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Abstract

In this paper, by using the Mawhin coincidence degree theory and analysis techniques,
we establish new results on the existence and uniqueness of T-periodic solutions for a kind
of third-order functional differential equation (FDE) with a time-delay.

The obtained results are new and complement the related results of third-order (FDE)
with a time-delay that have appeared in the literature. In the last section, we give an
example to illustrate our main results of periodic solutions.
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1 Introduction

In recent years numerous methods have been developed to study the dif-
ferential equations (DEs). Exact methods (quantitative), in which all the so-
lutions are known and could be written in closed form in terms of elementary
functions or sometime special functions. There are also some other type of
methods, called analytical methods (qualitative), in which one can describe the
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behaviour of a differential equation’s solution, such as existence of solutions,
uniqueness, stability, instability, chaotic or asymptotic character, boundedness,
periodicity, etc., without actually solving it exactly. This is an important and
relatively new step in the theory of (DEs), because most of the (DEs) cannot
be solved exactly.

The investigation of the qualitative properties of solutions of (FDEs) for
higher-order of solutions play an important role in many real world phenomena
related to the sciences and engineering technique fields. (FDEs) of higher-
order can serve as excellent tools for description of mathematical modeling of
systems and processes in population dynamics, stochastic processes, physics,
control theory, neural networks, mechanics, etc.

Existence and uniqueness of periodic solutions for (FDEs) are of great in-
terest in mathematics and its applications to the modeling of various practical
problems.

In recent years, many books and papers dealt with the existence and unique-
ness of periodic solutions for (FDEs) with applications and obtained many good
results, for example, [3, 7, 8, 11, 12], etc.

Continuation theorem of coincidence degree theory plays a significant role
in the investigation of the existence of periodic solutions for (FDEs) of higher-
order.

The existence and uniqueness of periodic solutions of third-order (FDEs)
with a or more deviating arguments have been widely investigated and are still
being investigated, for example, (see [1, 2, 5, 6, 9, 10, 13, 14, 15, 16, 17, 18, 19,
20, 21], and the references therein).

In 2010, Tunç [15] established certain sufficient conditions by using the
Lyapunov functional approach for the existence of a periodic solution of the
nonlinear differential equation of the third-order with constant deviating argu-
ment (τ > 0)

...
x + ψ(ẋ) ẍ+ g(ẋ(t− τ)) + f(x) = p(t, x, x(t− τ), ẋ, ẋ(t− τ), ẍ).

Moreover, In 2011, Abou-El-Ela, Sadek and Mahmoud [1] studied the existence
and uniqueness of periodic solutions to third-order delay differential equation
with a deviating argument of the form

...
x (t) + f(t, x(t)) ẍ(t) + g(x(t)) ẋ(t) + h(t, x(t− r(t))) = p(t).

The main objective of this work is to establish criteria to guarantee the existence
and uniqueness of a T -periodic solution for third-order (FDE) with a time-delay
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as the following form

...
x (t) + f(ẋ(t))(ẍ(t))2 + g(t, x(t))ẋ(t) + h(t, x(t− τ(t))) = p(t). (1.1)

We can write Equation (1.1) in the following equivalent system

ẋ = y, ẏ = z,

ż = −f(y)z2 − g(t, x(t))y − h(t, x(t− τ(t))) + p(t),
(1.2)

where f, τ, p : R→ R and h, g : R×R→ R are continuous functions; f(0) = 0,
τ and p are T -periodic, and g is T -periodic in the first argument with period
T > 0.

By applying the continuation theorem of the coincidence degree theory, we
obtain new results, which complement previously known results. An illustrative
example is given in the last section.

The rest of this paper is organized as follows. In section 2 we state some
preliminary results and other technical details and we shall prove the main
existence results and in section 3 we shall establish main result s of uniqueness.
We will give an example of an application in section 4.

2 Preliminary Results

In this section we give some technical, yet elementary results, that will serve
us well in the section that follows.

For ease of exposition throughout this article we shall adopt the following
notation:

|x|k = (

∫ T

0

|x(t)|kdt)
1
k , k ≥ 1, |x|∞ = max

t∈[0,T ]
|x(t)|

and
|p|∞ = max

t∈[0,T ]
|p(t)|.

