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Abstract

We show the equivalence between Borel’s regular sets model and the Liouville formula
for the approximation of irrationals through rational numbers. The Diophantine-Liouville
dichotomy can be resolved via sequences of transfinitely many approximants.

The existence of non-linearizable hedgehogs is purely theoretical and their electronic
visualization is not feasible.

We show that the non-linearizable hedgehog for polynomials e2πiθz + O(zk), k ≥ 2 is
a locally connected, plane-filling Julia set with Hausdorff dimension 2, spreading radially
everywhere inside a bounded non-empty region.
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“Ciascuna stella ne li occhi mi piove

del lume suo e de la sua vertute;

le mie bellezze sono al mondo nove,

però che di là su mi son venute:

le quai non posson esser canosciute

se non da canoscenza d’omo in cui

Amor si metta per piacer altrui.”

DANTE ALIGHIERI,

Io mi son pargoletta bella e nova,

Rime, 34, verses 11–17.

1 Introduction

1.1 An overview of indifferent dynamics

Let f(z), z ∈ C be any complex function over the Riemann sphere C∞. The

study of the dynamical systems governed by the iterates fn(z) (−∞ ≤ n ≤
+∞) is termed Complex Dynamics. One speaks more properly of Holomorphic
Dynamics when fn(z) are analytic maps. A remarkable attention is payed to

the invariant elements, especially to the cycles of periodic points: the solutions
of the equations

fn(δ) ≡ δ.

The cycle period is rated by n. Just for simplicity, one likes to focus on the

case of n = 1, when the cycle includes one periodic point δ, which is termed
the fixed point. One is also interested in studying the neighboring dynamics

near cycles: this approach begins with the classification of cycles through an
indicator value, the modulus of the multiplier M : |M | =

∏n
1 |f ′(δn)|. Cycles

could be super-attracting, attracting, indifferent and repelling, depending on the

1“Every star showers into these my glances\some of its light and of its lofty virtue;\your world can hardly
recognize my beauty,\which down from heaven has descended on me:\at man alone is privileged to know it,\who,
blessed with great discerning wisdom, harbors\Love in his heart to please another person.” [3]
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modulus |M | = 0, |M | < 1, |M | = 1, |M | > 1, respectively. When |M | 6= 1,
the modulus is sufficient for determining the dynamics about δ. But the case

M = 1 might be read ambiguously, disguising behind this Euler form

|f ′(δ)| = |e2πiθ| = 1, θ ∈ R. (1.1.1)

Here one drops M and focuses on the argument θ. The expression indifferent
dynamics refers to the local behavior of fn(z) inside a sufficiently small neigh-

borhood of δ, if (1.1.1) holds: these studies became a respectful branch in the
whole theory of Holomorphic Dynamics. The role of the multiplier and of the

first derivative naturally introduces the application of Taylor series to the local
study of any fixed point. In the indifferent case, the linear term of the expansion

for the iterates fn at δ formally writes as

f ′
n(δ) = e2πiθn. (1.1.2)

But it does not necessarily follow that

|f ′
n(δ)| = |e2πiθn|, (1.1.3)

when the local dynamics of fn(z) are1 isomorphic (or geometrically equivalent)
to the rigid θ-rotation. The folklore and the literature in Holomorphic Dynamics

divides this branch into two main subfields, characterized by the following two
numerical conditions enjoyed by the argument:

θ ∈ Q and θ ∈ R\Q.

We speak of rational and irrational dynamics respectively. Although we
will apply these standard definitions in what follows, we stress that it would be
more convenient (1◦) to re-frame the indifferent dynamics under the viewpoint

of Lyapunov (asymptotical) stability of the iterated orbits about δ, (2◦) to
remove the modulus operator from (1.1.3) and (3◦) to focus on (1.1.2). One

can then re-edit (1.1.2) and distinguish these two situations:

e2πiθn = 1 or e2πiθn 6= 1, (1.1.4)

1Unlike all the other case, the indifferent dynamics can stand as one evidence of the possible gap between
the formal expressions and their geometrical meanings.
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when neighboring orbits are locally unstable or stable, respectively. These latter
conditions are not quite the same as θ ∈ Q and θ ∈ R\Q. Given a generic real

θ, we will see that stability holds for the union set of rationals and of a subset
of irrationals exclusively, while instability holds in its complement.

Joining Lyapunov’s and Taylor’s view together may help to introduce the
action performed by the higher order derivatives in the Taylor series of fn(z) for

one of the cases (1.1.3) [or equivalently (1.1.4)] to hold. But it does not help to
figure out why and how this could happen or not. One such discussion belongs

to the domain of Number Theory: loosely speaking, the above action may be
stopped or not, according to the numerical conditions of θ. This suggests why

the argument θ is essential here. Again, higher order derivatives, belonging
to the Taylor series, can be compared to ‘breakers’ [keepers] of the Lyapunov

instability [stability]. The argument θ, if [not] endowed with a proper numerical
condition, is [not] able to stop the breaking action.

Indifferent dynamics focus on how the numerical properties of θ guarantee
that the linear term e2πiθn is the only one ruling the local dynamics. Whichever
way one likes to follow (dynamical or numerical), the two-fold numerical split

is just artificial and lessens the study thanks to disjoint categories. It holds
according to how large one’s mathematical viewpoint is. If it is the largest, dis-

tinct cases do merge into one. Otherwise the rational dynamics, relatively easier
to study, differ from the irrational ones, extremely complicated and thus legit-

imately settling at the hard side of the Holomorphic Dynamics. Such dynam-
ics are intimately related to analogous questions in the theory of conservative

(Hamiltonian) systems and in Celestial Mechanics (KAM theory).

There is some fashinating aura around the close relationships between ge-

ometrical and numerical features, but their level of complication may have
spawned an unpleasant counter–effect among the audience, in fact the irra-

tional case did not taste as very attractive and intriguing to specialists during
the last 60 years. It follows that the historical flow of these developments is
quite winding. The former results consisted of existence statements and for-

malized during early 1900s, after Kasner’s attempts [51] and Pfeiffer’s remarks
in U.S. [76]. Independently in France, Fatou and Julia focused on the same

problem, consolidating the related mathematical groundwork as follows.
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[A] [B] [C]

[D] [E]

Figure 1.1.1: Hedgehog with non-maximal Siegel compactum. If blown-up, the ‘filaments’ in
[A] show the wedging action of the basin to infinity into the bounded one; the central disc is the Siegel
compactum of positive area. [B] Such filaments are not truly uni-dimensional: they look like lines in
small figures because of their very narrow width. [C,D] If magnified (red squares), the true nature,
as well as the wedging action, gets clearer. Finally [E] shows filaments again, highlighting another
aspect of hedgehog behavior: the plane-filling rate or, more technically, its Hausdorff dimension.

Analogously to the (super-)attracting/repelling (|f ′
n(δ)| 6= 1) cases, exis-

tence theorems of local type focus on the conditions for the iterates of rational

maps fn(z) to turn into the holomorphic germ

gn(z) : e2πiθnz + O(zk), z ∈ C, k ≥ 2, n ≥ 1. [2] (1.1.5)

inside a bounded neighborhood of δ. One such transformation is termed ‘linea-
rization’ and it is formulated into the so-called Schröder’s functional equation

2A robust theory has been developed for such quadratic type germs (k = 2); conditions may be formally
different for germs of higher degree (see [99]).
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model, generalized for iterates here below:

φ[fn(z)] = anφ(z), n ≥ 1. [3] (1.1.6)

If this equation holds, there exists an invertible function φ(z) mapping the iter-

ates fn(z) into the Taylor series (1.1.5). Again, if (1.1.6) holds, fn(z) are locally
linearized into fn(z) 7→ anz about δ, i.e. the Taylor expansion of fn(z) includes
the linear term anz. We speak of topological conjugation, locally exclusively,

from fn(z) to anz. When an = e2πiθn, the linearization turns fn(z) into the
germs gn(z): topologically, there exists a neighborhood centered at δ, isomor-

phic to a disc, the Siegel disc S – like in (1.1.3) – where local dynamics are
governed by the linear term of (1.1.5) exclusively. Their behavior is analogous

to aperiodic, rigid rotations. The original Fatou’s and Julia’s statements can
be filed under the so-called center-problem, the expression pointing out to the

study of the conditions for the linearization (1.1.6) to hold. ‘Center’ is in fact
a dated expression4, still in use to indicate the equidistant interior point from
the circle-shaped boundary of the Siegel disc S, where iterates fn(z) rotate.

After the early developments by Kasner, Pfeiffer, Fatou, Julia, Ritt and

Cremer (in chronological order), it was clear that the conditions, for (1.1.6) to
hold, are numerical. Siegel finally showed they are Diophantine [90]. Since this
result settled a long standing question, historians liked to close the first stage

of developments here.

During 1960s and 1970s, the branch of indifferent dynamics entered the

second stage thanks to some advancements inherited from the results in KAM
theory, from Arnold’s works on small divisors [1], from Brjuno’s on differential

equations [16] and from Cherry’s on the iterates with indifferent multiplier [27].
This short list indicates the real number of few isolated productions, scattered

through the Time and concerning of continuous systems governed by analytic
differential equations. They indirectly tie to iterated complex maps: in fact

these two fields were already known to keep lots of affinities in general. The
indifferent dynamics were rather sleepy until late 1980s, except for few works

3This parametric version shows how the Schröder functional equation can apply to the (super-)attracting
and the repelling case (when a < 1 or a > 1).

4Julia pulled it from Poincaré’s terminology in the theory of linear differential equations, where the rotational
behavior in a neighborhood of one such fixed point also happens.
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by the French [48, 61, 62] and by the Russian school [67, 95], where authors
attacked the problem in local terms, discussing on the linearization conditions

and on the Siegel disc properties S.

A third stage begun when one radically new look was brought in during
1990s: specialists5 realized that the numerical nature of θ not just affects the
Siegel disc size – locally speaking – but even the topology of the Julia set Jθ
at a larger view. The theory of hedgehogs roots into the investigation on the
dynamical and geometrical properties of ∂S and of Jθ, featuring what follows.

(1◦) Because the local linearization and the existence theorems were already
clear in general, the study of the properties for the argument θ naturally fol-

lowed as one further elaboration of the former results. This topic became one
dominant trend during the new wave. One notices that the complex iterated

map f(z) was studied as a polynomial exclusively and in the form (1.1.5). The
latter can be regarded as a Taylor series and it can still (and at best) support

the study of the extended version of an older problem (to be explained in the
next sections); or equivalently, specialists looked out at a newer, bigger problem
keeping the same local features as of the original and more restricted version,

since when it was formulated (back in late 1910s). Here the Diophantine order
of θ and the metrics of Siegel discs are concerned.

