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Abstract

In this paper we prove a new theorem for computing inertia of symmetric large sparse matrix.
Based on this theorem, we develop an robust algorithm for determining the inertia and BIBO
stability of a continuous-time linear system. The most important property of these methods is
determining the inertia and BIBO stability without computing the poles of transfer function.
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1 Introduction

A classical approach to determine the stability and inertia is to find the characteristic poly-
nomial of the of the state matrix A followed by application of the Routh-Hurwitz criterion in
the continuous-time case and the Schur-Cohn criterion in the discrete-time case. These ap-
proaches are historically important and were developed at a time when numerically finding the
eigenvalues of a matrix was a difficult problem. In view of the above statement, it is clear
that the best way to numerically check the stability and inertia is to explicitly compute all the
eigenvalues. However, by computing the eigenvalues, one gets more than stability and inertia.
Furthermore if the eigenvalues of A are very ill-conditioned the eigenvalue problem may be
misleading. If A is a symmetric matrix (complex Hermitian) then the Sylvester law of inertia
provides us with diagonal pivoting factorization for compute the inertia of A. This factorization
requires n3/6 flops,when A is a large and sparse matrix, this factorization is not useful(see[1-3]).
K.V.Fernando describe an algorithm in floating point arithmetic to compute the exact inertia
of a real symmetric tridiagonal matrix (see[6]). Our main task in this paper is using Lanczos,
weighted Arnoldi and block Arnoldi processes to develop an efficient algorithm for determining
the inertia and BIBO stability of symmetric state matrix, not necessarily tridiagonal matrix.
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2 Stability of a Continuous-Time System

Definition 2.1 An equilibrium state of the system

ẋ(t) = Ax(t), x(0) = x0, (2-1)

is the vector xe satisfying

Axe = 0.

Clearly, xe = 0 is an equilibrium state and it is the unique equilibrium state if and only if A is
nonsingular.

Definition 2.2 An equilibrium state xe is asymptotically stable if for initial state, the state
vector x(t) approaches xe as time increases.

The system (2.1) is asymptotically stable if and only if the equilibrium state xe = 0 is asymp-
totically stable. Thus the system (2.1) is asymptotically stable if and only if x(t) → 0 as
t → ∞.

Theorem 2.3 The system (2.1) is asymptotically stable if and only if all the eigenvalues of
A have negative real parts.

Proof. see[5].

Definition 2.4 A matrix A is called a stable matrix if all of the eigenvalues of A have
negative real parts.

2.1 Bounded-Input Bounded-Output Stability

The continuous-time linear system:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) (2-2)

is said to be bounded-input bounded output (BIBO) stable if for any bounded input, the
output is also bounded.
The (BIBO) stability is governed by the poles of the transfer function G(s) = C(sI −A)−1B.

Theorem 2.5 The system (2.2) is (BIBO) stable if and only if every pole of G(s) has a
negative real part.

Remark 2.6 Since every pole of G(s) is also an eigenvalue of A, an asymptotically stable
system is also (BIBO) stable.However, the converse is not true.
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2.2 Inertia

Definition 2.7 The inertia of a matrix order n,denoted by In(A),is the triplet
(π(A), ν(A), δ(A)) where π(A), ν(A) and δ(A) are, respectively, the number of eigenvalues of A
with positive, negative and zero real parts.

Not that π(A)+ ν(A)+ δ(A) = n, and A is a stable matrix if and only if In(A) = (0, n, 0).

Theorem 2.8 (The Sylvester law of inertia)
Let A be a Hermitian matrix and P be a nonsingular matrix. Then In(A) = In(PAP T ).

Proof. see[4].

Remark 2.9 using the Sylvester law of inertia, the inertia of a given Hermitian matrix A
can be computed in terms of the diagonal matrix D associated with its triangular factorization
A = LDL∗, where L is a nonsingular lower triangular matrix, and D is diagonal matrix with
p positive, q negative, and r zero diagonal entries (p+ q+ r = n). Then by the Sylvester law of
inertia, In(A) = (p, q, r).

Let

T =



















α1 β1

β1 α2
. . .

. . .
. . .

. . .
. . . αn−1 βn−1

βn−1 αn



















n×n

And

Zi = β2
i (i = 1, · · · , n− 1)

K.V.Fernando makes the UDUT factorization of a shifted symmetric triangular matrix T − τI.
He uses ν to denote the number of negative diagonal elements of D, which according to the
Sylvester inertia theorem gives the number of negative eigenvalues of T −τI. Similarly, π is the
number of positive elements of D and it indicates the number of positive eigenvalues of T − τI.
A simple algorithm exists for computing the diagonal elements of the matrix D. (See[7,8]).