Let
X = {x|x ∈ C2(R,R), x(t+ T ) = x(t), for all t ∈ R}

and
Y = {y|y ∈ C(R,R), y(t+ T ) = y(t), for all t ∈ R},

be two Banach spaces with the norms

‖x‖X = max{|x|∞, |ẋ|∞, |ẍ|∞} and ‖y‖Y = |y|∞.
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Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x|x ∈ X, ...x (t) ∈ C(R,R)},

and for x ∈ D(L)
Lx =

...
x (t). (2.1)

We also define a nonlinear operator N : X → Y by setting

Nx = −f(ẋ(t))(ẍ(t))2 − g(t, x(t))ẋ(t)− h(t, x(t− τ(t))) + p(t). (2.2)

Then we notice that

KerL = R and ImL = {y|y ∈ Y,
∫ T

0

y(s)ds = 0}.

Thus the operator L is a Fredholm operator with index zero.

Define the continuous projector P : X → KerL and the averaging projector
Q : Y → Y by setting

Px(t) =
1

T

∫ T

0

x(s)ds and Qy(t) =
1

T

∫ T

0

y(s)ds.

Hence ImP = KerL and KerQ = ImL. Denoting by L−1
P : ImL → D(L) ∩

KerP the inverse of L|D(L)∩KerP , we have

L−1
P y(t) =

∫ T

0

(
(s− t− T/2)3

6T
− Ts

24

)
y(s)ds+

∫ T

0

(t− s)2

2
y(s)ds.

Therefore we can see from (2.2) and the above equation, that N is L-compact
on Ω̄, where Ω is an open bounded subset in X.

To prove the main result of existence and uniqueness of a T-periodic solution
for the third-order functional differential equation with a deviating argument,
we use the continuation theorem of coincidence degree theory and analysis tech-
niques.

For convenience of use, we introduce the continuation theorem of coinci-
dence degree theory formulated in [4] as follows.

Theorem 2.1 let X and Y be two Banach spaces. Suppose that L : D(L) ⊂
X → Y is a Fredholm operator with index zero and N : X → Y is L-compact
on Ω̄, where Ω is an open bounded subset in X. In addition, if the following
conditions hold:
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(1) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L) and λ ∈ (0, 1);

(2) QNx 6= 0, for all x ∈ ∂Ω ∩KerL;

(3) deg{QN,Ω ∩KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution on Ω̄.

It is convenient to introduce the following assumption.

(A0) Assume that there exist non-negative constants c1 and c2 such that

f ∈ C1(R,R), f ′(y) ≤ 0, |f(y1)− f(y2)| ≤ c1|y1 − y2|, f(0) = 0,

for all y, y1, y2 ∈ R; and |g(t, x)| ≤ c2, for all t, x ∈ R.

In view of (2.1) and (2.2) the operator equation

Lx = λNx,

is equivalent to the following equation

...
x (t) + λ{f(ẋ(t))(ẍ(t))2 + g(t, x(t))ẋ(t) + h(t, x(t− τ(t)))} = λp(t), λ ∈ (0, 1).

(2.3)
The following lemmas are very important to prove the existence of the most
one T-periodic solution of (1.1).

Lemma 2.1 Suppose that there exists a constant d > 0 such that

(A1) x{h(t, x)− p(t)} < 0, for all t ∈ R and |x| ≥ d.

If x(t) is a T -periodic solution of (2.3), then

|x|∞ ≤ d+
1

2

√
T |ẋ|2. (2.4)

Proof. Let x(t) be a T -periodic solution of (2.3) for a certain λ ∈ (0, 1). Set

x(t1) = max
t∈R

x(t), x(t2) = min
t∈R

x(t), where t1, t2 ∈ R,

therefore we obtain

ẋ(t1) = 0, ẍ(t1) ≤ 0,
...
x (t1) ≤ 0, and ẋ(t2) = 0, ẍ(t2) ≥ 0,

...
x (t2) ≥ 0.
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It follows from (2.3) that

h(t1, x(t1 − τ(t1)))− p(t1) ≥ 0, and h(t2, x(t1 − τ(t2)))− p(t2) ≤ 0.