(2◦) On another side, the new trend started to extend the investigation to
the semi–local scope: this means to drop the solely local analysis of the Siegel

disc and to investigate on the Julia set Jθ too. In view of (1◦), it seems that
one shall exclude the linear term from the Taylor series and consider the higher

orders terms. Anyway it is not a correct view: the Taylor series are obsolete
to work on problems of not exclusively local scope. Tools were naturally forged

elsewhere: in the realms of Topology and of Number Theory, the closest fields
to the essence of the problem. Here the dynamics and the geometries of Julia

sets Jθ are discussed.

To summarize, the discoveries showed that the numerical properties of θ

either affect the size of S and the Hausdorff dimension of Jθ in a mutual fashion:
as the former shrink to 0, the latter increases up to 2 in the complex plane.
Because of the particular shapes taken during this process, the Julia sets Jθ

5Headed by R. Pérez-Marco and by J.-Ch. Yoccoz, who introduced several outstanding techniques.
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were termed hedgehogs.

1.2 The hedgehogs

In the Holomorphic Dynamics, the ‘hedgehog’ is nowadays the expression col-
lecting the family H of Jθ when θ ∈ R\Q. Equivalently, it is the visual version

which resumes all the semi–local dynamics in the irrational case. The theory of
hedgehogs does not replace the older center-problem, but it extends the latter

in the same terms as in the previous two points.

The center-problem was introduced during the earliest studies on the global

dynamics for complex rational maps all over the Riemann sphere, i.e. inside
the independent works by Fatou and by Julia during 1906–1920. At the eyes

of these two pioneers, it immediately showed as a very hasch question. His-
tory tells that Fatou’s and Julia’s false positions did not only root to their
lack of background6, but there were intrinsic difficulties in grasping an overall

view because several essential concepts were not clear to them yet. Scratch by
scratch, difficulties have been slowly removed during the later decades, until the

core became visible in the recent years. These events had been showing that
an interdisciplinary approach, joining Topology, Analysis and Number Theory,

was strongly required. The introduction of the term ‘center’ by Julia was like-
wise imitated by Cremer, who coined the opposite expression non-center and a

number of derived terms, in order to have at hand a basis of preliminary con-
cepts to discuss the opposite side of the question. The center-problem original
statement discards the case of the geometries and the neighboring dynamics

when (1.1.6) does not hold and centers do not exist. But, alike the center-
problem, this counterpart also requires the combined approach via Number

Theory and Topology. Equivalently to Cremer’s terms, we call this counter-
part as the non-center-problem [28]. This is the point break with the theory of

continuous systems and ordinary differential equations, where the non-center
situation cannot happen.

Following Cremer’s production, the only paper on non-centers was written
by T. M. Cherry in 1964 [27], where a geometrical object – whose topology

6They were not Number Theorists.
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was very similar to modern hedgehogs – was sketched out. One shall wait until
the early 1990s for seeing more mathematical works on non-centers, illustrating

the new theory of hedgehogs as the modern way to approach, resume and solve
definitely the center-problem. It was grabbed and placed where deserved: just

as a dot inside one bigger puzzle! Hedgehogs in fact delivered a corpus of
concepts for watching all irrational dynamics coherently, where the rational

and irrational dynamics are tied together [73].

For what can be known about the iterates of polynomials (1.1.5), hedgehogs

relate S to Jθ, classifying S into 3 types, differing for the numerical properties
of θ and for the radius r of the disc S. The range of r is as follows:

1◦) the maximal value R, so r = R;

2◦) non-maximal r, when 0 < r < R;

3◦) the null value, when r = 0.

As r shrinks from R to 0, Jθ wedges into the bounded basin. There is no

wedging action in 1◦) and it is maximal in 3◦) when δ ∈ Jθ is a non-center
and termed today as Cremer point : the two-fold nature of this theory gets

clearer as one runs this list backwards from 3◦) to 1◦) in terms of linearization
regions or, from 1◦) to 3◦), in terms of hedgehogs if the rate of wedging action

is accounted: the Hausdorff dimension of Julia sets goes way up to 2 as r
decreases to 0. The cases 1◦) and 2◦) involve linearizable hedgehogs, while the

non-linearizable type belongs to 3◦). If the linearization region is maximal, S
is a Siegel disc; otherwise these smaller discs are defined Siegel compacta ([73],
p. 245).

Despite the power of covering all subcases in indifferent dynamics, we opine

that the theory of hedgehogs did not get to the mature stage yet. We mean to
the sense of most results based upon the dynamics of polynomials exclusively.
This could still stand a restriction. As we will remark in the closing sections

of this work, one further advancement could want to ‘get back’ to the original
terms: the rational maps R(z) with indifferent points. The dynamics of R(z)

should be directly investigated at the semi-local scope, searching out of the
Siegel disc S and moving towards the Julia set. The promising results on the
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hedgehogs for the iterates of polynomials (1.1.5) already suggested that the
Schröder’s functional equation (1.1.6) is no longer useful outside ∂S.

Question 1.2.1. Could a full picture of hedgehogs geometries be taken from the
study of the iterated polynomials exclusively? Would it more adequate to study

the singularities distribution for a general rational map R(z) and to know if such
latter points exist and how they could affect these geometries? For example to

know whether they [do not] spread radially along privileged directions? How
many and where?

These are just questions, perhaps indications for further researches, not dis-
cussed here but just hinted. The goal of this article is to deepen the mathemat-

ical meaning of some results that already appeared in [83] but were developed
in terms of graphics exclusively.

1.3 The problem of drawing hedgehogs

We are first interested in understanding if computers may capture, and at what
degree, the shapes of H. While (1◦) is trivial, the display of cases (2◦) or (3◦)
gets much harder, due to the delicate numerical properties of θ ∈ R\Q, together
with machine approximation and the slow convergence speed in each type of

indifferent dynamics. Both aspects drastically slow down the performance of
most graphical methods: these are clear evidences that they do not fit in such

dynamics. Not surprising anyway, since they had originally been developed for
particular shapes of Julia sets.7 The global character of these (widespread)
methods collides with the local dynamics around Siegel compacta.

So we are long for new strategies. Old methods may work sufficiently fine

for rational dynamics when θ ∈ Q. But, when θ ∈ R\Q, the efforts to obtain
fine drawings of Jθ require to be customized.

A first question of interest was to know whether and how a detailed display
of Jθ, θ ∈ R can be accomplished in a reasonable time: if θ ∈ Q, the convergence
rate gets slower as iterates fn(z) get closer to δ. If θ ∈ R\Q is Diophantine of

7The display of particular topologies could require dedicated methods, as the author showed for Quaternionic
Julia sets [82].
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any finite order κ, there exists a sufficiently small neighborhood where such rate
is null, (1.1.6) holds and iterates rotate around the fixed point δ. Therefore any

candidate method shall not take into account the convergence or the divergence.

One way to crack this problem was suggested in [83]. It is especially useful
while dealing with case (2◦) when the Siegel radius is non-maximal and when
θ ∈ Q. This method is not free from flaws: figures 1.3.1 include white discs

pointing out to a lack of accuracy. On the other hand, it runs faster: if com-
pared to the aforementioned methods, the gap is significant. Results show that

the hedgehogs topology gets clearer as well as its wedging action inside the
bounded basin. Our original goal was to offer a strategy for drawing pictures

regarding the indifferent dynamics through a exhaustive set of parameters. De-
spite such detailed results, this is not a total victory, because our method still

enjoys a same flaw as most of the known methods: the impossibility of drawing
the extremal case of non-linearizable hedgehogs. The feeling of reaching so close
to it let us wonder if, rather than how (like we did before). It was then natu-

ral to focus on a second question: are non-linearizable hedgehogs computable8

? It is evident that the response demands a deeper analytical approach than

our achievements in [83], where only empirical methods were applied. Just as

[A] [B] [C]

Figure 1.3.1: The wedging action. Here we blew up fig. 1.1.1/B. Even with a relatively small, but
progressively increasing number of iterates, this method emphasizes the wedging action inside the
bounded Fatou component. White discs acknowledge the lack of accuracy in the visual reproduction
of the geometry: a side effect from the main feature which allows the method to be very fast.

anticipation here, we sketch out that the response is negative: the characters

of irrational dynamics depend on delicate numerical conditions and computers
8A set is said to be computable if it can be drawn on the computer screen [15].
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can just approximate them. Although this latter statement is quite obviously
true, the approach we followed begun a prolific discussion on Diophantine Ap-

proximations, Measure Theory and Topology. Flattering results are retrieved
for linearizable hedgehogs. Definitely, approximation equals failure in the non-

linearizable situation: any algorithmic9 approach cannot crack the problem:
this is the definitive obstruction stopping the wished performance. The question

necessarily splits into two cases, if hedgehogs can be algorithmically managed
or not. This particular topic belongs to a wider range of questions, classified as

‘computability of Julia sets ’.

2 Gathering the required background

In the next two sections we will sketch out some background concepts from
the Measure Theory, Diophantine Approximations and Topology. Where re-
quired, some additional concepts will be developed as well, in order to have

the appropriate tools for the final proof. The reader is directed to the books
[40, 35, 53, 58, 64] for prerequisite background information not provided here.

2.1 Diophantine and Liouville irrationals

Let

R(z) =
m(z)

n(z)
∄w1 ∈ C, R(w1) : m(w1) = n(w1) = 0,

be a complex rational map. R(z) is the quotient of two non-zero polynomials
with rational coefficients, so that

deg(R(z)) = max{deg(m), deg(n)} ≥ 2.

In [28], where the dynamics of the iterates Rn(z) about an irrationally indif-

ferent fixed point δ are investigated, Hubert Cremer showed that the closed
unit interval I ≡ [0, 1] includes a zero Lebesgue measure set of irrational values

α, not allowing the conjugation of Rn(z) into the holomorphic germ (1.1.5),

9Mostly applying to cases (1◦) and (2◦).
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thus obstructing the local linearization Rn(z) 7→ e2πiαn around δ. Topologi-
cally, there exists no neighborhood U ⊃ δ, centered at δ and being conformally

isomorphic to a disk under Rn(z). We say that α ∈ R\Q is a Siegel value
[Cremer value] if the linearization applies [does not apply] and call δ a Siegel

point [Cremer point ]. Long before Cremer’s 1927 paper [28], Joseph Liouville
(1844) showed that α may ‘resist’, more or less strongly, their approximation

by sequences of rational numbers pn/qn. This strength is rated by an integer
value κ in the following Diophantine condition: 10

∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

>
ǫ

qκn
, ∀κ ≥ 2 κ ∈ Z+. (2.1.1)

(A refined version, to be applied to other problems in Number Theory, wants
κ ∈ R.) This condition is satisfied by Siegel values. At this point, for sake of

comfort, we remanage the standard operator for defining the closest integer p
to qα (check Lang’s book [58] for original usage). Let ‖qnα‖ be the left-hand
side of the inequality (2.1.1):

‖qnα‖ ≡
∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

;

if α satisfies (2.1.1), α is a Diophantine irrational and it can be classified by
the order κ < +∞, α ∈ D(κ). Given a non-zero polynomial of finite degree κ,

Pκ(x) =

κ
∑

i=0

bix
i, bi ∈ Q,

α is algebraic of order κ for Pκ(α) = 0 holds, given inf κ < +∞. Liouville
applied the remarkable formula (2.1.1) to retrieve an equivalent definition for

algebraic numbers in terms of rational approximations: in fact, the expressions
‘Algebraic’ and ‘Diophantine’ mean the same in this context. There exists a

class of irrationals, the transcendental numbers, which are not algebraic, so not
the solutions of any such polynomial Pκ(x).