3 Inertia and BIBO Stability of a Continuous-Time System

There are reliable algorithms to transform real symmetric matrices and complex Hermitian
matrices to the real symmetric tri-diagonal format. On of the most important methods for
doing this work,in the case that matrix is large and sparse, are the Krylov subspace methods
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such as Hermitian Lanczos and Block Arnoldi process. From combination of these algorithms
by algorithm described in [4] we can obtain new algorithms for determination the inertia of a
large sparse matrices without computing the eigenvalues.

Remark 3.1 Let A is a symmetric matrix of order n and the matrix Hn ∈ Rn×n be the
tri-diagonal matrix whose nonzero entries as the scalars ti,j constructed by the Lanczos process.
Let us define the matrix H̄n ∈ R(n+1)×n by

H̄n =

(

Hn

hn+1,ne
T
n

)

It is known that the matrices built by the Lanczos process satisfy the following relations

V T
n Vn = In,

AVn = Vn+1H̄n,

Hn = V T
n AVn.

Now by using the Sylvester law of inertia (Theorem 2.8), we have

In(A) = In(V T
n AVn) = In(Hn).

Remark3.1 suggests the following algorithm for computing the inertia and determination the
BIBO stability of a continuous-time linear system.

Algorithm 1 (Lanczos Krylov subspace method)
choose vector v1 of norm 1 and set β1 = 0, v0 = 0
choose scalar τ (shift parameter)
for j = 1, . . . , n do
wj = Avj − βjvj−1

αj = (wj, vj)
wj = wj − αjvj
βj+1 = ‖wj‖2
vj+1 = wj/βj+1

end for
α = (α1, . . . , αn)
for i = 1, . . . , n− 1 do
zi = β2

i+1 and z = (z1, z2, . . . , zn−1)
(π, ν, δ) = inertia(α, z, τ) see([3])
End

Example 3.2 Consider the symmetric matrix A as the form:
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Table 1: Shows implementation of Lanczos Krylov subspace method with different value of n

n
∥

∥V T
n AVn − Tn

∥

∥ In0(A) Situation BIBO stability T ime

10 3.311 (0, 10, 0) exact yes 0.0006

16 3.971 (0, 16, 0) exact yes 0.0014

32 4.98 (1, 31, 0) fail fail 0.0029

64 8.22 (2, 62, 0) fail fail 0.0063

128 13.16 (6, 122, 0) fail fail 0.0209

256 13.65 (9, 247, 0) fail fail 0.1223

400 14.19 (13, 387, 0) fail fail 0.4314

512 14.38 (13, 499, 0) fail fail 0.9658

A =
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n×n

We apply Lanczos Krylov subspace method to compute the exact inertia of A. This algorithm
has been tested when the dimension of matrix A increases. The results are shown in table 1.

In table 1 the column of error is the precision of transforming the matrix A to a tri-diagonal
matrix. Note that if the error is small, then the inertia of A can be computed correctly. But
if the error is not small, this dose not mean that the inertia of A cannot be computed, in this
case by choosing a proper shift (τ) the inertia of A will be computed. The best case is when
the shifted parameter is zero. In this case the amount of computation is less. Thus is why we
have a column called In0(A) in table 1 to have more information. As the results show for any
n the value of In0(A) is fail. Now we prove the main theorem of the paper.

Theorem 3.3 Assume that the basis Vn = [v1, ..., vm] and Ṽn = [ṽ1, ..., ṽm] are constructed
by Arnoldi and weighted Arnoldi process respectively, such that

V T
n Vn = In Hn = V T

n AVn Ṽ T
n DṼn = In H̃n = Ṽ T

n DAṼn

where
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AVn = Vn+1H̄n AṼn = Ṽn+1
¯̃Hn (3-1)

and

H̄n =

(

Hn

hn+1,ne
T
n

)

¯̃Hn =

(

H̃n

h̃n+1,ne
T
n

)

.

If vn+1 and ṽn+1 are linearly dependent then

In(A) = In(Hn) = in(H̃n) .

Proof. As Vj and Ṽj are two basis of the Krylov subspace Kj(A, v) for all j ∈ {1, 2, ..., m}, we

can express Ṽn in terms of Vn as

Ṽn = VnUn (3-2)

where Un is a m×m upper triangular matrix.

If we multiply (3.2) on the left by V T
n , we obtain

Un = V T
n Ṽn,

and if we multiply (3.2) on the left by Ṽ T
n D, we get

U−1
n = Ṽ T

n DVn.

Using the relations (3.1) and (3.2), we obtain

AVnUn = Vn+1Un+1
¯̃Hn Vn+1H̄nUn = Vn+1Un+1

¯̃Hn.

As Vn+1 is orthonormal, we get

H̄nUn = Un+1
¯̃Hn

Multiplying the last equality on the left by the matrix U−1
n+1, we obtain

¯̃Hn = U−1
n+1H̄nUn. (3-3)

Now we denote by zi,j(1 ≤ i, j ≤ n) the entries of the matrix U−1
n . We split the matrix U−1

n+1 as

U−1
n+1 =

(

U−1
n zn+1

0 . . . 0 zn+1,n+1

)

=

(

ˆU−1
n+1

0 . . . 0 zn+1,n+1

)

where zn+1 = (z1,n+1, z2,n+1, . . . , zn,n+1)
T . So, the matrix ˆU−1

n+1 is obtained from the matrixU−1
n+1

by removing its last row.
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From the relation (3.2), we can write

H̃n = ˆU−1
n+1H̃nUn,

then, we have the relations

H̃n =
(

U−1
n zn+1

)

(

Hn

hn+1,ne
T
n

)

Un,

= U−1
n HnUn + hn+1,nzn+1e

T
nUn.

As the matrix Un is upper triangular, the matrix product eTnUn is equal to un,ne
T
n . There-

fore, we obtain

H̃n = U−1
n HnUn + hn+1,nzn+1e

T
n ,

where zn+1 ∈ Rn is obtained from the column n + 1 of the matrix U−1
n+1 by deleting its last

component. As vn+1 and ṽn+1 are linearly dependent, zn+1 = 0. Therefor the matrix Hn and
H̃n are similar and we have In(A) = In(Hn) = In(H̃n). �

Theorem3.3 suggests the following method for computing the inertia and determination the
BIBO stability of a continuous-time linear system.

Algorithm 2 (Weighted Krylov method)
choose a vector d = (d1, ..., dn) and set D = diag(d)
choose a vector v and set v̂1 = v/‖v‖D
choose scalar τ (shift parametr)
for j = 1, . . . , n do
w = Av̂j
for i = 1, . . . , j do
ĥi,j = (w, v̂i)D
w = w − ĥi,j v̂i
endfor
ĥj+1,j = ‖w‖D, if ĥj+1,j = 0 stop

v̂j+1 = w/ĥj+1,j

end for
for i = 1, . . . , n do
αi = ĥi,i and α = (α1, . . . , αn)
for i = 1, . . . , n− 1 do
zi = ĥ2

i,i+1 and z = (z1, z2, . . . , zn−1)
(π, ν, δ) = inertia(α, z, τ) see([3])
End

Example 3.4 Let A is the same matrix that used in numerical Example 3.2 and we increase
its dimension orderly. We apply Weighted Krylov method to find the exact inertia of A. The
result has been shown in Table 3.
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Table 2: Shows implementation of Weighted Krylov method with different value of n

n
∥

∥V T
n AVn − Tn

∥

∥ In0(A) Situation BIBOstability T ime

10 1.66 (0, 10, 0) exact yes 0.0011

16 1.89 (0, 16, 0) exact yes 0.0025

32 2.21 (0, 32, 0) exact yes 0.0094

64 2.90 (0, 64, 0) exact yes 0.0376

128 4.43 (0, 128, 0) exact yes 0.1418

256 5.13 (0, 256, 0) exact yes 0.7419

400 5.45 (0, 400, 0) exact yes 1.598

512 8.89 (13, 499, 0) fail fail 2.965

As the results show although by increasing the dimension of the matrix the error also increases
but still the result completely better than the results of Lanczos Krylov subspace method. The
other good point in Weighted Krylov subspace method is that when τ = 0 then In(A) can be
computed very accurately. Note that when n = 256 then τ = 10E − 13. Recall that for any τ
belong in shift interval the value of In(A) can be computed, but the most important point is
that when τ = 0,In(A) must be computed (zero is in the shift interval). Now we modify the
algorithm 3 in the way that when n is large, works accurate. Our scheme for doing this work is
to use Block Arnoldi process instead of Arnoldi process. In this way the error of similarization
decreases. We must also use Arnoldi or Weighted Arnoldi process in new algorithm to have a
tri-diagonal form.
Algorithm 3 (Block Krylov method)
Choose an unitary matrix V1 of dimension n× r
for j = 1, . . . , m do
for i = 1, . . . , j do
Hi,j = V T

i AVj

Wj = AVj −
∑j

k=1 VkHk,j

Compute the QR decomposition Wj = Vj+1Hj+1,j end for end for.
choose a vector v and scalar τ(shift parameter) and set v̂1 =

v
‖v‖D

for j = 1, . . . , n do
w = Hv̂j
for i = 1, . . . , j do
ĥi,j = (w.v̂i)D w = w − ĥi,j v̂i end for

ĥj+1,j = ‖w‖D if ĥj+1,j = 0 stop
v̂j+1 =

w

ĥj+1,j
end for

for i = 1, . . . , n do
αi = ĥi,i and α = (α1, . . . , αn)
for i = 1, . . . , n− 1 do
zi = ĥ2

i,i+1 and z = (z1, z2, . . . , zn−1)
(π, ν, δ) = inertia(α, z, τ) see([3])
End

Example 3.5 In this test we set n = 512, which is the dimension of A, and use Block
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Table 3: Shows implementation of Block Krylov subspace method for n = 512 with different value of
r, m

r m error In0(A) Situation BIBO stability T ime

1 512 94.43 (10, 500, 2) fail fail 6.8784

2 256 46.91 (7, 503, 2) fail fail 4.0820

4 128 13.11 (3, 508, 1) fail fail 3.1079

8 64 0.09 (2, 510, 0) fail fail 2.6852

16 32 5.32E−06 (0, 512, 0) exact yes 2.5816

32 16 3.12E−08 (0, 512, 0) exact yes 2.5676

64 8 4.52E−11 (0, 512, 0) exact yes 2.5408

128 4 1.30E−11 (0, 512, 0) exact yes 2.5225

256 2 3.67E−12 (0, 512, 0) exact yes 2.5013

Table 4: Implementation of Block Krylov and Weighted Block Krylov methods for large values of n

n Block Krylov method Weighted Block Krylov method

In0(A) situation Time In0(A) situation Time BIBO stability

512 (0, 512, 0) exact 2.50 (12, 4, 0) exact 2.11 yes

800 (0, 800, 0) exact 9.34 (0, 800, 0) exact 8.358 yes

1000 (0, 1000, 0) exact 23.37 (0, 1000, 0) exact 19.51 yes

1200 (0, 1200, 0) exact 39.09 (0, 1200, 0) exact 31.862 yes

1400 (11, 1385, 4) fail 54.62 (0, 1400, 0) exact 44.286 yes

1800 (19, 1778, 3) fail 82.19 (0, 1800, 0) exact 66.342 yes

2000 (23, 1976, 1) fail 101.33 (0, 2000, 0) exact 81.654 yes

Krylov method to compute In(A). The results are shown in Table 3.

As the results show when m decreases or r increases the error decreases. Thus for computing
In(A(512×512)) by algorithm 4 it is sufficient to have m = 2 and r = 256. In table 4 the results
show that when higher dimensions used the model works well.

Example 3.6 Let A is the same matrix that used in Example 3.2 and we increase its di-
mension orderly. We apply Block Krylov and Weighted Block Krylov methods to find the exact
inertia and determination BIBO stability of A with different value of n. the result has been
shown in Table 4.

4 COMMENTS AND CONCLUSION

1. Two new methods presented in this paper can compute In(A) in the case that A is a
symmetric large sparse matrix. Mean while, other methods such as diagonal pivoting
factorization do not have this capability.

2. As the results show algorithm 2 for large dimensions takes a lot of time to do the job,
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but Weighted Block Krylov method works fast and very accurate. Not that in algorithm
3 we select m = 2 and r = n/2 for any value of n. for example when n = 1024 for
computing the inertia of A with algorithm 3, it is sufficient m = 2 and r = 512 and
it is a computation remarkable point in this algorithm. Since weighted Arnoldi process
requires 2mNnz+5/2m2n flops and block Arnoldi process requires2mNnz+2m2n that Nnz

is the number of nonzero elements of the matrix A, thus the total number of operations
for Block Krylov subspace method is approximately 8Nnz + 18n that with comparison
diagonal pivoting factorization method,that requires n3/6 flops, Block Krylov subspace
method is a robust algorithm for computing the inertia of a large and sparse symmetric
matrices.
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