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Abstract

The paper proves that a real discrete system with biological origin possesses
a non-oriented invariant manifold — Mobius band. The obtained results demon-
strate the existence of multiple attractors in food-chains models. Moreover, the
parameter region with three coexisting and closely-spaced attractors was found.
It should be noted that such a proximity does not exclude the possibility that a
complicated situation may appear, which may lead to more intriguing biological
consequences in the system under study or similar systems.

The route to chaos in the food-chain dynamics is investivated. The initial
system (as a parameter My < 2.9) has a single stable fixed point, when the
parameter M, increases the systems passes through non-trivial cascad of the bi-
furcations which, when M, = 3.65, results in the appearance of a minimal chaotic
attractor covering a Mobius band.

1 Analytical results

The 3-dimensional dynamical system describes a discrete food chain model. Lind-
strom |7] proposed the model that displays a lot of properties commonly known
for continuous food-chains [11, 2].



Differential Equations and Control Processes, N 4, 2005

The discrete food chain model is defined by the mapping f of the form
P My X exp(—Y3)
1T 4 Xy max(exp(=Y,), K (Z1)K(Y)))

1
Vi = MyX,Y;exp(—Z) K (V) - K (MY Z) D
Zi = MyY, 7y,
where
1—exp(—7) if
— =, if y#0.
K(v) = 7 . , (2)
1, ift v=0

The detailed description of the model was given in [7]. The variables are
related to the different trophic levels of the system, so X is proportional to veg-
etation abundance whereas Z is proportional to carnivore abundance. Since the
relation between herbivores and Y is nonlinear, a more complicated relation de-
scribes the situation here. However, such relationships do not change the topo-
logical properties of the system under investigation. So, for convenience, we will
refer to vegetation, herbivore, and carnivore levels in the sequel.

It should be noted that M, = Mj3 in the original equation. The fourth pa-
rameter M3 is introduced in order to generate additional cases and obtain the
complete analysis of system characteristics. So, the result from [10], p. 207-
209 shows the existence of an invariant Mobius band at the parameter position

My = 4.0, M; = 1.0, My = 3.0, M3 = 4.0. However in this paper we will consider
the original model with My = M3.

It should be marked that the solutions of (1) remain positive and bounded.
Repeating the arguments given in [7] we can show that all solutions starting in
the positive cone enter the box 0 < X; < My, 0 < Y; < MM, 0 < Z; <
MoM; M2 /M3 within three iterations.

The system (1) has at most four equilibria |7] which are given by:
EO = (07 Oa 0)7
El — (MO - 11070)7

MM,
. Mo 1Og<1+Mf> o ( MaMo
= 0
: (M0—1)M1—1’°g<1+M1)’ ’
and F3(X,Y, Z) is given by

Myexp(—=-) —1 1 L
( 0 p( M2) XY ’1og M, <M0 eXp(_M) o 1))’
KGR o (1) 2
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if My = M3 and max(exp(—Y), K(Y)K(Z)) = K(Y)K(Z) at Ej.
Some general features of the system can be described by the Morse spectrum

of the determinant det D f [9] which is the rate of change of phase volume.

If & = {wo, ...,v, = vg} is a p-periodic e-orbit, then the determinant exponent
is defined by

p—1
det Df, €) — %erﬂdet Df(w)].
1=0

The Morse spectrum of the determinant is defined as the following

Y(det Df) = {A€ R: there are ¢ — 0 and periodic €j, — orbits &
with AN(det Df, &) — X as k — oo}.

It is well known [17] that if A1, Ao, and A3 are Lyapunov exponents of a periodic
orbit £ and A(det D f, £) is its determinant exponent then

AL+ A+ A3 = Adet Df, §).

Our computing experiments show that in the selected area the considered system
has the negative Morse spectrum of det D f. It follows from [9] that the volume
tends to zero with negative exponent along each chain recurrent orbit, being its
determinant exponent has at least one negative Lyapunov exponent.

2 Numerical results

We limit our discussion to the parameter range My € [3.00;3.65] and fix M; =
1.0, My = M3 = 4.0. We commence an overview about some general features and
bifurcations. The selected area is located along the route to chaos.