Now let D(2) be Diophantine irrationals of quadratic order, then

D(2+) ≡
⋂

k>2

D(κ) (2.1.2)

10Any relation where only integer solutions are allowed. Here they are pn, qn and κ.
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is the topological representation for Diophantine irrationals of order κ > 2.
One knows that D(2+) and D(∞) are of full Lebesgue measure ([64], pp. 120,

222).11 These two classes of irrationals play a special role in the theory of
Diophantine Approximations. Surprisingly12 D(∞) is not analogously applied

to Diophantine irrationals of infinite order, but it is defined as

D(∞) ≡
⋃

k<+∞
D(κ) (2.1.3)

i.e. the union set of all Diophantine numbers of any order κ, according to this
nesting rule ([64], p. 222):

D(m) ⊂ D(n), 2 ≤ m < n < +∞. (2.1.4)

The set L ≡ R\(Q∪D(∞)) of Liouville numbers is the complement of D(∞) in
R\Q and consists of the Cremer values not satisfying (2.1.1). One knows that

L has zero Hausdorff dimension ([64], p. 222): 13

Lemma 2.1.1. The set R\D(κ) has Hausdorff dimension ≤ 2/κ. Hence the set L
of Liouville numbers has zero Hausdorff dimension.

Unless otherwise indicated, α and θ will denote an arbitrary irrational num-
ber and an arbitrary Liouville number respectively.

2.2 Khintchine’s theorems

The sense from the whole corpus of the previous results just grants the existence
of sequences of rational approximants to algebraic irrationals α of arbitrarily

large order κ, but cannot give any information on how or if one can reach
α. We move the focus from α to the behavior of the sequence pn/qn. Several

results were developed in this direction. We first mention two metric theorems
by Khintchine, termed as Khintchine’s convergence and divergence theorems

respectively, concerning of the interesting property 2 of theorem 2.5.1 (p. 31)
([52, 53], cf. [58], pp. 23–24):

11Check the definition of Lebesgue measure at p. 35.
12We keep this definition until sharper results will be shown, where the ambiguous symbol ∞ is replaced by

the least transfinite ordinal ω0. The development of a proper and more extensive environment will lessen this
exception, letting it match the original meaning.

13Check the definition of Hausdorff dimension at p. 38.
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Theorem 2.2.1 (Khintchine’s Convergence Theorem). Let ψ be a positive function such
that ∞

∑

q=1

ψ(q)

converges. Then for almost all numbers α (i.e. outside a set of zero Lebesgue

measure), there is only a finite number of solutions to the inequality

‖qα‖ < ψ(q)

q
. (2.2.1)

Theorem 2.2.2 (Khintchine’s Divergence Theorem). Let ψ be a positive function such

that ∞
∑

q=1

ψ(q)

diverges. Then for almost all numbers α, there are infinitely many solutions to
the inequality ‖qα‖ < ψ(q)

q .

The terms ‘convergence’ and ‘divergence’ refer to functions which converge
asymptotically to a finite bounded value and to ∞ respectively.

These two Khintchine’s theorems are based upon the boolean-like perfor-
mance through ‘convergence-divergence’, intuitively setting up the existence of

one threshold value for determining if the inequality (2.2.1) has finitely or in-
finitely many solutions. These theorems portray the early and rough status

of the metric Theory of Numbers before the achievements by Roth and alia.
The information retrieved here are insufficient to allow any direct contact with
Diophantine-Liouville dichotomy: for example, theorem 2.2.1 may allude to Li-

ouville numbers (because of the zero measure set), while 2.2.2 cannot help to
determine if the values in question are Diophantine or Liouville. From merging

theorems together, one can find out a ‘strip of doubt ’ close to α and where one
cannot determine exactly if solutions are finitely or infinitely many. Despite

these comments and flaws in metric terms, we will make some observations
about the sequences of approximants pn/qn.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 26



Differential Equations and Control Processes, N 2, 2007

2.3 A first look on the sequences of approximants

With regard to these Khintchine’s theorems, let q > 1. If
∑∞

q=1 ψ(q) diverges
[converges], ψ(q)/q diverges [converges]. Let deg(f) be the degree of the func-

tion f in parentheses.

From ψ(q)1
q
, 1/q → 0 as q grows: so the convergence and divergence of

ψ(q)/q involve the growth order of ψ(q), because of deg(1
q) = logq(

1
q) = −1 is

constant. With no loss of generality,14 let ψ(q) : aqn, n ∈ Z and logq ψ(q) = n.

Let deg(ψ(q)) ≡ logq ψ(q), we will first discuss the exponents n, when a is
constant. Let the maximum operator:

Mψ = max

{

| logq ψ(q)|,
∣

∣

∣

∣

logq

(

1

q

)
∣

∣

∣

∣

}

, (2.3.1)

which becomes

Mψ = max{| logq ψ(q)|, 1} or Mψ = max{logq ψ(q),−1}.

According to (2.3.1), we find that Mψ = | logq ψ(q)| holds when:

1. logq ψ(q) = n ≥ 2. In fact, given

logq ψ(q) + logq

(

1

q

)

≡ n− 1 ≥ 1,

one has ψ(q) > q and ψ(q)/q > 1. For example, ψ(q) ≡ qn≥2 and ψ(q)/q ⇒
ψ(q) ≡ qn≥1. Thus

∑∞
q=1 ψ(q) and ψ(q)/q diverges;

2. logq ψ(q) = n < 1. In fact, given

logq ψ(q) + logq

(

1

q

)

≡ n− 1 ≤ −1.

14We may also assume the polynomial form

P (q) :
n<+∞
∑

i=0

aiq
i,

where deg(P (q)) = n. From our usage of the maximal operator, one sees that the conclusions of this section
depend on the value n of the largest exponent, thus from the monomial aqn. Along these lines we can take on
ψ(q) as a general Taylor series, opening to the cases of a polynomial or transcendental ψ(q).
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One has logq ψ(q) < logq q and ψ(q)/q rewrites into 1/qn+1 → 0. Thus
∑∞

q=1 ψ(q) and ψ(q)/q converge;

3. logq ψ(q) = n = 1 = logq(
1
q). In fact, given

logq ψ(q) + logq

(

1

q

)

≡ n− 1 = 0,

the discussion moves to the parameter a: in fact, ψ(q)/q ≡ a. Given

loga(a) ≥ 1,
∑∞

q=1 ψ(q) diverges; otherwise, if loga(a) < 1,
∑∞

q=1 ψ(q)
converges;

4. Finally, one might like to discuss a and n simultaneously. This is easy as
ψ(q)
q splits into aϕ(q)

q , where ψ(q) ≡ aϕ(q). Given

m = min{loga(a), logq ϕ(q)/q}, M = max{loga(a), logq ϕ(q)/q}
∑∞

q=1 ψ(q)/q converges [diverges] forM+m < 0 [M+m > 0]. IfM+m = 0,
ψ(q)
q is constant.

Khintchine’s theorems assume that the sequence of qi is a priori determined,
qi = 1, 2, 3, . . . , according to the sum operator

∑∞
q=1. These sequences are

trivial anyway and we are mostly interested in studying the general case, where

there exists a map qi+1 = φ(qi). Here we focus on the coefficient a or on the
exponent n of φ: both elements govern the approximation rate.

2.4 On the strip of doubt

According to section 2.3, it seems that a general discussion on the behavior

of the map ψ(q) should take into account either its speed of convergence [of
divergence]. But the rational form of ψ(q)/q brings in one more delicate dis-
cussion, involving the combinations resulting from a comparison between the

growing [shrinking] rates of the map ψ(q) at the numerator and of the identity
map q at the denominator; except when both maps shrink and the resulting

ψ(q)/q shrinks too, the two speed rates shall be compared so that ψ(q)/q grows
[shrinks] as their algebraic sum is positive [negative]. The Khintchine’s two
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theorems represent the natural environment for this discussion. In fact, the
different speed rates of the numerator ψ(q) and the denominator q affect the

convergence and the divergence of ψ(q)/q and thus may require the application
of theorem 2.2.1 or 2.2.2, where required. Our goal is to set up one scenario

where these two theorems are complementary in topological terms, so to have a
combined version. One such new statement may be even weaker, because of the

behavior would depend on the sequence qn as well as on the map ψ(q). Frac-
tions with different speed rates in the numerator and in the denominator may

give rise to a larger number of cases than we need. So we set some restrictions
to ψ(q), for crunching that number to only one which fits our purposes.

Let ψ(qn) : N → R be a convergent sequence. Let qn = 1, 2, . . . and
c, k 6= ∞, where c, k ∈ R, are constants. Consequently,

ψ(qn) → c ⇒
∞
∑

qn=1

ψ(qn) → k 6= ∞.

It is not intended that we have convergence for all q > 0. Now suppose the
hypotheses of the two theorems hold simultaneously for a same rational map

ψ(qn)/qn. Loosely speaking, there may exist one or more values of qn such
that ψ(qn)/qn may diverge or not. So one can speak of one domain RC of

convergence and one RD of divergence. As n = 1, 2, 3, . . . , the denominators qn
increase sufficiently fast that we have

lim inf
ψ(qn)

qn
= lim inf

c

qn
= 0.

The two theorems under consideration imply that ‖qα‖ → 0. Let the triplet

of points qs ≤ qs+1 ≤ qs+2 be a subsequence of qn so that s ∈ N (N = {n ∈
N : 1, 2, 3, . . .}) with the (here, purely artificial) condition that no couple of

points qs belong to a same domain RC or to RD or to the boundary RB ≡
R\(RC ∪ RD). At least two members of the subsequence qs must lie inside
two different regions. Let qs and qs+2 belong to the region of divergence and

convergence, respectively, while qs+1 lies on their common boundary. Fig. 2.4.1
illustrates the situation for s = 0. Regarding the region of convergence, note

that theorem 2.2.2 implies ‖qnα‖ → 0 as qn increases without bound; if ψ(qn)/qn
is not everywhere convergent, it seems plausible that there exists one region of
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Figure 2.4.1: Khintchine’s theorems.

divergence where theorem 2.2.1 holds. The bottom of fig. 2.4.1 shows the

intervals where theorems hold (solid segment). The question marks and the
dashed segments point to intervals15 where each theorem gives no information

on the number of solutions for the inequality

‖qnα‖ <
ψ(qn)

qn
, (2.4.1)

depending on the values qn. If we combine theorem 2.2.1 to 2.2.2 into one new
theorem, we obtain a result on the number of solutions for the inequality (2.4.1)

within a small neighborhood of the irrational α. Given q1 6= q3 (and it could
not be otherwise if they belong to distinct domains of convergence), one obtains

a gap where the combined version cannot help on the number of solutions of
(2.4.1). We call this gap the strip of doubt. One of the goals for the theory of

15The letters F and I indicate the ranges where (2.4.1) has finitely and infinitely many solutions, respectively.
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Diophantine Approximations is to compute the optimal value q2 for which the
gap closes when

lim inf |q1 − q3| = 0.

The lower bound vanishes identically when one can approximate q1 and q2 so

sharply to have one same value q2 on the boundary RB for q1 = q2 = q3. Each
region RC and RD is well-defined and their union covers R\{α}. This situation

raises some natural questions of both topological and of numerical nature: could
RC ∩ RD ≡ ∅ hold or not? Is RC open or closed? Since qn is not assumed to

be an integer necessarily, what is the nature of qn (or of log qn) when it lies on

the boundary? Should ψ(qn)
qn

meet particular integrability conditions? And, if so,
what should the nature of set of discontinuities be?

Some have been crucial in the historical development of Diophantine Ap-
proximations. They will be considered later again here, to elucidate our main

problem and to ground the further results.

2.5 On the accessibility to Liouville numbers

According to the theory of Diophantine Approximations, one special class in-
cludes the algebraic irrationals of constant type (equivalently, of bounded type),
enjoying these two16 equivalent properties ([58], p. 24):

Theorem 2.5.1. Given an algebraic irrational α of constant type:

1. There exists a constant ǫ > 0 such that (2.1.1) holds for all integers qn > 0
and κ = 2.

2. For any positive function ψ with convergent sum
∑

ψ(qn), the inequality

‖qnα‖ < ψ(qn)/qn has only a finite number of solutions.

From property 1 one understands the reason why the expression Diophantine
irrationals of constant type refers to D(2), the irrationals of quadratic order. On
the contrary, Liouville numbers θ satisfy this complimentary formula instead:

16More equivalent properties could be listed. But were omitted because these listed ones best fit the sense of
our discussion.
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given p, q ∈ N where gcd(p, q) = 1 and ǫ > 0, then

lim inf ‖qα‖ ≤ ǫ

qκ
, ∀κ ≥ 2. (2.5.1)

Liouville numbers are transcendental (the converse does not hold). The previ-

ous discussion introduced the existence of a Diophantine-Liouville dichotomy,
coming straight from the so-called Liouville’s approximation theorem:

Theorem 2.5.2 (Liouville’s approximation theorem). Let α be any algebraic number of

finite order κ ≥ 2. Then there exists a positive constant ǫ = c(α) [17], such that

‖qnα‖ >
ǫ

qκn
(2.5.2)

for all rational numbers pn/qn.

Diophantine and Liouville numbers differ if the lower bound for the infinites-
imal ǫ may be positive or vanish identically, if (2.5.2) holds or not, respectively.

This sets a break-point for the Diophantine-Liouville dichotomy. There is also
one such split for Diophantine irrationals, between D(2) and D(2+): while
property 2 of theorem 2.5.1 always holds for D(2+), it holds for D(2) only if

the denominators qn meet one condition, discussed below.

One such generalization for D(2+) was shown during the mid 1950s and

represents one of the most intriguing results in Diophantine Approximations.
Sharper versions of theorem 2.5.2 followed by Thue [93], by Siegel [89], by Dyson

[34], focusing on how κ affects the number of solutions pn/qn of (2.5.2) inside a
neighborhood of α. These results culminated into the celebrated18 Thue-Siegel-

Dyson-Roth’s theorem [84], giving a sharper estimation of κ and elucidating the
question on the number of these solutions in a much more19 extensive manner:

Theorem 2.5.3 (Thue-Siegel-Roth’s theorem). Given an algebraic irrational number
α, there exist only finitely many solutions pn/qn of

‖qnα‖ <
1

q2+ǫ
n

,

with ǫ > 0.
17The value of ǫ depends only on α.
18K. F. Roth was awarded a Fields medal in 1958 for this result.
19There is still much to learn. All the later production after Liouville’s theorem lacked of non-effectiveness ,

because the related methods of proof do not make it possible to determine how ǫ can be computed from α.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 32



Differential Equations and Control Processes, N 2, 2007

From theorem (2.5.3), Roth deduced the existence of a least upper bound
µ(α) ≡ inf

µ∈R
µ, called irrationality measure20, indicating how closely α can be

well-approximated by pn/qn. The value µ(α) plays as a threshold for ‖qnα‖,
inviting to focus on this version of the above inequality:

‖qnα‖ <
1

q
µ(α)
n

. (2.5.3)

Hopefully, comparing (2.5.3) to Roth’s theorem will not confuse the reader:

κ and µ(α) do not keep the same meaning. The operator µ(α) indicates the
upper bound to be taken on by κ for a neighborhood of α to include infinitely
or finitely many solutions of (2.5.1). If κ < µ(α), there exist infinitely many

solutions inside a neighborhood of α and converging arbitrarily close to α, which
is said well-approximable. Otherwise, solutions are finitely many for κ > µ(α):

one such number cannot guarantee arbitrarily close convergence to α, which is
thus a badly approximable value. The existence of infinitely many approximants

pn/qn, together with their equi-distribution21 inside intervals of arbitrary width,
are necessary conditions for assuming that approximants may get arbitrarily
close to α.

Roth found a striking classification of all reals into three categories: µ(α) =

1 if α ∈ Q, µ(α) = 2 if α ∈ D(κ) for κ ≥ 2 and µ(α) > 2 if α ∈ L. According
to Roth’s sense, while any neighborhood of D(2) and D(2+), with smaller
radius than 1/q2+ǫ, cannot include infinitely many rational approximants, the

unbounded interval µ(α) > 2 indicates the infinite irrationality measure of
Liouville numbers. Roth gave a definitive response to the natural question

arising from some weak theorems in Number Theory (see for example, section
2.4). Thus µ(θ) cannot be exceeded by finite κ and Liouville numbers are

well-approximable. Reaching to θ via sequences of rational approximants with
arbitrarily sharp precision is effective. We can equivalently state that:

Proposition 2.5.1. For every θ ∈ L, there exist arbitrarily small neighborhoods
U(θ) of θ such that U(θ) contains solutions of (2.5.1) that accumulate arbitrarily
close to θ.

20Alternatively, ‘Liouville-Roth constant’ or ‘irrationality exponent’.
21Related results appear in [4] by Behnke, [71] by Ostrowski and [96] by Weyl.
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Roth’s classification helps to earn the global understanding of several results,
developed years before into separate theorems, but not arranged into a system-

atic corpus yet. One of them is this classic theorem ([68], p. 95):

Theorem 2.5.4. Given any irrational number α, there are infinitely many rational

numbers pn

qn
in lowest terms (or coprime, i.e. gcd(pn, qn) = 1) such that

− 1

qhn
< α− pn

qn
<

1

qhn
. (2.5.4)

From elementary calculus, one finds that (2.5.4) can be rewritten as follows:

‖qnα‖ <
1

qhn
. (2.5.5)

According to Roth’s theorem (p. 32), h ≤ 2 + ǫ relates to infinitely many

solutions of (2.5.5) for the algebraic α. The estimation of the bounding de-
nominator value in the right-hand side of (2.5.5) was sharpened by the Hurwitz

theorem (cf. [50]), stating:

Theorem 2.5.5 (Hurwitz’s theorem). Let α ∈ R\Q and A be a constant satisfying

0 < A ≤
√

5. Then there are infinitely many solutions pn/qn of

‖qnα‖ <
1

Aq2
n

.

The optimality22 of A =
√

5 , as upper bound for the existence of such

infinitely many solutions, stands out as another intriguing result: for A >
√

5,
one finds finitely many solutions of the above inequality, according to Roth’s

theorem. Hurwitz’s theorem fits the same sense as of the questions concluding
the section 2.4. As Roth’s and Hurwitz’s theorems melt together, one can

check the conditions met by qn for knowing how many approximants converge
arbitrarily close to θ. Applying the notation of Roth’s theorem, one writes

‖qnα‖ <
1

q2+ǫ
n

<
1√
5q2

n

.

22Hermite already found it was 0 < A ≤
√

3.
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Equivalently, in terms of qn sequence, one seeks the maximal value qn+1 for
infinitely or finitely many solutions to exist. So one writes

‖qnα‖ <
1

qn+1q2
n

<
1√
5q2

n

where qǫn ≡ qn+1.

The magnitude of two consecutive denominators qn, qn+1 is ruled by

qn+1q
2
n >

√
5q2

n ⇒ qn+1 >
√

5.

Alternatively, taking each denominator qn at once, one writes

qn >
2ǫ
√

5,

regardless of the value n. The existence of infinitely many approximants is thus
guaranteed by

qn ≤ 2ǫ
√

5.

More interestingly, the sequences 0
ǫ→ ∞ and ∞ ǫ→ 0 hold for α ∈ D(κ), κ ≥ 2

and lead to qn → 1, according to the limits

lim
ǫ→+∞

2ǫ
√

5 = 1, lim
ǫ→0+

2ǫ
√

5 = ∞.

With regard to the class D(2+), the existence of infinitely many solutions of
(2.5.2) is a feature implying that qn ≤ 1. But it cannot hold because of qn ∈
Z+, qn ≥ 2 by hypothesis. Since gcd(pn, qn) = 1, qn always exceeds the bounding
exponent 2+ ǫ: for Roth’s theorem, no neighborhood of α ∈ D(2+) can include

infinitely many solutions.

2.6 Background on regular sets

We take a short break from Diophantine Approximations and move to Topology.

We focus on some concepts in Measure Theory. Let E ⊂ R. Since R is a metric
space, we introduce the following theorem ([59], p. 5):

Theorem 2.6.1. Every non-empty open set E ∈ R can be uniquely expressed as a
finite or countably infinite union of pairwise disjoint open intervals.
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Émile Borel introduced23 a different definition of the set E through a similar
model based upon a more general construction of sequences of sets Eh.

Borel first gave the definition of the regular setR of points belonging to
⋂

Eh

(h = 1, 2, . . . ). He distinguished the role of R from the pointwise fundamental

set F of limit points, ([11], pp. 2 and 5) for the sequence Eh. Unlike Lebesgue,
Borel did not require Eh to be pairwise disjoint (see proposition 2.6.1: Borel’s
definition requires the intersection of Eh to be non-empty). He also developed

this model for limit sets F of any countability: following the early version
where F was countable (Ch. I, p. 2), Borel extended F to any countability

with infinitely many or even uncountably many points (Ch. III, pp. 14–15).
More explicitly, Borel stated ([11], p. 2):

(A) (B) (C) (D)

Figure 2.6.1: Regular sets generation. Configurations of nested and pairwise disjoint subsets
Eh, here depicted as discs. They may also be segments, squares or any geometrical entity which is
nestable. Convergence is not required to be uniform (A) or running inwards (B-C): it may also run
outwards (D).

Proposition 2.6.1. The set E of interior points for all Eh (h = 1, 2, . . . ) is reg-
ular (evidently of zero Lebesgue measure). Every set of zero Lebesgue measure

belongs to a regular set.

Since L is of zero measure, it can be reached via regular sets. This latter

model could retrieve fundamental sets with different topologies, according to the
initial conditions: for example, the nature of the sequence Γ of the indexes h or

the countability of F . If Γ is bounded from above (lim suph ≤ i, 0 < i < +∞),

23In a vaguely polemical footnote, Borel claimed the independent authorship of such concepts and attested
that the ‘zero Lebesgue measure’ definition became more popular than to the expression he coined: ‘null sets ’.
See [11], p. 1.
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the regular set is not necessarily of zero measure nor could it be the same as
its limit set. So R ≡ E ≡ F may not necessarily hold for this model.

2.7 Independence of the regular sets model

We now return to Diophantine approximation and discuss another basic result,

which follows from lemma 2.1.1 ([64], p. 223):

Lemma 2.7.1. The set D(2) of Diophantine numbers of constant type has zero

Lebesgue measure.

From (2.1.4), one notices that the set of Diophantine numbers of order m

enjoys a cumulative definition, due to the inclusion of subsets of order 2 ≤ m <
+∞ ([64], p. 222):

D(m) =
⋃

κ≤m
D(κ).

Now we introduce the set of Diophantine irrationals of strict order m, i.e. with
order κ = m. Given 2 ≤ κ < m, this definition reformulates into

D[m] =
⋃

κ≤m
D(κ) \

⋃

κ≤(m−1)

D(κ),

and the above lemma generalizes as follows ([64], p. 225):

Lemma 2.7.2. Every set D[κ] of Diophantine numbers of strict order κ has zero

Lebesgue measure and positive Hausdorff dimension.

Proof. According to classic Diophantine Analysis, the definition (2.1.1) of a
Diophantine irrational θ of order m implies that θ does not belong to a union

of intervals of diameters 2ǫ/qm (refer to fig. 3.2.1). Likewise the class of Dio-
phantine ζ of order m − 1, does not belong to a union of intervals of length

2ǫ/qm−1. Finally the Diophantine irrationals θ of strict order m do not belong
to the interval of width

2ǫ

qm−1
− 2ǫ

qm
=

2ǫq − 2ǫ

qm
=

2ǫ(q − 1)

qm
,
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tending to 0 for ǫ > 0. So there exists a sequence of decreasing and positive
widths and thus of infinitely many nested sets: it follows readily that every set

D[m] of strict order m < +∞ has zero Lebesgue measure. The limit (2.1.1)
never vanishes identically. Hence every set D[m] has positive Hausdorff dimen-

sion.

Following the previous lemma 2.7.2 and our previous discussion on Liouville
numbers, we can definitely apply the notion of regular sets to Diophantine

irrationals of any strict order κ:

Proposition 2.7.1. Diophantine irrationals of any strict order κ < +∞ can be set

as fundamental points of the limit set F in the regular sets model.

2.8 Hunting with Liouville and Hausdorff

In the end of section 2.1, we quoted a lemma stating that the s-dimensional

Hausdorff dimension Hs(E) of a set E is 0. We will go over the definition of
Hs(E), in order to settle the analogy between the regular sets model and the

set of Liouville numbers. Let (X, d) be a metric space. Given E ⊂ X, the
diameter and the radius of E is defined as follows:

diam(E) := sup
x,y∈E

d(x, y), radius(E) :=
diam(E)

2
, (2.8.1)

where d(x, y) is the distance between two points x, y ∈ E. Let the operator

Hs
δ (En) = inf

{ ∞
∑

n=0

(

diam(En)

)s}

, (2.8.2)

where En ⊂ X,
⋃∞
n=0En ⊃ E, diam(En) ≤ δ, n ≥ 0, where En are again pairwise

disjoint. Hence the s-dimensional Hausdorff measure can be formulated as

follows:
Hs(E) = lim

δ→0+
Hs
δ (E). (2.8.3)

In order to meet the topological and metric conditions (2.8.1) for computing the

Hausdorff dimension of L, we illustrate some concepts involving the Hausdorff
measure first. Let E ≡ L and X ≡ R, in fact L ⊂ R and R is endowed with
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Set Theory Number Theory

Regular sets ↔ Nesting process ↔ Decreasing modulus

Exclusion sets width ↔ Approximation ↔ Rational approximants

Fundamental points ↔ Limit set ↔ Cremer value

the Euclidean metric. The definition of s-dimensional Hausdorff measure can
be applied to L via regular sets En. The lower bound of (2.8.2) is again 0 if

one rewrites it into:

Hs
δ (E) = inf

{ ∞
∑

n=0

(

diam(En)

2

)s}

= inf

{ ∞
∑

n=0

(

radius(En)

)s}

= 0.

(2.8.4)
With regard to the Liouville model, where En are nested discs, all centered

at θ and whose radius is the distance from the Liouville θ to pn/qn, the nth-
convergent located on ∂En (see fig. 3.2.1). So we can merge (3.2.3) with (2.8.4)
and obtain this new version of the latter:

Hs
δ (L) = inf

{ ∞
∑

n=0

∣

∣

∣

∣

∣

θ − pn
qn

∣

∣

∣

∣

∣

s}

; (2.8.5)

it turns out that the Hausdorff measure of L is 0 according to the limit (2.5.1)
which holds at each point of L:

Hs(L) = lim inf
|θ− pn

qn
|→0+

{ ∞
∑

n=0

∣

∣

∣

∣

∣

θ − pn
qn

∣

∣

∣

∣

∣

s}

= 0. (2.8.6)

The definition of Hausdorff dimension dH is in general as follows,

dH(E) = inf{s|Hs(E) = 0} or dH(E) = sup{s|Hs(E) = ∞}. (2.8.7)

The formula (2.8.6) satisfies the left-hand side of (2.8.7), so that the second

part of lemma 2.1.1 at p. 25 can be restated:

Theorem 2.8.1. The Hausdorff dimension dH of set L ⊂ R of Liouville numbers
θ is zero: dH(L) = 0.

From (2.8.5) and the theory of regular sets, En → E ≡ L. For theorem
2.8.1, L consists of isolated points and it is totally disconnected. There is a
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respected and wide literature about L (belonging to the most general family of
Cantor-like sets). See [70] by Olsen and Renfro for deeper results on the metrics

of L: the dimension functions there introduced show that L enjoys the curious
property of not having a positive finite measure relative to any generalized

Hausdorff measure. We also suggest the joint works by Cabrelli, Molter at Alia
[22, 23, 24, 41]. With no loss of generality, our discussion gets easier if just

one sequence of En, converging to one limit point θ ∈ E, is assumed at once:
approximating one Liouville number finds to be analogous to the regular sets

convergence towards a totally disconnected limit set (see table 2.8).

3 Towards the equivalence of models

In this section we deepen the analogies between the topological model of regular
sets and the Liouville numbers definition.

3.1 Faster than polynomials

Both Q and R\Q are dense. Since D(∞) ⊂ R\Q is of full Lebesgue measure
on I ≡ [0, 1] ([64], p. 120), it is also dense in R; so L ≡ R\(Q ∪ D(∞)) is co-

dense in R. From Transcendental Numbers Theory, L ⊂ R is everywhere-dense
set. Because of D(∞) is the complement of a zero measure set and L is the

complement of a first category set, each set has the cardinality of continuum
in every interval of R. So L is uncountable too. In terms of regular sets, the
second question we posed at p. 22 amounts to inquiring about the possibility

of moving along the sequence of nested sets Eh up to E ≡ L. It comes natural
to wonder

Question 3.1.1. What are the conditions governing the possibility of finding a
sequence of nested sets Eh which converge to the zero measure set E of funda-

mental points, so that E ≡ F ≡ X\⋃Eh holds?

We first need to recall this theorem obtained by Paul du Bois-Reymond in

his researches on convergent and on divergent series ([33], Ch. IV or [11], p. 16
and [38]):

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 40



Differential Equations and Control Processes, N 2, 2007

Theorem 3.1.1 (du-Bois Reymond). Given a sequence of positive and monotonically
increasing functions ϕh(n) of polynomial type, h → ∞, n ∈ N+ at arbitrarily

high speed, there always exists another such function ϕ(n) growing faster than
the sequence ϕh(n).

Owing to its monotonic and increasing behavior, ϕ is order-preserving (iso-
tone) and ϕ : R → R. Now we can exploit the shrinking sequence of nested

sets in the regular sets model. Consider the exterior of the discs in fig. 3.2.1:
this is the sequence of pairwise disjoint sets Eh for h = 1, 2, . . . , called exclu-

sion sets ; analogously, if the interior is assumed, we speak of inclusion sets Ih
(depicted in shades of grey). From this same figure, the visual analogy with

concepts in Diophantine Approximations is straightforward. We can drop the
Lebesgue assumption that En∩En+1 ≡ ∅ and get close to Borel’s more intuitive
viewpoint:

E ≡ F ≡ X\
⋃

Eh ≡
⋂

h=1,2,...

Ih.

Inclusion sets can be restated as the intersection I ≡
⋂

h=1,2,...

In, while exclusion

sets are the union E ≡
⋃

h=1,2,...

En; the actions of inclusion sets and of exclusion

sets suggest the approximation rules followed by classes of Liouville numbers
and the topology of Diophantine irrationals of different order κ respectively.
According to theorem 3.1.1, there are no finite upper bounds for the speed of

the family P of polynomials ϕ(n): given any subfamily of P and whose speed is
rated by a finite ordinal |sh| < +∞, one can find another such subfamily whose

speed is rated by a finite ordinal |sh+1| > |sh|. Along with the polynomial
formula

∑k
i=0 aix

i, one understands that sh is determined by the magnitude

of the coefficients ai. This reinforces the “relative” character of polynomial
speed, because faster and faster rates when ai are arbitrarily large ordinals but
of finite magnitude. In the next few pages, we will investigate on the existence

of “absolutely fast” formulas. Because of the ‘ongoing’ construction of regular
sets, it is easy to apply the theorem 3.1.1, in order to deduce the following:

Corollary 3.1.2. Let |s1| be the speed rate for shrinking, nested sequence of exclu-
sion sets Eh1

. There exists another sequence Eh2
with speed rate |s2| > |s1| and
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which decreases faster. In general, one has

radius (Eh) <
1

ϕh(n)
, (3.1.1)

where ϕh(n) is a sequence of polynomial maps in the form
∑d<+∞

i aix
i, ai ∈ R.

The width of inclusion sets Ih gets smaller as ϕh(n) increases. Let the
sequence of points an ∈ Dh ≡ ∂Eh (fig. 3.2.1). Given an ∈ Q, we find a more

comfortable version of (3.1.1) as the width of Ih are expressed in terms of θ:

|θ − an| <
1

ϕh(n)
, lim an = θ, (3.1.2)

or

‖qhθ‖ <
1

ϕh(n)
(3.1.3)

holds for an a priori determined sequence of indexes n or, equivalently, for a

sequence of functions ϕh (we need to go over the nature of ϕh and investigate
their coefficients, according to the remarks in section 2.3).

The polynomial ϕh is the so-called approximation function (see [30], p.
14) and θ is ϕ-approximable. After the discussion about dH(L) = 0, we will

strengthen the connection between the metrics of L and the regular sets model
via Khintchine’s theorems (p. 26). Linking the relations (3.1.1) and (3.1.3)
together with (2.2.1), the regular sets model leads back again to Khintchine’s

theorems and to this formula approximating the Liouville numbers:

‖qnθ‖ <
ψ(qn)

qn
,

where, according to section 2.3, ψ(qn) is convergent. Since we need to investigate

the nature of the functions approximating θ, we focus on ψ(qn). According to
Khintchine theorems, we assume they converge, so that

∑∞
q=1 ψ(q) converges

too. Therefore we can set

ψ(q) ≃ 1

ϕ(n)
⇒

∞
∑

q=1

ψ(q) ≃
∞
∑

h=1

1

ϕh(n)
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in (3.1.3) for the regular sets model (which is assumed to converge). In these
new terms, we turned the problem of reaching θ ∈ L via rational approximants

into the equivalent investigation on the nature of the functions ϕh. While the
sum

∑∞
q=1 ψ(q) is assumed to deal with one a priori determined sequence of

denominators qn and ψ. Now we want to study the sequence for different
functions ϕh(n) where, after giving just one input value n, the sequence of

convergents is retrieved.

From another equivalent viewpoint, the behavior of the convergent sequence

of summands
∑∞

q=1 ψ(q) is analogous to
∑∞

h=1 1/ϕh(n). Since q, n ∈ N+, q ≥ 0,
regardless of the values, we choose qn to be input instead of n and switch from 1

to ǫ in the numerator. In fact, from Number Theory, we know the latter cannot
be a constant for Diophantine irrationals of order κ ≥ 3. We find that

‖qhθ‖ <
ǫ

qhϕh(n)
, ψ(qh) ≃

ǫ

ϕh(n)
. (3.1.4)

The relation (3.1.4) comes straight from the following theorem (cf. [58], p. 21):

Theorem 3.1.3. Let {pn/qn} be the sequence of principal convergents to α ∈ R\Q
and let ϕ be an increasing function ≥ 1, such that for all n sufficiently large,

ǫ

q2
nϕ(qn)

≤ ‖qnα‖. (3.1.5)

Then α is said to be ‘of type ≤ ϕ’.

The type ≤ ϕ refers to the existence of a solution of the inequality ‖qα‖ <
1/q2 for all sufficiently large numbers B, assumed B/ϕ(B) ≤ q < B.

The ϕ-sequence ϕh(n) in the left-hand inequality of (3.1.4) may be replaced
by the q-sequence ϕ(qn). Both sequences converge, according to the above
remarks, and can be intended as different viewpoints on the approximation of

Liouville numbers, according to the consequences from Khintchine’s theorem at
the end of section 2.3. Thus ϕh(n) ≃ ϕ(qn). Combining (3.1.4) with (3.1.5) for

θ ∈ L, we obtain:
ǫ

q2
nϕ(qn)

≤ ‖qnθ‖ <
ǫ

qnϕ(qn)
.

We know
lim inf
i→∞

‖qn+iθ‖ = 0 (3.1.6)
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for θ ∈ L: the sequence continues until ǫ = 0 is reached. Theorem 3.1.3 is
susceptible to recursive application: while qn grows, one has

ǫ

q2
n+1ϕ(qn+1)

≤ ‖qn+1θ‖ ≤ ǫ

qn+1ϕ(qn+1)
.

The left-hand side can be used to define qn recursively in the following manner

qn+1 = q2
n ⇒ qn = q2n

1 ⇐ qn = (((q2
1)

2)2)...,

and we obtain this double inequality:

0 ≤ ǫ

q2n+1

1 ϕ(qn+1)
≤ ‖qn+1θ‖ ≤ ǫ

q2n

1 ϕ(qn+1)
. (3.1.7)

The meaning of 3.1.7 is two-fold: first it shows that the left fractions shall
vanish identically for pn/qn to become θ ∈ L. In addition, the double nature

of the sequence {q2n+1

1 ϕ(qn+1)} implies two ways for ‖qnθ‖ = 0 to hold: one
via the growing factors q2n+1 which shall be maximal, or via the approximating

function ϕ acting as the fastest one. We will later discuss the details of these
two conclusions. According to the previous remarks on non-effectiveness (p.
32), it is also worth investigating on the fate of ǫ, which shrinks to 0 as qn grow.

In terms of indexed sequences,

Question 3.1.2. Does it make sense to admit the existence of a maximal index n

so that (1) ≤ 0 and the sequence stops, (2) ǫ = 0 because of the magnitude of
qn and (3) θ ∈ L is finally reached by pn/qn ?

Before attacking this question, we show that the proposition 2.5.1 at p. 33
holds: there exist infinitely many solutions of (2.5.1) and which get arbitrarily

close to a Liouville number θ. The ‘arbitrary closeness’ property cannot apply
to Diophantine irrationals, because of (2.1.1).

Given the index set I, let {Si : i ∈ I} be the collection of intervals such
that the width of Si is ‖qnθ‖ and Si includes finitely many solutions of ‖qθ‖.
At the largest extent of their whole sequence, the approximants pn/qn shall
run towards θ ∈ L, according to the recursive inequality24 (3.1.7). The union

24Resulting from 3.1.3 and the Khintchine’s convergence theorem 2.2.1.
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US =

∞
⋃

i=1

Si of infinitely many nested intervals includes infinitely many solutions

of ‖qθ‖. For the following corollary, solutions spread arbitrarily close to θ ([58],
p. 29):

Corollary 3.1.4. Let 0 < a ≤ 1 and let ρ(t) = at. Then λ(N) is the number of
the ordered pair integers (p, q) satisfying

0 < ‖qα‖ < a, 1 ≤ q < N,

where
λ(N) = ρ(N) + O(N).

As n = 1, 2, . . . , qn grow and the equi-distribution of the solutions of (2.5.1)

sharpens within the interval [0, θ] ⊂ [0, 1]. Now we draw another straightfor-
ward consequence from the reading of (3.1.7):

Proposition 3.1.1. The existence of sequences of approximants {pn/qn}, converg-
ing arbitrarily close to irrational numbers, can be effective. Liouville numbers θ

can be reached when the sequence behavior is tuned to sufficiently fast approxi-
mating functions ϕ(qn) or sufficiently large qn.

Our further discussion will score two goals: showing the type of Liouville
numbers θ and determining the behavior of the sequence {pn/qn}. The double

inequality (3.1.7) gives the clue: the qn need to be sequenced at an increasing
exponential rate, faster than the speeds induced by the coefficients ai of the

polynomial in the form
∑d<∞

i=0 aiz
i.

3.2 Analogy with Topology

The construction of the regular sets model is independent25 from the rationality
or the irrationality of a and of θ ([11], p. 15). Both Q and R\Q are dense in R:

this opens to the plausibility of finding approximants at any arbitrarily small

25Borel also wrote ([11], p. 15): ‘Therefore, in order to study the regular sets of zero measure, whose fun-
damental points are dense over one domain, one could, with no loss of generality, suppose that such points
are, rational coordinates [A/N: or, equivalently for our purposes, ‘irrational’]; then the study is reduced by the
applications of the properties related to continued fractions’.
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distance to the irrational value. This independence relates to the structure of
the sets D(κ) of Diophantine irrationals, as shown in section 2.7.

For our purposes and because Q is the numerical environment for computers

– whether rationals are good approximation of irrationals or not – we will apply
this model through the rational approximations a of θ (see fig. 3.2.1). It

E1 E2

θ

D1

D2

Dh

I1

I2

Ih

a

Eh

Figure 3.2.1: Analogy with Liouville’s definition. Using (3.1.2), one model to approximate θ,
assumed as the fundamental point attained via exclusion (Eh) and inclusion sets (Ih), represented
as nested discs. As the external width (full grey line) grows, the internal width (dotted grey line)
shrinks to zero.

is straightforward to move to the analogous classic definition of Diophantine

irrationals by Liouville:

lim inf ‖qθ‖ > ǫ

qκ
, p, q ∈ N n ≥ 1, κ ≥ 2. (3.2.1)

The width of each Eh can be represented by the distance in the left member
of (3.1.2) or (3.2.1), and the equivalence is set. In light of corollary 3.1.2 and

after assuming the right-hand expression of (2.5.1) in terms of (3.1.1), one can
look at the operator ‘≤’ in (2.5.1) and deduce that
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Proposition 3.2.1. Given a decreasing sequence of values ǫ, a Liouville number
admits the existence of a sequence of approximants pn/qn and which is faster

than any sequence of rational approximants ǫ/qκ converging to θ.

If the lower bound on the right is > 0, (3.2.1) holds. If it decreases asymp-
totically to 0 or finally vanishes identically, (2.5.1) holds instead. The limit

shall be considered from the opposite side as one looks at the sequence (refer
to (3.1.2)) and at the nested circles Dn, from the shrinking perspective of the

problem. Let the boundaries ∂Dn be located at a sequence of rational points
an = pn/qn (fig. 3.2.1). It is easy to combine (3.1.2) with (2.5.1) and obtain:

‖qθ‖ ≤ ǫ

ϕh(n)
≃ ǫ

qκn
, (3.2.2)

where ǫ/qκn, κ = 1, 2, . . . decreases with ǫ/ϕh(n), as h = 1, 2, . . . and in con-

formity to (3.1.5). Liouville’s formulation applies when the left modulus (the
distance between θ and pn/qn) is 0, enjoying again a straightforward similarity

with the limit (3.1.6):
lim inf ‖qα‖ = 0. (3.2.3)

Elementary Calculus suggests that (3.2.3) vanishes identically as ϕh(n) ≡ ∞.

Through a later refinement of concepts, we will come to a sharper and more
useful result. Both the approximation of Liouville numbers θ (in numerical

terms) and the display of non-linearizable hedgehogs (in graphical terms) are
equivalent problems relating to the speed and to the coefficients of ϕh(n) speed,
tied by the quest for the reaching of θ through arbitrarily large q.

4 On the speed of approximants

4.1 Kicking to the limit

In his work [11] on regular sets, Émile Borel suggested to push the du-Bois
Reymond theorem to the extreme consequences. Let F be the dense (limit)

set of fundamental points. Borel stated that there exists no sufficiently fast
sequence of ϕh(n) for E ≡ F ≡ X\⋃Eh to hold. Borel observed that regular

sets R are maximally dense in the sense of cardinality when F is also dense
([11], p. 15):
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Proposition 4.1.1. Every regular set of zero measure, whose fundamental points
are dense in a domain, has the cardinality of the continuum. In other words, if

the decrease rate of the exclusion squares [26] around the fundamental points is
arbitrary, it is not possible for such decrease to be fast so that the fundamental

points are the only points of the set.

Refer to footnote 25. Because of the collection of fundamental points is co-

untable, Borel’s result implies that it is not possible for the decrease to be fast
enough to leave only the fundamental points. The collection of non-fundamental

points that are left will also have cardinality of the continuum in every open disk
contained in the domain.27 We can restate it in terms of rational approximants:

Proposition 4.1.2. No decreasing sequence of regular sets that share the same set

of fundamental points can have an intersection (i.e. the limit of the regular
sets) that is equal to the set of fundamental points.

These remarks on how to not reach ∞ and on the possibility of reaching
θ ∈ L echo Borel’s words zero measure sets E ≡ F . After these two quite

not-so-promising statements, Borel opened to a possibility: he barely suggested
that this goal can be only achieved via a ‘transfinite infinity ’ (in his original

terminology) of inclusion sets Ih. The next sections are devoted to the sense of
this clue and to related developments, relying on remarks about approximating

functions which are faster than polynomials, in particular about the (multi-
)exponential speed, because of the double inequality (3.1.7).

4.2 Transfinite induction

Several remarkable results on well-ordered sets are collected into modern Set

Theory. The advancements during late XIXth century, inspired George Can-
tor to look far beyond countability and finite ordinals. Finally he built up a
robust corpus of rigorous concepts and contributed for Set Theory to be more

coherent. Cantor needed to trespass the frontier of finite numbers and came
to the concept of transfiniteness, as coined by him. The early application was

26For our purposes, let them be circles ; read the caption of fig. 2.6.1.
27Today we understand it as the fact that every Gδ set that is dense in a domain has cardinality continuum

in every open disk contained in that domain.
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to numbers, giving rise to the concept of transfinite values, i.e. cardinal or
ordinal numbers which are larger than all finite numbers and not necessarily

be absolutely infinite: Cantor’s goal was in fact to define the largest numerical
nature which, unlike the infinity concept, could share some of the well-known

computability properties of finite ordinals, in order to rely on a solid mathemat-
ical basis. transfiniteness later involved relations and Logic: it is the so-called

procedure of transfinite induction, where the principle of induction extends to
well-ordered sets including transfinite elements:

Proposition 4.2.1 (Principle of induction). Let S be a well-ordered set, and A ⊆ S.
If y ∈ A for every y < x ∈ S, then x ∈ A.

Let S be a well-ordered set with maximal element x, so y < x for all x, y ∈ S.
If the property T (y) (say, ‘y belongs to the set A’) holds for all b < x, T (x)

(say, ‘x belongs to the set A’) holds too. Formally:

∀x(∀y(y < x⇒ T (y)) ⇒ T (x)) ⇒ ∀x(T (x)).

Extending a property T , from a well-ordered subset A to the maximal element

of the related superset S, is a procedure of the three cases:

1. zero case: proving that T (0) holds, where 0 is the minimal element of a

well-ordered set.

2. successor case: proving that, given one ordinal y and its successor y + 1,

where 0 < y < y+ 1 < . . . , T (y) holds and T (y+ 1), following from T (y),
also holds. One notices the recursive character.

3. limit case: proving that for any limit ordinal γ, T (γ) holds and follows

from T (y) for all y < γ.

One speaks of transfinite induction when, assuming that both zero and successor

cases apply to finite ordinals, the nature of the limit ordinal is transfinite.

4.3 transfiniteness for Γ sequences

The relation (3.2.3) holds, depending on these special conditions:
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1) if the index h is larger than any finite ordinal (in terms of amount of ϕh(n)
in the sequence);

2) or if the input variable n or the polynomial coefficients are larger than any
finite ordinal (in terms of the speed rate for each function element ϕ(n) in

the sequence).

We are going to focus on 1) now. Exploring the sequence Γ of approximating

functions involves a systematic study of the set of indexes h. As we look at
this condition from the operative viewpoint, i.e. at how the sequence works, it

is clear that we need to focus on the numerical nature of h, which affects the
approximation performance.28 On the other hand, 2) belongs to the nature of

ϕh(n), whose discussion will naturally follow after section 4.8.

Let h ∈ N be a finite and countable ordinal. We already know that (3.2.3)

cannot hold according to (3.2.2) and to proposition 4.1.2: θ ∈ L cannot be
reached by Γ. Since Liouville numbers are accessible by the approximants pn/qn,

one wants to understand what conditions have to be set up for ‖qθ‖ = 0 to hold.
We showed that it makes sense to discuss ‖qθ‖ = 0 via lim inf ‖qθ‖ = 0, which

decreases infinitesimally but never vanishes identically if h ∈ N. Inductively,
h is required to assume larger values than any finite ordinal, so to push Γ far
beyond the reach allowed by h ∈ N. One such role is played by transfinite

numbers – the extension of finite ordinals, as postulated by Cantor. In our
environment, we will deal with either finite and transfinite ordinals, assuming

they are both countable. Let O be the union set of finite ordinals with the
least transfinite ordinal ω0: O ≡ N∪{ω0}. O is also countable.29 Let the index

h ∈ O be a von Neumann integer. 30

Alike N, let O be a zero-start set, i.e. where min(h) = 0. The indexing role

of h is an ordering relation for all elements of O. When applied to ϕh(n) for the
whole Γ sequence inherits the zero-start property (ϕ0(n) = n). The sequence

28This side of the question has been further investigated in the next section.
29Both components, N and ω0, are countable.
30In this model, any well-ordered set is isomorphic to a von Neumann ordinal. One refers to the von Neumann

cardinal assignment and for the zero-index property associated to cardinality of the subsets of Ah ⊆ O: here for
a well-ordered set U , we define its cardinal number to be the smallest ordinal number equinumerous to U . Von
Neumann integers naturally apply the transfinite induction to generate a succession of supersets with growing
size.
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of h is ruled by this incremental relation:

hn+1 = hn + 1, (4.3.1)

where h, n ≥ 0. From the hypotheses on the construction of Γ, (4.3.1) holds
for any index h ∈ O. The values hn and hn+1 are said predecessor and the

successor respectively ([35], p. 5), because of

hn < hn+1.

From (4.3.1), one finds h0 = 0, h1 = 1, . . . and in general hk = k, where k is the
maximal element Mh = k = hk = max(h). In this beginning, we just let A be

a subset of finite ordinals h ∈ A, thus A ⊂ O and

max(h) = hk ≡ Card(A) < Card(O).

Since min(h) = 0 and A is ordered by the relation ‘<’, A is a well-ordered set.
We need to prove that this ordering relation extends naturally to ‘≤’ in O. It is

sufficient to refine the definition of maximal element MA of a given well-ordered
set A: if MA = max(A) for any subset A ⊂ O, then ∀h ∈ A : h ≤ MA. Given

MAn
= max(An), if we consider the sequence of nested subsets A1 ⊆ A2 ⊆ · · · ⊆

An ⊆ . . . , then
MA1

≤MA2
≤ · · · ≤MAn

≤ . . . . (4.3.2)

One notices that all MAn
are relatively maximal elements for the chain of nested

subsets An. The existence of relatively maximal elements is equivalent to the

possibility of nesting one set An>0 into another An+1. Now let this fundamental
proposition in General Topology:

Proposition 4.3.1. Every well-ordered set is order isomorphic to a unique ordinal

number.

Given a well-ordered set A with maximal element at MA, there exists an
ordinal number counting the cardinality of A; but A is also zero-start by hy-

pothesis and Card(A) ≡ max(h) ≡ hk holds. Recall the Axiom of Choice (AC)
([35], p. 8):

Proposition 4.3.2 (The Axiom of Choice). For every family {Xs}s∈S of non-empty

sets, there exists a function f from S to
⋃

s∈SXs such that f(s) ∈ X for every
s ∈ S.
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Here ϕ is f , S ≡ O and X ≡ Γ. Our construction requires (AC) to show
that O is linearly ordered ([35], p. 4) and, more strongly, that O is well-

ordered set. In fact, given any triplet of distinct elements hn−1, hn, hn+1, one
has hn−1 < hn < hn+1. Moreover, every non-empty subset of O has a smallest

element ([35], p. 5). Because of O = N ∪ {ω0} and it is zero-start and well-
ordered, O is an infinite Dedekind set and enjoys these interesting properties:

a) if η ∈ O is transfinite, Card(O) ≡ η. According to the previous discussion,
this property extends via transfinite induction, the concept of maximal

element from finite to transfinite ordinals. While max(O) = ω0 in terms
of ordinals, Card(O) = ℵ0 in terms of cardinals.

b) η + 1 = η. This relation is consistent with the construction of O and of
Γ: the least transfinite ω0 is either the maximal element for Γ and the

natural limit for Γ. Transfinite ordinals give rise to a mismatch between
the cardinality and the number of elements in Γ anyway, according to the
Burali-Forti Paradox. As shown in the next section, the paradox cannot

extend to the Γ-type sequence of ϕh(n);

c) ℵ0 ≤ η: we showed that η ≡ ω0 and its cardinality is ℵ0;

d) there exists a cardinal number t, so that ℵ0 + t = η: this follows from
joining b) to c).