Taking this together with (A1) as appropriate we have

x(t1 − τ(t1)) < d and x(t2 − τ(t2)) > −d.

Since x(t − τ(t)) is a continuous function on R, this implies that there exists
ξ ∈ R such that

|x(ξ − τ(ξ))| ≤ d.

let ξ − τ(ξ) = mT + t0, where t0 ∈ [0, T ] and m be an integer then we obtain

|x(t)| = |x(t0) +

∫ t

t0

ẋ(s)ds| ≤ d+

∫ t

t0

|ẋ(s)|ds, t ∈ [t0, t0 + T ],

and

|x(t)| = |x(t− T )| = |x(t0)−
∫ t0

t−T
ẋ(s)ds| ≤ d+

∫ t0

t−T
|ẋ(s)|ds, t ∈ [t0, t0 + T ].

Combining the above two inequalities, we have

|x|∞ = max
t∈[t0,t0+T ]

|x(t)|

≤ max
t∈[t0,t0+T ]

{
d+

1

2

(∫ t

t0

|ẋ(s)|ds+

∫ t0

t−T
|ẋ(s)|ds

)}
= max

t∈[t0,t0+T ]

{
d+

1

2

∫ t

t−T
|ẋ(s)|ds

}
= d+

1

2

∫ T

0

|ẋ(s)|ds ≤ d+
1

2

√
T |ẋ|2.

This completes the proof of Lemma 2.1.

Lemma 2.2 Suppose that (A0) and (A1) hold, and the following condition is
satisfied:

(A2) There exists a non-negative constant b such that

|h(t, x1)− h(t, x2)| ≤ b|x1 − x2|, for all t, x1, x2 ∈ R

and

c2
T 2

4
+ b

T 3

8
< 1.

If x(t) is a T -periodic solution of (1.1), then

|ẍ|∞ ≤
1

2

[bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]T

1− (c2
T 2

4 + bT
3

8 )
:= D.
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Proof. Let x(t) be a T-periodic solution of (1.1). Multiplying (1.1) by
...
x (t)

and then integrating it over [0, T ], implies∫ T

0

|...x (t)|2dt = −
∫ T

0

f(ẋ(t))(ẍ(t))2...x (t)dt−
∫ T

0

g(t, x(t))ẋ(t)
...
x (t)dt

−
∫ T

0

h(t, x(t− τ(t)))
...
x (t)dt+

∫ T

0

p(t)
...
x (t)dt

=
1

3

∫ T

0

f ′(ẋ(t))(ẍ(t))4dt−
∫ T

0

g(t, x(t))ẋ(t)
...
x (t)dt

−
∫ T

0

h(t, x(t− τ(t)))
...
x (t)dt+

∫ T

0

p(t)
...
x (t)dt.

By using condition (A0) we find

|...x (t)|22 ≤
∫ T

0

{|h(t, x(t− τ(t)))− h(t, 0)|+ |h(t, 0)|}|...x (t)|dt

+ c2

∫ T

0

|ẋ(t)||...x (t)|dt+

∫ T

0

|p(t)||...x (t)|dt.

Then from condition (A2), we obtain

|...x (t)|22 ≤ b

∫ T

0

|x(t− τ(t))||...x (t)|dt+

∫ T

0

|h(t, 0)||...x (t)|dt

+ c2

∫ T

0

|ẋ(t)||...x (t)|dt+

∫ T

0

|p(t)||...x (t)|dt

≤ c2

∫ T

0

|ẋ(t)||...x (t)|dt+ b|x|∞
∫ T

0

|ẍ(t)|dt

+ max{|h(t, 0)| : 0 ≤ t ≤ T}
∫ T

0

|...x (t)|dt+ |p|∞
∫ T

0

|...x (t)|dt.

Thus from (2.4) and by using Cauchy-Schwarz inequality, we have

|...x |22 ≤ [bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]
√
T |...x |2

+ c2|ẋ|2|
...
x |2 +

1

2
bT |ẋ|2|

...
x |2.

(2.5)

Since x(0) = x(T ) there exists a constant ξ ∈ [0, T ] such that ẋ(ξ) = 0 and

|ẋ(t)| = |ẋ(ξ) +

∫ t

ξ

ẍ(s)ds| ≤
∫ t

ξ

|ẍ(s)|ds, t ∈ [ξ, T + ξ]. (2.6)
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Again

|ẋ(t)| = |ẋ(ξ + T ) +

∫ t

ξ+T

ẍ(s)ds|

≤ |ẋ(ξ + T )|+
∫ ξ+T

t

|ẍ(s)|ds =

∫ ξ+T

t

|ẍ(s)|ds, t ∈ [0, T ].

(2.7)

The inequalities (2.6) and (2.7) imply that

2|ẋ(t)| ≤
∫ t

ξ

|ẍ(s)|ds+

∫ ξ+T

t

|ẍ(s)|ds =

∫ T

0

|ẍ(s)|ds, t ∈ [0, T ].

Therefore by using Cauchy-Schwarz inequality we have

|ẋ(t)| ≤ 1

2

√
T (

∫ T

0

|ẍ(s)|2ds)
1
2 , for all t ∈ [0, T ], (2.8)

so

|ẋ|∞ ≤
1

2

√
T |ẍ|2, (2.9)

|ẋ|2 ≤
√
T max
t∈[0,T ]

|ẋ(s)| ≤ 1

2
T (

∫ T

0

|ẍ(s)|2ds)
1
2 =

1

2
T |ẍ|2. (2.10)

Since x(t) is periodic function for t ∈ [0, T ] and by using the above similar
technique we find

|ẍ(t)| ≤ 1

2

∫ T

0

|...x (t)|dt.

Which together with Cauchy-Schwarz inequality implies

|ẍ|∞ ≤
1

2

√
T (

∫ T

0

|...x (s)|2ds)
1
2 =

1

2

√
T |...x |2, (2.11)

|ẍ|2 ≤
√
T max
t∈[0,T ]

|ẍ(s)| ≤ 1

2

√
T

∫ T

0

|...x (s)|ds ≤ 1

2
T |...x |2. (2.12)

By substituting from (2.12) in (2.10) we get

|ẋ|2 ≤
1

4
T 2|...x |2. (2.13)

By substituting from (2.12) in (2.9) we have

|ẋ|∞ ≤
1

4
T

3
2 |...x |2. (2.14)
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From (2.4) and (2.13) we obtain

|x|∞ ≤ d+
1

8
T

5
2 |...x |2. (2.15)

Then by substituting from (2.13) in (2.5) we find

|...x |22 ≤ (c2
T 2

4
+ b

T 3

8
)|...x |22 + [bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]

√
T |...x |2.

(2.16)
Thus we get

(1− c2
T 2

4
− bT

3

8
)|...x |22 ≤ [bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]

√
T |...x |2.

Therefore we find

|...x |2 ≤
[bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]

√
T

1− c2
T 2

4 − b
T 3

8

. (2.17)

By substituting from (2.17) in (2.14) and (2.11) we obtain

|ẋ|∞ ≤
1

4

[bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]T 2

1− (c2
T 2

4 + bT
3

8 )
:=

T

2
D, (2.18)

and

|ẍ|∞ ≤
1

2

[bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]T

1− (c2
T 2

4 + bT
3

8 )
:= D. (2.19)

This completes the proof of Lemma 2.2.

Theorem 2.2 Suppose that assumption (A1) holds, and the following condition
is satisfied:

(A3) Assume that (A0) holds, g(t, x) ≡ g(t) for all t, x1, x2 ∈ R and h(t, x) is
a strictly monotone decreasing function in x such that

c2
T 2

4
+ c1D

2T
4

8
+ c1D

2T
2

4
+ b

T 3

8
< 1,

and
|h(t, x1)− h(t, x2)| ≤ b|x1 − x2|, for all t, x1, x2 ∈ R.

Then equation (1.1) has at most one T-periodic solution.
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Proof. Suppose that x1(t) and x2(t) are two T-periodic solutions of (1.1), then
we have

...
x 1(t)−

...
x 2(t) + f(ẋ1(t))(ẍ1(t))

2 − f(ẋ2(t))(ẍ2(t))
2 + g(t)ẋ1(t)− g(t)ẋ2(t)

+ h(t, x1(t− τ(t)))− h(t, x2(t− τ(t))) = 0.

Let u(t) = x1(t)− x2(t). Then we get
...
u (t) + f(ẋ1(t))(ẍ1(t))

2 − f(ẋ2(t))(ẍ2(t))
2 + g(t){ẋ1(t)− ẋ2(t)}

+ h(t, x1(t− τ(t)))− h(t, x2(t− τ(t))) = 0.
(2.20)

Set
u(t̄1) = max

t∈R
u(t), u(t̄2) = min

t∈R
u(t), where t1, t2 ∈ R.

Therefore we find

u̇(t̄1) = ẋ1(t̄1)− ẋ2(t̄1) = 0, ü(t̄1) ≤ 0,
...
u (t̄1) ≤ 0, (2.21)

and the following

u̇(t̄2) = ẋ1(t̄2)− ẋ2(t̄2) = 0, ü(t̄2) ≥ 0,
...
u (t̄2) ≥ 0. (2.22)

Now we shall prove that there exists a constant η̄ ∈ R such that

u(η̄) = 0. (2.23)

Contrarily, one of the following cases satisfies:

(i) u(t) = x1(t)− x2(t) > 0, for all t ∈ R.

(ii) u(t) = x1(t)− x2(t) < 0, for all t ∈ R.

If (i) holds, from (2.20) together with condition (A3), ẋ1(t̄1) = ẋ2(t̄1), we get
...
u (t̄1) = −f(ẋ1(t̄1))(ẍ1(t̄1))

2 + f(ẋ2(t̄1))(ẍ2(t̄1))
2 − g(t̄1){ẋ1(t̄1)− ẋ2(t̄1)}

− h(t, x1(t̄1 − τ(t̄1))) + h(t, x2(t̄1 − τ(t̄1)))

= −(ẍ1(t̄1))
2{f(ẋ1(t̄1))− f(ẋ2(t̄1))}

− {h(t̄1, x1(t̄1 − τ(t̄1)))− h(t̄1, x2(t̄1 − τ(t̄1)))}
> 0,

which contradicts (2.21), so we have that (2.23) is true.
If (ii) holds, in view of (2.20) and condition (A3), and ẋ1(t̄2) = ẋ2(t̄2), we obtain

...
u (t̄2) = −f(ẋ1(t̄2))(ẍ1(t̄2))

2 + f(ẋ2(t̄2))(ẍ2(t̄2))
2 − g(t̄2){ẋ1(t̄2)− ẋ2(t̄2)}

− h(t, x1(t̄2 − τ(t̄2))) + h(t, x2(t̄2 − τ(t̄2)))

= −(ẍ1(t̄2))
2{f(ẋ1(t̄2))− f(ẋ2(t̄2))}

− {h(t̄2, x1(t̄2 − τ(t̄2)))− h(t̄2, x2(t̄2 − τ(t̄2)))}
< 0,
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which contradicts of (2.22), thus (2.23) is true.
Let η̄ = nT + γ̄, where γ̄ ∈ [0, T ] and n is an integer. Then u(γ̄) = 0.

Thus

|u(t)| = |u(γ̄) +

∫ t

γ̄

u̇(s)ds| ≤
∫ t

γ̄

|u̇(s)|ds.

Again

|u(t)| = |u(γ̄ + T ) +

∫ t

γ̄+T

u̇(s)ds| ≤
∫ γ̄+T

t

|u̇(s)|ds.

Hence by using Cauchy-Schwarz inequality we have

2|u(t)| ≤
∫ γ̄+T

γ̄

|u̇(s)|ds =

∫ T

0

|u̇(s)|ds ≤
√
T (

∫ T

0

|u̇(s)|2ds)
1
2 =
√
T |u̇|2.

Therefore

|u|∞ ≤
1

2

√
T |u̇|2. (2.24)

Multiplying (2.20) by
...
u (t) and then integrating it over [0, T ] it follows

|...u (t)|22 = −
∫ T

0

{f(y1)(ẍ1(t))
2 − f(y2)(ẍ2(t))

2}...u (t)dt

−
∫ T

0

g(t){ẋ1(t)− ẋ2(t)}
...
u (t)dt

−
∫ T

0

{h(t, x1(t− τ(t)))− h(t, x2(t− τ(t)))}...u (t)dt.

From (A3) we get

|...u (t)|22 ≤
∫ T

0

|f(y1)− f(y2)||(ẍ2(t))
2||...u (t)|dt+

∫ T

0

|g(t)||ẋ1(t)− ẋ2(t))||
...
u (t)|dt

+ b

∫ T

0

|x1(t− τ(t))− x2(t− τ(t))||...u (t)|dt

+

∫ T

0

|f(y1)||(ẍ1(t))
2 − (ẍ2(t))

2||...u (t)|dt.

It follows from (A0) and (A3) that

|...u (t)|22 ≤ c1

∫ T

0

|y1 − y2||ẍ2(t)|2|
...
u (t)|dt+ c2

∫ T

0

|u̇(t)||...u (t)|dt

+ b

∫ T

0

|x1(t− τ(t))− x2(t− τ(t))||...u (t)|dt

+ c1|ẋ1|∞
∫ T

0

|ẋ1 + ẋ2||ẋ1 − ẋ2||
...
u (t)|dt.
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Therefore from (2.18) and (2.19) and by using Cauchy-Schwarz inequality, we
have

|...u |22 ≤ c1D
2|u̇|2|

...
u |2 + c2|u̇|2|

...
u |2 + b|u|∞

√
T |...u |2 +

1

2
c1T

2D2|u̇|2|
...
u |2.

From (2.13) and (2.24) we obtain

|...u |22 ≤
1

4
c2T

2|...u |22 +
1

8
c1D

2T 4|...u |22 +
1

4
c1D

2T 2|...u |22 +
1

8
bT 3|...u |22.

It follows that{
1−

(
c2
T 2

4
+ c1D

2T
4

8
+ c1D

2T
2

4
+ b

T 3

8

)}
|...u |22 ≤ 0. (2.25)

Since u(t), u̇(t), ü(t) and
...
u (t) are T-periodic and continuous functions, in view

of (A3), (2.10), (2.23) and (2.25) we have

u(t) ≡ u̇(t) ≡ ü(t) ≡ ...
u (t) = 0, for all t ∈ R.

Thus
x1(t) ≡ x2(t), for all t ∈ R.

Therefore (1.1) has at most one T-periodic solution.
This completes the proof of Theorem 2.2.

3 Main Result

The following theorem is the main result of the uniqueness of a T-periodic
solution of (1.1).

Theorem 3.1 Suppose that (A0)−(A3) hold, then (1.1) has a unique T-periodic
solution.

Proof. By Theorem 2.2 states that (1.1) has at most one T-periodic solution.
Thus to prove Theorem 3.1 it suffices to show that (1.1) has at least one T-
periodic solution. To do this, we shall apply Theorem 2.1.
First we shall claim that the set of all possible T-periodic solutions of (2.3) is
bounded.
Let x(t) be a T-periodic solution of (2.3). Multiplying (2.3) by

...
x (t) and then

integrating it from 0 to T in view of (A1)− (A3) we obtain∫ T

0

|...x (t)|2dt =− λ
∫ T

0

f(ẋ(t))(ẍ(t))2...x (t)dt− λ
∫ T

0

g(t)ẋ(t)
...
x (t)dt

− λ
∫ T

0

h(t, x(t− τ(t)))
...
x (t)dt+ λ

∫ T

0

p(t)
...
x (t)dt.
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In view of (A0) we have∫ T

0

|...x (t)|2dt =
1

3
λ

∫ T

0

f́(ẋ(t))(ẍ(t))4dt− λ
∫ T

0

g(t)ẋ(t)
...
x (t)dt

− λ
∫ T

0

h(t, x(t− τ(t)))
...
x (t)dt+ λ

∫ T

0

p(t)
...
x (t)dt

≤
∫ T

0

{|h(t, x(t− τ(t)))− h(t, 0)|+ |h(t, 0)|}|...x (t)|dt

+ c2

∫ T

0

|ẋ(t)|...x (t)|dt+

∫ T

0

|p(t)||...x (t)|dt.

Therefore from (A2), (2.4), (2.5) and the inequality of Cauchy-Schwarz, we
obtain

|...x |22 ≤ c2|ẋ|2|
...
x |2 +

1

2
b|ẋ|2|

...
x |2 + [bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]

√
T |...x |2.

Which together with (A2), implies that there exist positive constants D1, D2

and D3 such that

|ẍ|∞ ≤
1

2

√
T |...x |2 := D1, |ẋ|∞ ≤

T

2
D1 := D2, |x|∞ ≤ d+

T 2

4
D1 := D3.

Let D0 = max{D1, D2, D3} and take Ω = {x|x ∈ X, ‖x‖ < D0}.
If x ∈ ∂Ω∩KerL = ∂Ω∩R, then x is a constant with x(t) = D0 or x(t) = −D0.
Then

QNx =
1

T

∫ T

0

{−f(ẋ(t))(ẍ(t))2 − g(t)ẍ(t)− h(t, x(t− τ(t))) + p(t)}dt

=
1

T

∫ T

0

{−h(t,±D0) + p(t)}dt 6= 0.

So the conditions (1) and (2) in Theorem 2.1 hold.
Furthermore define a continuous function H(x, µ) by setting

H(x, µ) = (1− µ)x− µ. 1
T

∫ T

0

{h(t, x)− p(t)}dt, µ ∈ [0, 1].

It follows from (A1) that

xH(x, µ) 6= 0, for all x ∈ ∂Ω ∩KerL.
Thus H(x, µ) is a homotopy.
Hence by using the homotopy invariance theorem we have

deg{QN,Ω ∩KerL, 0} = deg{− 1

T

∫ T

0

[h(t, x)− p(t)]dt,Ω ∩KerL, 0}

= deg{x,Ω ∩KerL, 0} 6= 0.
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So condition (3) of Theorem 2.1 is satisfied.
In view of all the discussions above, we conclude from Theorem 2.1 that the
main Theorem 3.1 is proved.

4 Example

In this section we shall provide an example to validate the main results.

Example 4.1. Let h(t, x) = − 1
6πx, for all t, x ∈ R. Then we get the

third-order (FDE) with a time-delay as the following form

...
x (t)− 1

8
(arctan ẋ(t))(ẍ(t))2 +

1

8
(sin 4t)ẋ(t) +

x(t− sin2 t)

6π
=

1

6π
e− cos2 t, (4.1)

has a unique π-periodic solution.
Proof. By (4.1) we obtain

g(t, x) =
1

8
sin 4t, f(y) = arctan y, h(t, x(t− τ(t)) = −x(t− sin2t)

6π
,

τ(t) = sin2 t, T = π and p(t) =
1

6π
e− cos2 t.

Then from the condition (A0), we find

c1 = c2 =
1

8
, b =

1

6π
, (d =

1

3
is an arbitrary small positive constant).

Therefore we get

D : =
1

2

[bd+ max{|h(t, 0)| : 0 ≤ t ≤ T}+ |p|∞]T

1− (c2
T 2

4 + bT
3

8 )

=
1

2

( 1
6π

1
3 + 1

6π)π

1− (1
8
π2

4 −
1

6π
π3

8 )
∼= 0.23,

and

c2
T 2

4
+ c1D

2T
4

8
+ c1D

2T
2

4
+ b

T 3

8

=
1

8

π2

4
+

1

8
(

23

100
)2 π

4

8
+

1

8
(

23

100
)2 π

2

4
+

1

6π

π3

8
∼= 0.61 < 1.

It is obvious that the assumptions (A0)− (A3) hold.
Hence by Theorem 3.1, equation (4.1) has a unique π-periodic solution.
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5 Conclusion

Based on the coincidence degree theory and analysis techniques, new results
on the existence and uniqueness of a T-periodic solution for the third-order
functional differential equation, with a time-delay have been established. The
obtained results extend existing results in the literature on deterministic sys-
tems. In addition an example is given to illustrate the new main results, which
we obtain in this paper.
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