At My ~ 2.93 a Neimark-Sacker bifurcation occurs. The fixed point E3 loses
its stability and an invariant circle appears in its vicinity. This curve becomes the
minimal attractor of the system. As the parameter M, increases, the attractor is
alternatingly quasi-periodic and periodic, like the dynamics of circle maps [1, 16].
This holds as long as the parameter value stays moderately far from the bifurcation
value.

2.1 M,=3.000

The Morse spectrum of det(Df) is estimated as [-0.403970,-0.322668|. The system
has the fixed point Ey with the coordinates (1.2164, 0.4055, 0) and the Lyapunov
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exponents Ly = 0.4837; Loz = —0.1667. The (xy)-plane is invariant for the
differential at E, and the exponents L3 correspond to a focus on this plane.
Thus, the unstable manifold W*"(Ej,) is a curve transversal to the (xy)-plane. The
system has the fixed point E3 with the coordinates (1.7160, 0.2500, 0.2806) and
the Lyapunov exponents L;o = 0.0630; Lz = —0.6430. The unstable manifold
W"(Es) is a 2-dimensional surface with an unstable focus. Our computing results
show that the closure of W"(FEj3) is a global attractor in the positive corner {zx >
0, y > 0, z > 0}. In particular, W"(F5) tends to the closure of W*(FEj3), see Fig.
1. Such a dynamics may be observed when the parameter M, changes from 3 to
4.

Figure 1: Unstable manifolds W*(E5) and W*(E3), My = 3.000.

The closure of the unstable manifold W*"(Es) is diffeomorphic to a standard 2-
dimensional closed disc, see Fig. 1. The boundary C' of the unstable manifold
W4(E3) is homeomorphic to circle S1. The stable invariant curve C' appears at the
Neimark-Sacker bifurcation at My ~ 2.93 and looses its stability at My ~ 3.366.
As My = 3.0 we observe a quasiperiodic behavior on C'. The first approxima-
tion of this rotation looks like as 9-periodic. However, Danny Fundinger found
the coordinates of a point Xy on C' whose 50,000 iterations form a line,being
the iterations from 40,000 to 50,000 form a line as well. We conclude from this
that the movement on the cycle is not periodic. The coordinates of the iterations
are Xy = (1.336740,0.379555,0.253432), Xg = (1.471666,0.417361,0.145821),
X9 = (1.372226,0.385229,0.243440), X153 = (1.378605,0.390052,0.234376),
X3 = (1.392378,0.397436, 0.218947). These results show that if we start from a
point Xy, then X is shifted a little bit from the position of X, X;ig a little bit
further and so on. The chain recurrent sets E», FE3 and C are localized by the
symbolic method, the unstable manifolds W*(Ey) and W"(FEj3) are constructed
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by the iterations of broken lines and polytopes, respectively.

When parameter M, changes from 3 to 3.3, both the topological structure of
trajectories and the manifolds W*(Ey), W"(FE3) persist.

e,

Figure 2: Unstable manifolds W*(Ej3), My = 3.300.

2.2 M, =3.300

The Morse spectrum of det(Df) is estimated as [-0.431418,-0.289534]. The fixed
points Ey and E3 have the coordinates (1.27119, 0.50077, 0) and (2.01597, 0.25,
0.39002) respectively. As in previous case they have the same type of stability.
Moreover, there is a minimal attractor C with quasiperiodic motion. However, as
My = 3.3 the manifold W*"(E3) tends to the invariant curve C by winding around
C, see Fig. 2. Hence C should not be considered as a boundary of the smooth
manifold W*"(Es), but as its limit set.

2.3 M,=3.3701

The Morse spectrum of det(Df) is estimated as [-0.526124,-0.194662|. The sta-
ble invariant curve C looses its stability at M, ~ 3.366. When the parameter
My becomes 3.3701, this bifurcation results in the appearance of a Mobius band
MB(3.3701). Later we prove that the invariant manifold MB(3.3701) is non-
oriented. The bifurcation is like period doubling bifurcation which is usually
observed in continuous dynamical systems. However, we can not speak of pe-
riod doubling bifurcations here in the same sense as is usually meant for discrete
systems. More precisely, in the discrete system we observe a pattern which is
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typical for continuous systems [4, 3]. So we can say about a "Feigenbaum-like
bifurcation". As we will see later, several Feigenbaum-like bifurcations of the
same kind happen close to the transition to chaos. The manifold MB(3.3701)
is the limit set of the unstable manifold W*(FEs3). Construct the unstable mani-
fold W*(E3) of the fixed point Fy as above. The boundary L = dM B(3.3701)
is a limit set of the unstable manifold W*"*(E,), see Fig. 3. Center line C' of

3

Figure 3: Unstable manifold W*(E,) and the M&bius band MB(3.3701).

M B(3.3701) is an unstable invariant curve (on M B(3.3701)) with quasiperiodic
motion, see Fig. 4. Note that L is a stable invariant curve homeomorphic to
circle which is two times longer than the center line C. On L there are the stable
55-periodic orbit {P, ...} and the hyperbolic 55-perodic orbit {H, ...} which is
stable on L. The rotation number [3| of the system on L is 3/55. The points
R(1.631969, 0.105806, 0.778837), Q(1.456810, 0.157710, 0.718353) lies on the or-
bit of P(1.519275, 0.140199, 0.847081), and H has the coordinates (1.582335,
0.118405, 0.815238), see Fig. 4. The eigenvalues of the differential D f°° at P are
approximately equal to A\; 2 = 0.858440.2398: and A3 = 5-1078. Hence the point
P is focus for f°°. To prove non-orientability of the band MB(3.3701) we consider
the direction of the rotation on the orbit of the point P. Comparing the rotation
at points along the center line, i.e. at P, R, etc. (see Fig. 4), we see that the
direction of the rotation persists. But the directions of the rotation at the points
P and @ are opposites. So, if we go from P to Q along the center line, we save
the orientation and if we go transversal to C we get opposite orientation. This is
possible if and only if the band is non-oriented. There is only single 2-dimensional
non-oriented strip - Mébius band.

Thus, the global dynamics of the system in the positive corner {z > 0, y >
0, z > 0} is the following. The stable 55-periodic orbit of the point P is a single
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Figure 4: Detail of the Mobius band MB(3.3701).

attractor A minimal by inclusion. Other trajectories, except the fixed points Ej3,
the center line C', and the hyperbolic 55-periodic orbit of the point H, tend to A.

2.4 M, = 3.4001

Figure 5: The unstable manifold W*(Ej3) and the Mobius band M B(3.4001).

The Morse spectrum of det(Df) is estimated as [-0.580550,-0.186926]. By
using symbolic methods we determined the coordinates of the fixed points FEj
(1.288505, 0.5309395, 0.0), Fs5 (2.11595, 0.24995, 0.42300) and two chain recurrent
curves C' and L. The eigenvalues at Ey and Ej3 are A\(Es) = 2.124, Ao 3(Es) =
0.628869 + 0.6277, and A;2(E3) = 0.806993 + 0.812688:, A\3(Es) = 0.447195.
Both C' and L are homeomorphic to a circle, being L is two times longer than
C. The curve L becomes the minimal attractor of the system. These two curves
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belong to a 2-dimensional invariant manifold M B(3.4001) which is homeomorphic
to an Mdobius band, Fig. 5. On the picture you can see a collection of curves being
ustable manifold of an orbit on the line C. Geometrically, the curves resemble
the shape of a Mobius strip. The stable invariant curve can be imagined as the
edges of the strip, and the unstable curve as its center line. Numerical studies of
forward and backward iterations so far indicate that the curve at the center line
has saddle type in the space and unstable type on M B(3.4001). We constructed
the unstable manifold W*"(E3) and the Mobius band M B(3.4001), see Fig. 5.

2.5 My=3.480

+ stable

L]
o unstable + 3
£ g
=" ol
L i
. %,
;
’. & +. .
e i

Figure 6: The boundary L of M B(3.48) is a limit set of W*(Ej).

The Morse spectrum of det(Df) is estimated as [-0.552695,-0.181412]. The Mobius
band M B(3.48) persists. It is a global attractor in the positive corner {x >
0, y > 0, z > 0}. The center line C' of M B(3.48) is an unstable invariant curve
on MB(3.48). The dynamics on C is periodic with the rotation number 7/64.
There is a stable 64-perodic orbit of the point P ~~ (1.231941, 0.800882,0.137928)
on C. The limit set of M B(3.48) is a stable invariant curve L with periodic
dynamics of the rotation number 1/18. There is a hyperbolic 18-periodic orbit
of the point U ~ (2.194811,0.356991,0.065345) on L. The differential D f'8(U)
has the eigenvalues A\; &= 1.21, Ay & —0.28, A\3 = —0.002. The first eigenvalue
corresponds to L so the orbit of U is unstable on L. There is a stable 18-periodic
orbit of the point S ~ (1.652079,0.131587,0.502229) on L. The differential
D f'8(S) has the eigenvalues A\; =~ 0.81, Ay &= —0.40, A3 ~ —0.003. Since the pair
of the eigenvalues at U and S are negative, the Mobius band M B(3.48) tends to
L by winding around one. The periodic orbit of S is a single attractor minimal
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by inclusion. Thus, almost all trajectories from positive corner tend to this orbit.

2.6 M, = 3.532

Figure 7: Unstable manifold W*"(FE,) and its limit set LimW"(E,), My = 3.532.

The Morse spectrum of det(Df) is estimated as [-0.572940,-0.162688]. The coordi-
nates of the fixed point Es are (1.305196,0.561747,0). We constructed the unstable
manifold W*(E,) and its limit set LimW*"(Ey). It turns out that LimW"(E,)
has nontrivial structure, see Fig. 7. The limit set consists of the 107 circles
(C197), the hyperbolic 107-periodic orbit H, its unstable manifold W*(H), and
the attractor A, see Fig. 8. The unstable 107-periodic orbit U is inside of the set
C'07. The limit set of the M&bius band M B(3.532) coincides with LimW¥(Ej).
The attractors A and C'%7 are minimal by inclusion, so we have a non-ordinary
phenomenon —the existence of two minimal attractors in a biology system. It
should be noted that the set C197 exists in a short interval for M. The circles,
the orbits U and H disappear when M, ~ 3.536, whereas the attractor A persists.
The paper [6] deals with the appearance of multiple attractors in the chain food
dynamics and contains detailed information about the considered system.

2.7 M, =3.540

The Morse spectrum of det(Df) is estimated as [-0.578320,-0.173867]|. The attrac-
tor A is the limit set of the Mobius band M B from M, ~ 3.536 to M, =~ 3.538,
but for all that the invariant curve A looses its stability for the last parameter
value. When the parameter M, becomes 3.54, the bifurcation results in the ap-
pearance of the second Mobius band M By(3.54), see Fig. 9. Hence we have

3
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Figure 8: The attractor A and its details, My = 3.532.

Figure 9: The second Mdbius band M By(3.54), its unstable center line Cy, and the stable
283-periodic orbit S on L.

"Feigenbaum-like bifurcation".

The second Mobius band M By(3.54) appears as a limit set of the first
Mobius band M B(3.54). The center line of the second Mébius band M By(3.54)
is unstable invariant curve (5 with quasiperiodic motion. The boundary
Ly of MBy(3.54) is a stable invariant circle which is two times longer than
the center line C5. On the boundary Lo there are two 283-periodic or-
bits: stable S ~ {(1.354245,0.467325,0.679182),...} and unstable U =~
{(1.354245,0.467325,0.679182), ... }. The points of these orbits alternate.
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Figure 10: The trajectories of the first Mobius band tend to the second M&bius band by winding
around it, My = 3.570.

2.8 My=3.570

The Morse Spectrum of det(Df) is estimated as [-0.565295,-0.161637]. When the
parameter M is greater than 3.538, the second Mobius band becomes a limit set
of the first M&bius band. More precisely, the trajectories on M B; tend to M By
by winding around it. The set M B;(3.57), the unstable malifold of an orbit on
the center line C'y and its behavior near the limit set M By are shown on the Fig.
10.

Now we observe the next "Feigenbaum-like bifurcation" near the bound-
ary of the second Mobius band M B,. Here the bifurcation is the following.
The invariant curve Ly = OM By loses its stability and a strange invariant
set M Bj appears, see Fig. 11. The set M B3(3.570) consists of 71 pieces,

P

E‘i«.‘.m...r...“‘.,-”-'’"‘“""”wm F Q

Figure 11: The second Mobius band and the detail of its limit set, My = 3.570.
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each piece has both 2- and 1-dimensional parts. This decomposition is invari-
ant, i.e. an image of a piece part is a piece part. The 2-dimensional part is
the closure of the unstable manifold W*(U) of the hyperbolic 71-periodic or-
bit U ~ {(1.323374,0.186463,0.646940),...}. The eigenvalues of the differ-
ential Df™H(U) are A\; ~ 1.374292, Ay ~ —1.501502, A3 ~ —0.794848. The
eigenvalues A\; and Ay correspond to the unstable manifold W*(U). The sys-
tem behavior on W*(U) is similar to its dynamics on a Mobius band. As
Mo < 0, the 71-th iteration f™ inverts the orientation on W*(U). The 1-
dimensional part is formed by the unstable manifold W*(H) of the hyperbolic
71-periodic orbit H ~ {(1.576668, 0.44846,0.72410), ... }. The manifold W*"(H)
ends at the stable 71-periodic cycles @ ~ {(1.913398,0.677286,0.093128), ...}
and P ~ {(2.489430,0.086803,0.027202), ...}, see Fig. 11. The limit set
of the 2-dimensional manifold W*(U) is a stable invariant curve which forms
by the 1-dimensional unstable invariant manifold W*"(F') of the hyperbolic
142-periodic orbit F. The structure of the both Mo6bius bands persists near
My =~ 3.5708. Moreover, the structure of the invariant set M Bjs persists
as well. It should be noted that in this case we detect a new phenomenon.
When M, = 3.5708 the set M B3 contains at least three stable periodic or-
bits: the known 71-periodic orbits @ =~ {(1.560941,0.447309,0.731145),...}
and P ~ {(1.601819,0.436388,0.74072), ...} and a new stable 142-periodic or-
bit S ~ {(1.547730,0.450719,0.727846), ... }. Thus, we obtain three minimal
attractors in the biology system.

2.9 My=3.571

jg\
Q

5wl %2 n Sn

Figure 12: The invariant set of M B3(3.571) and the unstable manifold W*(Hy) on it.
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In this case the Morse spectrum of the det(Df) is estimated as [-0.596287-
0.163302]. The structure of M Bs(3.571) is the following. There are two at-
tractors minimal by inclusion. One of them — P — is a stable 71-periodic cy-
cle generated by the point Py ~ (1.6014,0.4362,0.7415), see Fig. 12. The
second attractor is a stable cycle S formed by 142-periodic orbit of the point
So ~ (1.93364, 0.60068, 0.0002). The eigenvalues of these cycles are following:

Aa(P) ~ 0.6477 4 0.36567, |A12(P)| = 0.7438 < 1, A3(S™) =~ 0

and

A1,2(S) /= 0.5079 £ 0.36261, |A12(S)] =0.6241 < 1, A3(S) =~ 0.

Thus, the both cycles are of focus type and obviously, they are attractors minimal
by inclusion. Additionally, there are two unstable periodic cycles. One of them H
is 71-periodic orbit of the point Hy ~ (1.5889, 0.4438,0.7305) and the other Q is
142-periodic orbit of the point Qq ~ (1.578620,0, 410556, 0.798312), f™(Qo) =
Qn ~ (1.649636,0.279537,1.066632). Again, we analyze the eigenvalues of these
cycles:

M(H) =~ 1.4817, \o(H) ~ 0.5603, \3(H) ~ 0;

and
A(Q) &~ 1.8779, Xo(Q) ~ —0.0669, A3(Q) ~ —O0.

Moreover, we estimate the corresponding eigenvectors and eigenspaces. So the
periodic cycles H and @ are of hyperbolic type with 1-dimensional unstable man-
ifolds. The unstable manifold W*"(H) are constructed and we see (Fig. 12) that
the right part of W¥(Hy) has a simple behavior and ends at the point Py of the
orbit P. The left part of W"(Hy) has more complex oscillated behavior. The
limit set of W¥(Hy) contains the points So and S7; = f7(Sp) of the stable orbit
S. The limit set of W¥(Hj) contains the points @y and Q7; of the hyperbolic
orbit @), see Fig. 13. We estimate the angle between the stable subspace of the
orbit @ at Qo and W"(H,) and verify that their intersection is transversal near
Q0. Thus, we have the heteroclinic transversal connection H — ().

The next step is the construction of the unstable manifold W*(Qy) at the point
Qo. It turn out that here we have a similar behavior: one part of W*(Q) ends at
Sy of the stable orbit S. The other part of W*(Qg) has more complex oscillated
behavior such that its limit set contains the point Hszg of the hyperbolic orbit
H and the point P34 of the stable orbit P. Here we also obtain the heteroclinic
transversal connection () — H. From this it follows that there is the homoclinic
connections Q — @ and H — H. To check this conclusion we construct the
global unstable manifold W*(H) of the hyperbolic orbit H. The result of our
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36
36

Figure 13: The closure of the unstable manifold W*(H), the stable orbits S and F.

computing displayed on Fig. 13 shows that the limit set of W"(H,) contains
Hss = f3%(Hy). Thus, there exists the homoclinic orbit H — H, which usually
leads to chaotic dynamics near this orbit [12, 13, 14, 15, 8, 3]. Our numerical
investigation shows that a chaotic dynamics is located inside of the closure of

W*"(H). This closure is not minimal by inclusion because it contains the stable
orbits S and P, see Fig. 12.

2.10 Chaos

Figure 14: The chaotic attractors for My = 3.573 and M, = 3.58.
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Consider the system behaviour for My = 3.573, 3.580 and 3.650. The Morse
spectrum of the differential was obtained by the symbolic analysis methods. For
My = 3.573 the Morse spectrum of det(Df) is estimated as [-0.601288,-0.167536].
In the case M, = 3.58 the spectrum is estimated as [-0.582492-0.156852] and
for My = 3.65 the estimate is [-0.601972,-0.136850]. Thus, we have negative
spectrum in all cases. It results in zero volume of the chain recurrent set and, as
a consequence, in zero volume of the chaotic attractor. It was mentioned above
that the chaotic dynamics appears when My ~ 3.571 and is located in very small
domain. When M, € [3.573,3.650] several local and global bifurcations lead to
a number of subsequent changes in the dynamics. This involves the appearance
of chaotic attractor which grows as M increases. Our construction of a chaotic
attractor is trivial: we pick up a point from its domain of attraction and consider
its iterations. If the iteration number is huge, we obtain the desired attractor. In
our cases the chaotic attractor is minimal by inclusion, so almost all points from
the positive corner are in the basin of the desired attractor. When M, = 3.573 we
can observe (see Fig. 14) that the chaotic attractor coincides with the invariant
set M B3(3.573). If the parameter M; increases and reaches value My = 3.58,
the chaos occupies the second Mébius band M By (3.58), see Fig. 14. After all, as
My = 3.650 the chaos covers the first Mobius band M B;(3.65), see Fig. 15.

Figure 15: The chaotic attractor for My = 3.65.

3 Conclusion

In this paper we have proved that a real discrete system with biological origin
possesses a non-oriented invariant manifold — Md6bius band. The obtained results
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demonstrate the existence of multiple attractors in food-chains models. We have
found several parameter regions where attractors of this kind exist. Moreover, the
parameter region with three coexisting and closely-spaced attractors was found.
It should be noted that such a proximity does not exclude the possibility that a
complicated situation may appear, which may lead to more intriguing biological
consequences in the system under study or similar systems.

We have shown the route to chaos in the food-chain dynamics. The initial sys-
tem (M < 2.9) has a single stable fixed point, when the parameter M; increases
the systems passes through non-trivial cascad of the bifurcations which, when
My = 3.65, results in the appearance of a minimal chaotic attractor covering a
Mobius band.
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