Now let the Kuratowski-Zorn lemma ([35], p. 8):

Lemma 4.3.1 (Kuratowski-Zorn). If for each linearly ordered subset A of a set X

ordered by ≤ there exists an x0 ∈ X such that x ≤ x0 for every x ∈ A, then X
has a maximal element.

Since O is well-ordered and, for.the above lemma, there exists one maximal
element in O so that the relation ‘≤’ applies to O. The lemma can be restated

as follows, after dropping the strict inclusion with no loss of generality:

Corollary 4.3.2. If for each linearly ordered subset A ⊆ X, X has a maximal

element for A, then
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• if A ⊂ X, there exists an x0 ∈ X such that x < x0 for every x ∈ A ⊂ X
and X is ordered by <.

• if A ⊆ X, there exists an x0 ∈ X such that x ≤ x0 for every x ∈ A ⊆ X
and X is ordered by ≤.

Also this corollary applies to O.31 As we link the Kuratowski-Zorn lemma
to properties b), c), d), we can show that the maximal element in O is a co-

untable transfinite ordinal, MO = max(O); in particular, according to Cantor’s
theory, MO is the least transfinite countable value, conventionally defined as

ω0. According to the same properties, ω0 is the maximal element of O. Since
N ⊂ O and (AC) applies to O, the pair (O,≤) defines a well-ordered set of

ordinals where the maximal element is not a finite but a transfinite ordinal.
The well-orderedness of O allows to apply the transfinite induction to sets with

cardinality Card(A) ≡ hk and to O, where Card(O) ≡ ℵ0. Therefore O is a
countable set with transfinite maximal element. Comparatively, the sequence Γ
shall be a countable transfinite sequence of approximating functions too, and

one obtains this remarkable equivalence:

Card(O) ≡ Card(N) ≡ ℵ0 ≡ Card (Q). (4.3.3)

Again, the transfinite induction of the property T (h) : h ≤ MAn
extends from

subsets An of finite ordinals to O, including both countable finite and transfinite

ordinals. The same properties attest that MAn
≤ MO. So the previous chain

(4.3.2) definitely closes as follows

MA1
≤ MA2

≤ · · · ≤MAn
≤ · · · ≤MO. (4.3.4)

So hk ∈ A ⊆ O for h ≤ ω0 ≡MO ≡ ℵ0 ≡ Card(O).

4.4 Remarks on applications and the Burali-Forti paradox

In the last section, we introduced the transfinite sequences of ordinals h ∈ O
and their properties. Here we illustrate that their application to the topology

31This version of the lemma could help to figure out the induction from finite to transfinite ordinals, since it
finds a topological analogy which splits into two cases, depending on whether the inclusion is strict or not.
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induced by indexed and transfinite sequences of contracting maps ϕh cannot be
affected by the Burali-Forti paradox.

The Burali-Forti paradox brings in the evidence of a contradiction in the

construction of the set of all ordinal numbers. The latter are either used to
describe the size of a sequence and to indicate the location of an element within.
More rigorously, ordinal numbers represent equivalence classes of well-ordered

sets with order-isomorphism being the equivalence relationship itself. Since
the set Ω of all ordinals enjoys the properties of the ordinal number, Ω can

be assumed as the ordinal number itself. (This is also the case for the set of
ordinals indexing our sequence of contracting maps ϕh.) The successor element

Ω + 1 is strictly greater than Ω. But Ω + 1 is again an element of Ω, because
Ω includes all ordinals; stated in terms of von Neumann ordinals (see p. 50),

Burali-Forti came to the contradiction:

Ω < Ω + 1 ≤ Ω. (4.4.1)

The paradox originates from a property which applies recursively from the
elements to the whole set itself. One such kind of recursion affects Γ-type

sequences too. For example, the set of all functions ϕh is a new ϕ-function:
ϕ(ϕ(ϕ(. . . ϕ(n)))) ≡ ϕh>0(n). The central question is to check if the paradox
may hold for ϕh or not.

Let h ∈ Ω be the index indicating univocally each function ϕh of the well-
ordered sequence. Any element of Γ indicated by the pair (ϕ, h). The original

double inequality (4.4.1) turns into the double topological relation

ϕΩ ⊃ ϕΩ+1 ⊆ ϕΩ (4.4.2)

for Γ-type sequences. The limit (2.5.1) for Liouville numbers, together with the

regular sets model, satisfies the left-hand relation ϕΩ ⊃ ϕΩ+1 and the operator
‘⊆’ in the right-hand side ϕΩ+1 ⊆ ϕΩ. The limit prevents the paradox from
holding, because of the following fixed point property for approximating func-

tions: in the topological terms of the regular sets model applied to that limit,
the Cremer points δ ∈ L are fixed for the whole sequence of nested and shrink-

ing inclusions set Ih+1 ⊆ Ih (see definition of fundamental points at p. 35 here),
i.e. the intersection for all Ih where h = 1, 2, 3, . . . . According to the Brouwer
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theorem, there exists one fixed point δ for
⋂Ω
h=0 Ih ≡ {δ}. Because of δ is a

fixed point with period 1 and accessed by Γ when h is transfinite (ϕΩ(n) ≡ δ),

the formula (4.4.2) can be equivalently rewritten as follows:

ϕΩ(n) ⊃ ϕΩ+1(n) ⊆ ϕΩ(n). (4.4.3)

Therefore
δ ⊃ ϕ[ϕΩ(δ)] ⊆ δ.

Because of δ is a fixed point, one has

δ ⊃ ϕ1(δ) ⊆ δ;

or the tautology

δ ⊃ δ ⊆ δ,

where no contradictions arise. In no strict inclusion terms, every set includes
all elements of the set itself. Therefore the one-element set includes itself and

it is either subset, superset and equivalent to itself (and it coincides with the
universal covering). Although h is ordinal and Γ inherits the properties of Ω,

the fixed point property of ϕh(n) naturally resolves the paradox.32 This same
property does not hold for the set Ω of indexes: in fact, there is no fixed value
for the relation (4.4.1).

One further application involves Number Theory, where ordinals h ∈ O
are applied to the transfinite sequence of real exponential maps qh, with q ≥ 2.
According to p. 44, on the approximation of Liouville numbers and the required

speed for sequences of denominators {qhϕh(n)}, we will focus on the sequence
q1, q2, . . . , qh and the consequences drawn in the limit case of transfinite h.

4.5 A higher degree of freedom

We are going to refine our viewpoint on transfinite sequences of approximating
functions in order to have a fuller control on these sequences. The following re-

visitation accomplishes in terms of indexes. As we showed at p. 35, Borel’s and
32In the classic case of ordinal numbers, modern axiomatic Set Theory resolves the paradox by preventing sets

from sharing the same properties as of their elements and does not allow the generation of sets with unrestricted
comprehension terms. For example, general (and thus ambiguous) statements in the form “all sets with the
property P”, which involves each ordinal and their entire set, cannot hold.
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Lebesgue’s constructions are quite similar. They just differ because of Borel
assumed that Eh are overlapping. Given a superset X, X\⋃Eh with pairwise

disjoint sets Eh (Lebesgue), is equivalent to
⋂

Eh with non-empty intersection:
Eh ∩ Eh+1 6≡ ∅ and Eh+1 ⊆ Eh(Borel). So theorem 2.6.1 turns into:

Theorem 4.5.1. Every non-empty open set E ⊂ R can be uniquely expressed
as a finite or countably transfinite and non-empty intersection of open subsets

Eh, Eh+1 where Eh+1 ⊂ Eh.

Both theorems 2.6.1 and 4.5.1 are recursive: the roles of E and of Eh can
be played by Eh and by one subsequence Ehi

respectively. The nature of such

subsequences will be introduced here, during the two stages graduation of the
indexes domain from N to R. First h ∈ N turns into g ∈ Q, later g into f ∈ R.

We will pull out refined versions of the regular sets model, earning more freedom
to walk around the reals.

We recall that Γ is a sequence of approximating functions with integer
indexes h ∈ O (Γ-type), whereas Λ is an analogous sequence indexed by g ∈ Q
(Λ-type); finally, ∆ is a sequence indexed by f ∈ R (∆-type). Given h ∈
N, the sequence Γ can just enjoy one degree of freedom: either convergence
(incrementing h by 1) or divergence (decrementing h by 1) along the prescribed

shrinking [or expanding rate] of Γ [or of Γ−1]. As the indexes domain first
extends to Q (and later to R), the chain of decimals turns the Γ-sequence into

the Λ-type and finally into the ∆-type, enjoying the maximal degree of freedom:
starting from any real point α1 ∈ R, one can reach another real point α2 ∈ R
by finely tuning the integer and decimal digits of the index. The shrinking [and
the expanding rate] of the Λ-type sequence is arbitrary (see fig. 4.5.1). The
sense of such extensions33 is not to drop but to keep up and sharpen the same

fundamental condition for all these sequences to work. One sees Λ-type or ∆-
type sequences as disguised versions of the Γ-type: the (ir-)rational form of the

indexes can be equivalently deconstructed into subsequences of arbitrarily low
depth and through integer sub-indexes h.

Let I be the inclusion set (refer back to p. 40), where the index h ∈ N.

33Similar studies have been developed in the field of Holomorphic Dynamics which relate to sequences of
iterated maps with non-integer index: results are collected under the rubric of Analytic Iteration or of Fractional
Iteration, where the sequence of iterations can be assumed to be continuous semi-groups.
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Now let a Γ-type sequence. For example, as h increases from 3 to 4, we find the
topological inclusion ϕ4(I) ≡ I4 ⊂ I3 ≡ ϕ3(I). This generally holds from any h

to h+ 1 or, reversely, from h+ 1 to h.

Analogously let 3 ≤ g ≤ 4, g ∈ Q. For one such Λ-type sequence of contin-
uous ϕ-functions inside the difference set Ig=3\Ig+1=4, it is easy to check that
the index value g = 3, 8 alludes to the intermediate subset I3,8:

I4 ⊂ I3,8 ⊂ I3.

Because of 3, 8 = Int(3, 8) + Frac(3, 8), one may conventionally assume the ex-
istence of one main sequence and one subsequence: here the integer part (from

3 to 4) points to the main sequence, while decimals (0, 8) to the nested subse-
quence of, say, depth -1. It is a recursive, top down generation process, where

the terms ‘main’ and ