = 2m0c
2

4πr2
0
, and hence

uR(r)e
k

∫ r

rm
1

uR(s)ds
= k2

K
1
r , i.e., −k

∫ r

rm

1
uR(s)ds = ln(K

k2
uR(r)r),

so, by differentiation on r of both sides of the last equation, we obtain
−k
uR

= 1
ruR

d
dr(ruR), i.e., the differential equation uR(r) + r duR

dr = −kr, with
the linear solution
uR(r) = −k

2r > 0,
and, by substitution in one of the integral equation above, we obtain r2

m =
− 2k

kK > 0, that is, rm = r0(−4π
k

k2

m0c2 )
1/2. So, from the fact that k2 is an

infinitesimal rest-mass energy in an infinitesimal region inside particle’s
body, we have that k2

m0c2 ≈ 0, so that rm << r0 is an infinitesimal radius as
assumed.

2. For the distribution Φm(0, r) = K
r2 where, from m0c

2 =
∫

ΦmdV =

4π
∫ r0

0 Φmr2dr, we obtain K = m0c
2

4πr0
, and hence

uR(r)e
k

∫ r

rm
1

uR(s)ds
= k2

K , i.e., −k
∫ r

rm

1
uR(s)ds = ln(K

k2
uR(r)),

so, by differentiation on r of both sides of the last equation, we obtain
duR

dr = −k with the linear solution
uR(r) = −kr > 0, for r ≥ rm = − k2

kK = −4π
k

k2

m0c2r0 > 0.
So, from the fact that k2 is an infinitesimal rest-mass energy in an in-
finitesimal region inside particle’s body, we have that k2

m0c2 ≈ 0, so that
rm << r0 is an infinitesimal radius as assumed.

In effect, we can generalize this example as follows:
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Corollary 1 The linear solutions for uR(r) are possible if the hydrostatic equi-
librium is of the form Φm(0, r) = K

rn for any real n such that 0 ≤ n < 3, with

K = (3−n)m0c
2

4πr3−n
0

.

In all these cases, the linear solution is uR(r) = k
n−3r with rm = r0(

4π
|k|

k2

m0c2 )
1/(3−n)

so that 0 < rm << r0.

Proof : If we substitute this form of Φm(0, r) into (43), we obtain the differen-
tial equation (n − 2)uR(r) − r duR

dr = kr, with the solution uR(r) = k
n−3r. The

limit for the real value n is n < 3, because uR and k must have the opposite
signs. Moreover, we can not permit that n < 0 because, in that case, we would
obtain that in the barycenter (for r = 0) we have the zero energy-density, in
contrast with the particle’s topological properties.
¤
It is easy to verify that the two examples above are the particular cases of this
corollary for n = 1.0 and n = 2.0.
Based on this corollary and the possible model of Φm(0, r) in the hydrostatic
equilibrium, let us try to find what can be the true candidate for 0 ≤ n < 3
of the hydrostatic equilibrium. In effect, based on the equations (16) and (17)
for the hydrostatic equilibrium, the dependences of the self-gravitational ac-
celeration g(0, r), internal pressure P (0, g) and internal self gravitational force−→
F = Fer = Φm

c2
−→g = ∇P , are the following:

g = − 4πGK
c2(3−n)r

1−n, F = dP
dr = − 4πGK2

c4(3−n)r
1−2n and P (r) = P0 − A(n)r2−2n > 0

if n 6= 1 (notice that for n = 1 we would have P = P0 − 2πGK2

c4 ln(r)) where

A(n) = 2πGK2

c4(3−n)(1−n) = m2
0c

2G

8πr6−2n
0

3−n
1−n and P0 is a constant pressure in particle’s

barycenter (where r = 0) such that guarantees that P (r) be always a positive
value inside the particle’s body. The dependencies on r can be shown in the
following table:
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n Self-gravitational g Pressure P Internal force F

0 −r P0 − A(0)r2 −r

0.1 −r0.9 P0 − A(0.1)r1.8 −r0.8

0.9 −r0.1 P0 − A(0.9)r0.2 −1/r0.8

1.1 −1/r0.1 P0 + A(1.1)/r0.2 −1/r1.2

1.5 −1/
√

r P0 + A(1.5)/r −1/r2

2.0 −1/r P0 + (A(2)/r2 −1/r3

2.5 −1/r1.5 P0 + A(2.5)1/r3 −1/r4

2.9 −1/r1.9 P0 + A(2.9)/r3.8 −1/r4.8

From the fact that the pressure must be positive (against the self-gravitational
force) during the hydrostatic equilibrium, we can chose enough big constant
pressure P0 such that the internal pressure on the particle’s surface is enough
in order to guarantee its compactness during the elastic collisions between mas-
sive particle with Compton effects.
The first comment is that, for 1 < n < 3, we have the singularities with very
rapid changing of internal force for r 7→ 0, which is not a property of equilib-
rium. Moreover, we have that on the particle’s surface the internal pressure
is minimal instead of to be maximal (what is necessary in order to have the
elastic Compton effects during weak collisions between massive particles - in
that case the strong internal pressure on the particle’s boundary (surface) is
more resistant to the deformations during the Compton-effect collisions, and
permits the fusion between two massive particles during the collisions only in
high-energy impacts.
Consequently, it seems reasonable to seek for the ideal model in the range
0 ≤ n < 1; in effect, the best candidate for the hydrostatic equilibrium is that
one for which we have the equilibrium of the internal force (see the Lemma 1)in
each point inside particle’s body and hence the most simple (which is usually
also reasonable from the physicist’s point of view that the good solutions in
nature are frequently the most simple solutions) model for the density of the
particle’s body-matter hΦm in particle’s hydrostatic equilibrium seems to be
the following:4

4Notice that it is different from Φm(0, r) = K
r2 , assumed in [10], Section 2.5, derived from the erroneous

definition of the self-gravitational internal force in the hydrostatic equilibrium of the massive particle.
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Corollary 2 The solution for the hydrostatic equilibrium for rm ≤ r ≤ r0 is
given by

Φm(0, r) =
K√
r

(44)

with the linearly deceasing internal pressure P (r) = P0 − 8πGK2

5c4 r > 0, where,

from the Corollary 1, K = 2.5m0c
2

4πr2.5
0

and rm = r0(
4π
|k|

k2

m0c2 )
1/(2.5), so that 0 < rm <<

r0.

Proof : If we replace the model Φm(0, r) = K
rn into the second order differential

equation in Lemma 1, we obtain the following equation:
0 = n(n + 1)r−n−2 + (4

r − 3rn(−nr−n−1)(−nr−n−1) + 2r−n−2,
that is, the quadratic equation
−2n2 − 3n + 2 + 0,
which has only one acceptable solution n = 1/2 (other one is negative value −2
which physically is not acceptable because we would have maximal particle’s
density on its boundary surface and zero in the particle’s barycenter).
Let us show that this is the solution. In effect. the first-order differential
equation (18) can be rewritten by substitution h(r) = ( 1

Φm(0,r))
2, for 0 ≤ r ≤ r0

where Φm(0, r) > 0, in the following form

dh(r)

dr
+

4

r
h(r) = −8πG

Fc4 (45)

where the right-hand side is a constant value. From the first and second func-
tional term on the left-hand side, we deduce that h(r) must be a polyoma on
r, that is, for some positive integer n ≥ 1, we seek the polynomial solution
h(r) =

∑n
i=1 air

i, so by substitution in (45), we obtain the equation∑n
i=1 ai(i + 4)ri−1 = −8πG

Fc4

with the unique solution a1 = − 8πG
5Fc4 and ai = 0 for i ≥ 2. So, we obtain the

unique solution ( 1
Φm(0,r))

2 = h(r) = − 8πG
5Fc4r with F < 0, that is, Φm(0, r) = K√

r

where K2 = −5Fc4

8πG , that is, F = −8πGK
5c4 < 0. It is easy to verify that really

this constant value F is obtained from the computation of the internal force
F = Φm(0,r)

c2 g(r) = Φm(0,r)
c2 (−4πG

r2

∫ r

0
Φm(0,s)

c2 s2ds) for Φm(0, r) = K√
r
.

¤
Remark: From Corollary 2, we obtain that R(r) = K

rn for n = 1/2 (because
Φm(0, r) = T (0)R(r) = 1 · R(r) = R(r)) so, from the Corollary 1, we obtain
that uR(r) = −2k

5 r for a given perturbation with the strength fixed by the value
of k. The fact that the radial velocity component uR(r) is incrementing with r

is compatible with the necessities of particle’s ”radial explosions” in extremely
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excitations during extremely short time-intervals required by the theory in [10].
¤
Let us consider now the dynamic changes of this hydrostatic equilibrium density
during the small spherical perturbations:

Proposition 1 The changing of the particle’s rest-mass energy density during
a small spherical perturbations for t > 0 and rm ≤ r ≤ r0(t) is given by

Φm(t, r) =
k2

r2uR(r)
e
k(

∫ t

0
uT (s)ds−∫ r

rm
1

uR(s)ds)
(46)

where the constants k is a given parameter (negative for particle’s expansion)
representing the external force which causes the perturbation from the hydro-
static equilibrium of a massive particle with rest-mass m0 and with radius r0,
while k2 is a derived real constant with the same sign as uR(r)

k2 =
m0c

2

4π
(

∫ r0

0

1

uR(r)
e
−k

∫ r

rm
1

uR(s)ds
dr)−1 = −km0c

2

4π
(
rm

r0
)5/2 = −2kr

5/2
m

5
K (47)

The changing of the radius r0(t), with r0(0) = r0, of the particle’s body
hΦm(t, r), for t > 0 is given by

dr0(t)

dt
= −km0c

2

4πk2
uT (t)uR(r0(t))e

−k(
∫ t

0
uT (s)ds−∫ r0(t)

rm
1

uR(s)ds)
(48)

or by a pure second-order differential equation:

d2r0(t)

dt2
= (

1

uT (t)

duT (t)

dt
−kuT (t))

dr0(t)

dt
+

1

uR(r0(t))
(k+

duR(r)

dr
)(

dr0(t)

dt
)2 (49)

Proof : From the definition Φm(t, r) = T (t)R(r) and hence from (40) and (42),
we obtain the solution during spherical perturbation for t > 0 (for a small
interval of time) given by (46).
The constant k2 can be derived by using the equation (46) for the computation
of the particle’s rest-mass energy:

m0c
2 =

∫
Φm(t, r)dV = 4π

∫ r0(t)
0 Φmr2dr = 4πT (t)

∫ r0(t)
0 R(r)r2dr

= k2(4πT (t)
∫ r0

0
1

uR(r)e
−k

∫ r

rm
1

uR(s)ds
dr), so that

k2 = m0c
2

4πT (t)(
∫ r0(t)

0
1

uR(r)e
−k

∫ r

rm
1

uR(s)ds
dr)−1,

and for t = 0, from T (0) = 1 and r0(0) = r0, we obtain the first result in (47),
and by substitution uR(r) = −2k

5 r, we obtain the second result in (47), while

third result is obtained from the fact that K = 2.5m0c
2

4πr
5/2
0

.
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Notice that, from the first line of the derivation above, we obtain that the
time-evolution of the particle’s density is given by

∫ r0(t)

0
R(r)r2dr =

m0c
2

4πT (t)
(50)

By differentiation of both sides of this equation above and from Leibniz in-

tegral rule we have that the right-hand side is equal to d
dt

∫ r0(t)
0 R(r)r2dr =

R(r0(t))r
2
0(t)

dr0(t)
dt while the left-hand side is d

dt
m0c

2

4πT (t) = − m0c
2

4πT 2(t)
dT
dt and by sub-

stitution of k = 1
ut(t)T (t)

dT
dt we obtain that

dr0(t)
dt = − km0c

2

4πR(r0(t))r2
0(t)

uT (t)
T (t) = −km0c

2

4πk2
uR(r0(t))

uT (t)
T (t) e

k
∫ r0(t)

rm
ds

uR(s) ,

and hence by substitution of T (t), we obtain the equation (48). The equation
above can be rewriten in this form
k

∫ r0(t)
rm

ds
uR(s) = ln(−4πk2

km0c2

T (t)
uT uR(r0(t))

dr0

dt ), so by derivation d
dt , by using Leibniz inte-

gral rule for the left-hand side), we obtain
k 1

uR(r0(t))
dr0

dt

= d
dtln(−4πk2

km0c2

T (t)
uT (t)uR(r0(t))

dr0

dt )

= d
dtln( T (t)

uT (t)uR(r0(t))
dr0

dt )

= uT (t)uR(r0(t))
T (t)dr0

dt

d
dt(

T (t)
uT (t)uR(r0(t))

dr0

dt )

= 1
T (t)

dT
dt − 1

uT (t)
duT

dt − 1
uR(r0(t)))

duR(r0(t))
dt + 1

dr0
dt

d2r0

dt2

= 1
T (t)

dT
dt − 1

uT (t)
duT

dt − 1
uR(r0(t)))

duR(r)
dr

dr0

dt + 1
dr0
dt

d2r0

dt2 ,

and hence, by using kuT (t) = 1
T (t)

dT
dt from (39), we obtain the second-order

differential equation (49).
¤
It is easy to verify that (46) reduces into Φm(t, r) = T (t)K

rn for the linear ex-
pansion velocity uR(r) = −2

5kr obtained from Corollary 1 for n = 1/2 of the
hydrostatic-equilibrium model.
Hence, for the computation of the time evolution of the particle’s body ra-
dius r0(t), during its spherical expansion/compression, we can use the ordinary
second-order differential equation (49). However, we can use also the integral-
differential equation (48). Let us consider it for an infinitesimal but finite time
t = δt of perturbation from particle’s hydrostatic equilibrium. Then
dr0

dt ≈ r0(δt)−r0

δt and for T (δt) = e−k
∫ δt

0
uT (s)ds ≈ T (0) = 1, from (48) we obtain:

r0(δt) = r0 − km0c
2

4πk2
uR(r0)e

k
∫ r0

rm
1

uR(s)ds)
uT (δt)δt = r0 − km0c

2

4π
uT (δt)δt
r2
0R(0,r)

= r0 − km0c
2

4π
uT (δt)δt

r2
0Φm(0,r) , where Φm(0, r0) is the hydrostatic equilibrium density on
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the surface of particle’s body.
Consequently, any short interval of time t can be divided in a number of very
small intervals δt such that t = Nδt for N >> 1, and we can use the following
recursive algorithm to compute the dynamic changing of the particle’s radius
r(t), from initial hydrostatic-equilibrium radius r0, during these spherical per-
turbations:

Time radius

0 r0(0) = r0

δt r0(δt) = r0(0)− km0c
2

4π
uT (δt)δt

r2
0Φm(0,r)

... ...

t− δt r0(t− δt) = r0(t− 2δt)− ...

t r0(t) = r0(t− δt)− km0c
2

4πk2
uR(r0(t− δt))·

· e
−k(

∫ t=δt

0
uT (s)ds−∫ r0(t−δt)

rm
1

uR(s)ds)
uT (t− δt)δt

However, if we assume the hydrostatic-equilibrium model (44) and hence R(r) =
T (0)R(r) = Φm(0, r) = K√

r
= 2.5m0c

2

4πr
5/2
0

r−1/2 then we can use directly the equation

(50) in order to compute r0(t) as follows
m0c

2

4πT (t) =
∫ r0(t)

0 R(r)r2dr = 2.5m0c
2

4πr
5/2
0

∫ r0(t)
0 r3/2dr = 2.5m0c

2

4πr
5/2
0

2
5r

5/2
0 (t) = m0c

2

4π (r0(t)
r0

)5/2,

and we obtain the simple solution

r0(t) = r0T (t)−2/5 = r0(e
−k

∫ t

0
uT (s)ds))2/5 (51)

where k < 0 during the spherical expansion and k > 0 during the spherical
compression. In effect, it is easy to verify that (51) is the solution of the second-
order differential equation (49) when uR(r) = −2

5kr (with the energy-density
speed u(t, r) = uT (t)uR(r) = −2

5kuT (t)r) is the linear solution in Corollary 1
for n = 1/2 of the hydrostatic-equilibrium model.
So, from (51), the speed of particles expansion is
dr0

dt = −2
5r0T (t)−7/5 dT

dt = −2
5r0kuT (t)T (t)−2/5 = −2

5kuT (t)uRr0(t) = u(t, r0(t)),
i.e., exactly the speed u(t, r0(t)) = uT (t)uR(r0(t)) of the energy-density of the
particle’s body surface. It is proportional to the strength of the external force
(expressed by k) and increments linearly with the particle’s dynamic radius
r0(t) as expected. If we replace ur(r) by −2k

5 r into (48) then it is easy to
verify that this equation reduces to the simple equation dr0

dt = u(t, r0(t)) above
(obtained in a different way from (51) previously). It is also easy to compute

from (51) the acceleration d2r0(t)
dt2 of the particle’ body expansion during an

expansive perturbation, and to show that when we replace ur(r) by −2k
5 r into
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(49) then this equation reduces to the simple equation d2r0(t)
dt2 = d

dtu(t, r0(t)) =
uR(r0(t))

duT

dt + uR(r0(t))
duR

dr u2
T (t).

Example 2 Let us consider a single interaction of a massive particle with a
single boson of some external field. We consider that such an absorbtion of this
boson by the direct collision with this massive particle happens in an extremely
short interval of time 4t so that the function uT (t) = 1 for 0 < t ≤ 4t and
zero for t ≤ 0 and for t > 4t. In this case we obtain that the time-evolution of
the particle’s density for 0 < t ≤ 4t is a simple exponential function T (t) = ekt

and hence we have an exponential decreasing (for k < 0 during a small spherical
expansion) of the particles density from its hydrostatic equilibrium,
Φm(t, r) = T (t)R(r) = K√

r
ekt,

while the radius of the particle expands exponentially in time r0(t) = r0e
− 2

5kt and
the speed of spherical expansion of the particle’s body increments exponentially
in time
dr0

dt = −2
5r0ke−

2
5kt

for this extremely short interval of time 4t.
Obviously, such an impact of the boson will temporarily accelerate/decelerate
this massive particle so that after this impact the particle will continue an in-
ertial propagation (by returning into its hydrostatic equilibrium again) but with
a different velocity vector of propagation. We recall [10] that, before the di-
rect collision (and successive absorption) of a massless boson with this massive
particle, also this boson transforms from the point-like particle into a massive
boson with a finite 3-D region of its energy-density.
¤

Based on (51), we are able to represent all time-dependent components of radial
expansion in dependence only on the dynamic radial expansion/compression
r0(t) of the particle:

Corollary 3 The time-dependent component of particle’s spherical perturba-
tion are given by

T (t) = (
r0

r0(t)
)5/2, and uT (t) = − 5

2k

1

r0(t)

dr0

dt
(52)

Proof : The first equation is obtained directly from (51), while the second from
equation (39), i.e., from uT (t) = 1

kT (t)
dT
dt . Notice that if we represent the nor-

malized form of uT (t) = − 5
2k

1
r0(t)/r0

dr0/r0

dt and substitute it in ( 40) we obtain the
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first equation of this corollary as well.
¤
Consequently, we have that the particle’s density time-evolution and radial
speed of spherical extension/compression are given by

Φm(t, r) = (
r0

r0(t)
)5/2 K√

r
, and u(t, r) = uT (t)uR(r) =

r

r0(t)

dr0

dt
(53)

so that the matter/energy density on the particle’s spherical surface (when
r = r0(t)) is equal to

Φm(t, r0(t)) =
5

8π

m0c
2

r3
0(t)

=
5

6

m0c
2

Vt
(54)

where Vt is the volume of the particle at the time t and hence the particle’s
density on its surface is 5

6 of the medium density.
Now we will consider internal dynamics connected with evolution of the internal
pressure P during spherical perturbations:

Lemma 3 In the absence of the viscosity, during the small spherical pertur-
bations also the internal pressure P (t, r) is a spherically symmetric with its
gradient inside particle’s body rm ≤ r ≤ r0(t),

− ∂P (t, r)

∂r
=

k2T (t)

c2r2uR(r)
e
−k

∫ r

rm
1

uR(s)ds)·

[ uR(r)
duT (t)

dt
+uT (t)2uR(r)

duR(r)

dr
+

4πGk2T (t)

r2

∫ r

0

1

uR(s)
e
−k

∫ s

rm
1

uR(q)dq
ds ]

(55)

where r0(t) is the radius of particle’s body in the time instance t > 0, and time

evolution T (t) = ek(
∫ t

0
uT (s)ds.

Proof : From (32) we obtain

−∇P (t, r) =
Φm(t, r)

c2 (
d−→u (t, r)

dt
−−→g (t, r)) (56)

So by substitution that −∇P (t, r) = −∂P (t,r)
∂r er,

d−→u (t,r)
dt = ∂−→u (t,r)

∂t − (−→u (t, r) ·
∇)−→u (t, r) = (uR(r)∂uT (t)

∂t + uT (t)2uR(r)∂uR

∂r )er,
Φm(t,r)

c2 = T (t)R(r)
c2 and −→g (t, r)) =

−G
r2m = −4πG

r2

∫ r

0 Φm(t, s)s2ds = −4πGT (t)
r2

∫ r

0 R(s)s2ds, by substitution of R(r)
given by (42), we obtain the equation (55).
¤
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Hence, for the hydrostatic equilibrium model given by Corollary 2, when
R(r) = K√

r
and uR(r) = −2

5kr, we obtain that the internal force (pressure-

gradient force per unit of area) inside particle’s body is

F (t, r) = −∂P (t, r)

∂r
= −∂P (0, r)

∂r
T 2(t)− 2kK

5c2 T (t)(
duT (t)

dt
− 2k

5
u2

T (t))
√

r > 0

(57)

where −∂P (0,r)
∂r = 8πGK2

5c4 > 0 is the constant internal force inside the particle’s
body during its hydrostatic equilibrium.
If we substitute t = 0 in (57) we obtain the solution of the hydrostatic equi-

librium when the internal force inside particle’s body
−→
F = −∂P (0,r)

∂r er > 0 is
balanced by the self-gravitational force oriented into particle’s barycenter. How-
ever, for t > 0 in the case of spherical expansion (when k < 0) we have also the
second term created by the external force, which caused this perturbation and
generated an internal density speed u(t, r) = uT (t)uR(r) = −2

5kruT (t) > 0 with

the acceleration d
dtu(t, r) = duT (t)

dt uR(r) = −2
5kr duT (t)

dt proportional to duT (t)
dt 6= 0.

Thus, now the internal force
−→
F (t, r) given by (57) is not more constant in each

point of particle’s body but changes proportionally to
√

r (in each fixed time-

instance t > 0 if duT (t)
dt 6= 0). That is, the major changes of the internal force we

have at the parts of particle’s body that are more far from particle’s barycenter,
as expected.
Let us consider a complete cycle of particle’s auto-equilibrium dynamics when
a particle passes from an inertial propagation with a stationary distribution
Φm = K√

r
to a small acceleration and consecutive energy-density spherical ex-

pansion, and then, after some interval of time, again returns into the inertial
stationary propagation:

• Expansion process: It happens when, at t = 0, a particle, from its initial
inertial stationary propagation with energy-density distribution Φm(0, r) =
K√
r
in the sphere with initial radius r0, starts to be accelerated (by the direct

action of an external field) and begins the process of particle’s expansion
with the velocity −→w = −→u = u(t, r)er = uT (t)uR(r)er = −2

5krer (with
k < 0).
During this particle’s acceleration, i.e., the time interval 0 < t < 4t, this
stationary energy density changes as a result of the spherical expansion
velocity u(t, r) = uT (t)uR(r). In this case, at the end of this expansion,
we obtain that the density of the particle’s body diminished and becomes
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equal to

Φm(4t, r) = T (4t)
K√
r

=
1

e|k|
∫4t

0
uT (s)ds

K√
r

<
K√
r

(58)

for rm < r ≤ r0(4t) = r0T (4t)−2/5 = r0e
2
5 |k|

∫4t

0
uT (s)ds and hence with

r0(4t) > r0.
During this period of the expansion (when k < 0) the second term on the
right-side of the internal force

F (t, r) = −∂P (t, r)

∂r
= −∂P (0, r)

∂r
T 2(t)−2kK

5c2 T (t)(
duT (t)

dt
−2k

5
u2

T (t))
√

r > 0

(59)
is positive as well. However, at the end of this time interval, i.e., at t = 4t,
when the external force disappears, also the expansion acceleration disap-
pears, that is duT (t)

dt |t=4t = 0. So, in this instance of time the internal force

becomes
−→
F (4t, r) = −∂P (4t,r)

∂r = −∂P (0,r)
∂r T 2(4t) much more smaller than

at an instance of time before 4t, so that the self-gravitational force be-
comes bigger than this internal pressure and hence begins the process of
particles compression (the speed u(t, r) = −2

5kruT (t) for t > 4t becomes
negative (now with k > 0)).

• Self-compression process: Let us now consider what happens for
t > 4t when the external field (which caused this short time spher-
ical perturbation) is equal to zero, so that the particle has to propa-
gate (after a very short time during which this particle reaches again
its hydrostatic equilibrium) again with a new constant velocity in the
vacuum. The energy-density distribution of the particle at t = 4t is
that given by (58). Consequently, we have that during the expansion for

0 < t < 4t, T (t) = ek
∫ t

0
uT (s)ds = e−|k|

∫ t

0
uT (s)ds < 1, while now for t > 4t,

T (t) = ek
∫ t

0
uT (s)ds = e|k|

∫ t

0
uT (s)ds > 1, and hence now Φm(t, r) = T (t)R(r)

is growing with time, that is, the density of particle now increases during
this compression phase. We obtained, from (51), the maximal spherical
extension of particle’s body r0(4t) = r0T (4t)−2/5. However, now for
t > 4t, T (t) > 1, and hence r0(t) now decreases confirming that we have
the compression of the particle’s body with the velocity dr0

dt = u(t, r0(t)) =
uT (t)uR(r0(t)) = uT (t)(−2

5kr0(t)) = −2
5 |k|uT (t)r0(t) < 0, because now for

t > 4t we have k > 0 and hence the radial velocity now is negative (ori-
ented toward the particle’s barycenter) as expected.
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So, we have now an inverse process, that is, a compression of the particle’s
energy-density up to the radius r0 when the distribution of the energy-
density again becomes time-invariant Φm(t, r) = K√

r
. Thus, we obtain

again a stationary particle’s state in which internal forces become con-
stant in each point inside particle’s body, and hence internal energy-flow
velocity −→w = −→u = u(t, r)er becomes zero again. Thus, we return again to
particle’s hydrostatic equilibrium5, as it was in the initial moment t = 0
before the particle’s expansion caused by an acceleration, however now
with a different (but constant) speed of this particle.

Consequently, any particle’s acceleration changes its internal energy-density
distribution which, as a side effect, generates the dynamic changes of inter-
nal forces in the particle’s body and creates the internal density-flux velocity−→u (t,−→r ) (which is zero in the hydrostatic equilibrium during an inertial propa-
gation, making equal internal force in every point inside particle’s body). The
self-gravitational forces, in the absence of the external fields (that caused par-
ticle’s acceleration), now generate again the stationary (stable) energy-density
distribution K√

r
in which there is a perfect equilibrium of particle’s internal forces

(equal in each point inside particle’s body). Consequently, the auto-stability of
any elementary massive particle is explained by this internal self-gravitational
process.
Notice that we can not obtain a non-banal equation for radial density speed
u(t, r) = uR(r)uT (t) = −2

5kruT (t), that is, of its temporal evolution uT (t), from
the continuity equation (rest-mass energy conservation) (37), because it reduces

to the equation (39), i.e., to kuT (t) = 1
T (t)

dT (t)
dt (because T (t) = ek

∫ t

)
uT (s)ds so

that the previous equation reduces to banal equation uT (t) = uT (t)). However,
it is possible to obtain this non-banal equation from the momentum conserva-
tion law (56), that is from its reduction into (57), as follows:

Corollary 4 Based on the momentum conservation law (56) during parti-
cle’s spherical perturbation, we can derive the following equation for the time-
evolution of the particle’s internal pressure P (t, r), by knowing its hydrostatic-
equilibrium pressure P (0, r) = P0 − 8πGK2

5c4 r given by Corollary 2, and the time-

5It will be necessary also to investigate the damping ratio: the eventual oscillatory behavior when the particle
after acceleration returns into its inertial propagation with internal hydrostatic equilibrium. Does we have an
exponential decrease as a function of time (analog to Landau damping, for example) of such spherical particle’s
density oscillatory waves has to be investigated.
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evolution of the speed uT (t),

P (t, r) =
4kK

15c2 T (t)(
duT (t)

dt
− 2k

5
u2

T (t))r3/2 + P (0, r)T 2(t) (60)

where T (t) = ek
∫ t

0
uT (s)ds. This equation is quadratic equation for T (t) with the

solution T (t) = (−b(duT (t)
dt − 2k

5 u2
T (t)) +

√
b2(duT (t)

dt − 2k
5 u2

T (t))2 − 4ac)/2a where

a = P (0, r) > 0, c = −P (t, r) < 0 and b = 4kK
15c2 r

3/2. So, we obtain the following
second-order differential equation for uT (t):

uT (t) =
1

k

d

dt
ln((−b(

duT (t)

dt
− 2k

5
u2

T (t)) +

√
b2(

duT (t)

dt
− 2k

5
u2

T (t))2 − 4ac)/2a)

(61)
Moreover, from the fact that uT (0) = 0, at the very beginning of the perturbation,
for an infinitesimal but finite δt, we obtain the initial value for uT by

uT (δt) ≈ 4πr2
0

m0k
δt2

∂2P (t, r)

∂t∂r
|r=r0,t=δt > 0 (62)

expressed by the time-changing of the internal pressure-gradient force −∂P (t,r)
∂r

on the particle’s surface.

Proof : Let us seek a solution of (57) of the form P (t, r) = P (0, r)T 2(t)+f(t, r),
so that f(0, r) = 0, and hence by substitution of it in (57), we obtain the
equation

1√
r

∂f(t, r)

∂r
=

2kK

5c2 T (t)
duT

dt
(63)

and hence, from the fact that the right-hand side of this equation does not
depend on r, also the left-hand side must be so, and this can be done by setting
f(t, r) = h(t)r3/2, so that we obtain (by substitution in (63)),

h(t) =
4kK

15c2 T (t)
duT

dt
(64)

Thus, we obtained the solution (60). Note that at t = 0, 0 = f(t, r) = h(t)r3/2

and hence it must be h(0) = 0. Thus, from T (0) = 1 and from the equation

above, we obtain that duT (t)
dt |t=0 = 0.

The equation (60) can be rewritten as the quadratic equation aT 2(t)+b(duT (t)
dt −

2k
5 u2

T (t))T (t)+c = 0 and from the fact that T (t) = ek
∫ t

)
uT (s)ds is always positive,

it must be b2−4ac > 0 because −4ac > 0. So, we take the real positive solution

ek
∫ t

0
uT (s)ds = T (t) = (−b(duT (t)

dt −2k
5 u2

T (t))+
√

b2(duT (t)
dt − 2k

5 u2
T (t))2 − 4ac)/2a > 0
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and hence from this equation we obtain∫ t

0 uT (s)ds = 1
k lnT (t)

= 1
k ln((−b(duT (t)

dt − 2k
5 u2

T (t)) +
√

b2(duT (t)
dt − 2k

5 u2
T (t))2 − 4ac)/2a).

Then, by differentiation on t, we obtain from Leibniz integral rule (from the
fact that uT (0) = 0) that d

dt

∫ t

0 uT (s)ds = uT (t) and hence the second-order
differential equation of uT (t), given by equation (61).
From (57), for an infinitesimal amount of time δt after beginning of the spherical
perturbation (t = 0), we obtain that for T (δt) ≈ T (0) = 1,

duT (t)

dt
|t=δt ≈ (

∂P (δt, r)

∂r
− ∂P (0, r)

∂r
)

5c2

2kK
r−1/2 (65)

and, from the fact that the left-hand side is duT (t)
dt |t=δt ≈ uT (δt)−uT (0)

δt = uT (δt)
δt >>

−2k
5 u2

T (δt), by multiplying both sides of the equation above by δt and from the

fact that (∂P (δt,r)
∂r − ∂P (0,r)

∂r ) ≈ δt ∂
∂t(

∂P (t,r)
∂r )|t=δt = δt∂2P (t,r)

∂t∂r |t=δt, and the fact that
the right-hand side of (65) does not depend on r (because the left-hand side
depends only on t) so that we can fix r = r0 and substitute K by 5m0c

2

8πr
5/2
0

, we

obtain the equation (62).
¤
Notice that we can use the same method for derivation of uT (δt) from equation
(60) instead, so that we obtain also

uT (δt) ≈ 6πr0

m0k
δt2

∂P (t, r0)

∂t
|t=δt > 0 (66)

which demonstrates how the time-evolution of the particle’s density at the very
beginning of a perturbation depends on the time-changing of the pressure on
the surface of particle’s body.

6 Conclusion: General case of returning to hydrostatic

equilibrium

In the vacuum and in the absence of any external field (as, for example, during
the self-compression process described in the previous section), the unique forces
that determine the internal energy-density flow are that which are generated by
self-gravitational forces. Hence, in such cases it is valid the following corollary:

Corollary 5 The self-gravitational force inside the particle’s rest-mass energy
during the self-compression in absence of any other external field (or force),
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for a massive particle with a speed −→v (t) in a locally flat Minkowski time space
around it (observer’s reference frame), generates the following variation-velocity
of particle’s energy-density at the position −→r = xe1 + ye2 + ze3,

−→u (t,−→r ) = −→u (0,−→r )−
∫ t

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′)

(67)
where dV ′ = dx′dy′dz′ and −→r ′ = x′e1 + y′e2 + z′e3 is the position inside the
particle’s body with energy-density Φm(t′,−→r ′).
Consequently, the energy-density Φm of this particle must satisfy the following
integral equation, during the time evolution t ≥ 0,
∫

Φm(t,−→r )[−→u (0,−→r )−
∫ t

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′)]dV = 0

(68)
where dV = dxdydz.

Proof : From the general equation (32),

d−→u (t,−→r )

dt
= − c2

Φm(t,−→r )
∇P (t,−→r ) +−→g (t,−→r ) (69)

where −→g (t,−→r ) = −G
c2

∫ (−→r −−→r ′)Φm(t,−→r ′)
‖−→r −−→r ′‖3 dV ′ is the internal autocohesive self-

gravitational acceleration, by integration, we obtain (67).
The equation (68) is derived from [10] (from equation (1.53) in Corolary 1).
¤
Notice that if we assume that t = 0 is the beginning of particle’s perturba-
tion, so that for t ≤ 0 it was in the hydrostatic equilibrium during an iner-
tial propagation (with a constant (group) velocity), then in (67) we have that−→u (0,−→r ) = 0. So, we obtain that during the whole perturbation (with the ex-
pansion/compression) up to the next hydrostatic equilibrium at tf when again−→u (tf ,

−→r ) = 0, the following equation is valid for 0 < t < tf

−→u (t,−→r ) = −
∫ t

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′) (70)

with

0 = −
∫ tf

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′) (71)

and hence, for t > tf , up to the next particle’s perturbation (for example by
interaction with some boson, we have that in any point (t,−→r ) inside particle’s
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body, this equation

0 =
c2∇P (t,−→r )

Φm(t,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t,−→r ′)

‖−→r −−→r ′‖3 dV ′ (72)

represents again the particle’s hydrostatic equilibrium (now in (72) expressed
not in proper frame of the particle with the center in particle’s barycenter, but in
Minkowski time-space of the observer ’s laboratory) with spherically symmetric
density Φm = K√

r
where r is the distance from the particle’s barycenter (the

center of its spherical body shape) and with constant internal force in every
point inside the particle’s body.
In this self-gravitational stability assumption, the conservation law for rest-mass
energy-density (4) becomes equal to the following integral-differential equation:

∂Φm(t,−→r )

∂t
= −∇ · (Φm(t,−→r )[−→v (t) +−→u (t,−→r )])

= −∇ · (Φm(t,−→r )[
d
dt

∫ −→r ′Φm(t,−→r ′))dV ′
∫

Φm(t,−→r ′))dV ′

+−→u (0,−→r )−
∫ t

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′)]) (73)

Note that the rest-mass energy-density Φm in equation (73) has the following
self-referential aspect: its time evolution in the past (integral from time-instance
0 to current time t) determines the current variation-velocity −→u (t,−→r ), while
this current variation-velocity determines the future state of the energy-density
Φm as specified by the first row of equation above. This fact is analog to the
General Relativity theory of gravitation and time-space curvature where the
time-space is considered as a particular field. In effect, in GR time-space plays
a dual role in this theory, because it constitutes both the dynamical object
and the context within which the dynamics are defined. This self-referential
aspect gives general relativity certain characteristics different from any other
field theory. For example, in other theories we formulate a Cauchy initial value
problem by specifying the condition of the field everywhere at a given instant
t = 0, and then use the field equations to determine the future evolution of the
field. In contrast, because of the inherent self-referential quality of the metrical
field, we are not free to specify arbitrary initial conditions. Also in our case, we
can not specify the field Φm and vector field −→u everywhere at a given instant
t = 0 for an unstable massive particle (we are able to specify them only for
stationary cases of an inertial propagation in the vacuum), so that we are not
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able practically to compute Φm for any t > 0, also when, from (73) we have
that for any infinitesimal interval of time δt,

Φm(t + δt,−→r ) = Φm(t,−→r )− δt∇ · (Φm(t,−→r )[
d
dt

∫ −→r ′Φm(t,−→r ′))dV ′
∫

Φm(t,−→r ′))dV ′

+−→u (0,−→r )−
∫ t

0
dt′(

c2∇P (t′,−→r )

Φm(t′,−→r )
+

G

c2

∫
(−→r −−→r ′)Φm(t′,−→r ′)

‖−→r −−→r ′‖3 dV ′)]) (74)

Note that we consider the velocity −→w(t,−→r ) = −→v (t) + −→u (t,−→r ) as a particular
vector field, which is not observable in QM, thus can be considered as a ’hidden
variable’ in this theory.
The simply connected matter distribution [10] at any fixed instance of time
t (the space where its matter/energy distribution in the 3-dimensional space-
like hypersurface Σt ⊂ M is greater than zero) means that every closed 3-
dimensional loop in it, such that for each point −→r ∈ Vt ⊂ Σt of this loop,
Φ(t,−→r ) > 0, can be deformed continuously to a small sphere. In fact, from the
Poincare conjecture (Grigorij Perelman, [2, 4, 3]):

”Every simply connected closed 3-manifold is homeomorphic to the 3-sphere”,

we have the fact that in stationary cases when a massive particle propagates
with a constant speed (w.r.t. a given Minkowski frame), the natural topology
of particle’s body-volume Vt is a sphere with radius r0 (with the spherically
symmetric energy-density distribution Φm proportional to 1√

r
for the distance r

from the barycenter), like the topology of stars in universe. During acceleration
this ’geometry’ of Vt changes, but with autocohesive forces when the particle
again returns in its inertial propagation, its ’geometry’ again becomes perfectly
a sphere (3-D space symmetry).
The physical explanation of this ’implosion’ process can be, for example, pro-
vided by using the Ricci flow, defined by Richard Hamilton [5], expressed by
the equation for this 3-D manifold Vt,

∂thij = −2R
(3)
ij (75)

where hij is the component of the Riemannian metric of Vt and R
(3)
ij is the

component of the 3-D Ricci curvature tensor (considered in unification of
QM with Einstein’s GR [11], Section 1.4, for the 4-D time-space pseudo-
Riemannian metric). Ricci flow expands the negative curvature part of the
manifold and contracts the positive curvature part, as can be seen in Fig.1
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Figure 1: Ricci flow evolution

(from https : //en.wikipedia.org/wiki/F ile : Ricci − flow.png)6, where we
can see an example of the evolution of the stable state (sphere) into unstable
particle’s state, and vice versa.
However, in order to consider a kind of Richard Hamilton’s Ricci flow (as that
in equation (75)) we must first transform the ”Newton’s” equation (73) into
its covariant form (similarly to the method applied in [11]). More work in this
direction has to be done in the future.
In [10] has been considered the processes of spherical expansions and compres-
sions for the massless bosons, and explained how unstationary bosons can ob-
tain the properties of the massive particles during their interaction with another
particles. Let us now consider the case of the self-compression process for the
unstable (massive) bosons. In this case the restriction of its 3-D energy density
Φm is guided by self-gravitational forces and by using the Ricci flow, expressed
by the equation (75) for this 3-D manifold Vt, which reduces the energy-density
topology into an infinitesimal but finite sphere with a radius r0 > 0 with spher-

6The proof of Poincare conjecture built upon the program of Richard Hamilton to use the Ricci flow to
attempt to solve the problem. In some cases Hamilton was able to show that this works; for example, if the
manifold has positive Ricci curvature everywhere he showed that the manifold becomes extinct in finite time
under Ricci flow without any other singularities. (In other words, the manifold collapses to a point in finite time;
it is easy to describe the structure just before the manifold collapses.) This easily implies the Poincare conjecture
in the case of positive Ricci curvature. However in general the Ricci flow equations lead to singularities of the
metric after a finite time. Perelman showed how to continue past these singularities: very roughly, he cuts the
manifold along the singularities, splitting the manifold into several pieces, and then continues with the Ricci
flow on each of these pieces. This procedure is known as Ricci flow with surgery.
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ically symmetric energy-density distribution Φm(t, r) = T (t) K√
r
, so that we ob-

tain the new version of (16) in the Minkowski time-space reference system of
the observer’s laboratory

−→g (t,−→r ) = −G

c2

∫
(−→r −−→r ′)Φm(t,−→r ′)

‖−→r −−→r ′‖3 dV ′ = −GKT (t)

c2

∫ −→r −−→r ′

‖−→r −−→r ′‖7/2dV ′

(76)
The enough condition that the process of compression continues up to the
restriction into a single point (boson’s barycenter) in 3-D is to avoid the gener-
ation of a micro black-hole, in the way that the energy-density is progressively
expelled from the 3-D into higher compactified dimensions [11]. It remains to
provide mathematically the details of such a physical process in the future re-
search.
Other important conclusion is that for the formal development of QM oper-
ators, in the conservative extension of current probabilistic/statistical theory
based fundamentaly on the Schrödinger equation (and its extensions) valid for
the ensemble of identically prepared particles for a statistical measurements,
for an individual elementary particle, the only necessary new equation is the
conservation of rest-mass energy (4) (the conservation of matter for which the
rest-mass and rest-mass-energy are some of its fundamental properties), while
the other two equations (conservation laws of momentum and internal energy)
provided in Section 3, are useful only for the physical comprehension of the
self-equilibrium process inside the massive particles.
In effect, the momentum conservation law is useful only to explain the internal
dynamics of the density-flow speed −→u (t,−→r ) by using the two opposite inter-
nal forces generated by the self-gravity acceleration −→g (t,−→r ) and the internal
gradient-pressure force ∇P (t,−→r ) during particle’s accelerations. In the hydro-
static equilibrium we have that, in the particle’s proper frame (with coordinate
center in particle’s barycenter), −→u (t,−→r ) = 0, and the particle’s density is spher-
ically symmetric and proportional to K√

r
, so that the internal force is constant

and equal in every point inside particle’s body.
The internal energy law is useful also to consider the behavior of a massive
particle with the rest mass m0 and momentum p in a number of extreme per-
turbations and also in the cases of the so called virtual particles (when tem-
porary is not valid the equation for particles total energy E, that is, when
E2 6= m2

0c
4 + p2c2), as provided in some examples in [10].

Moreover, in the general case of the particle’s perturbation, the self-gravity ac-
celeration −→g (t,−→r ) and the internal gradient-pressure force ∇P (t,−→r ) are not
known and can not be measured, so it is enough [10] to use only the density
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speed −→u (t,−→r ) as a hidden (unobservable) variable in the formal theory of com-
pletion of QM for an individual elementary particle.
This fact explains why it was enough to use only this hidden variable and,
derived from it, the absolute speed w.r.t. a given frame, −→w(t,−→r ) = −→v (t) +−→u (t,−→r ), where −→v (t) is observable particle’s velocity (group velocity of parti-
cle’s energy-density wave-packet), for the definition of the new TSPF quantum

operators M̂ = i~(−→w(t,−→r )∇− ∇·−→w(t,−→r )
2 ) [10] for a given individual elementary

particle.
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[11] Z.Majkić. Completion and Unification of Quantum Mechanics with
Einstein’s GR Ideas, Part II: Unification witg GR. Nova Science Pub-
lishers, New York, ISBN:978-1-53611-947-3, September, 2017.

Electronic Journal. http://diffjournal.spbu.ru 45


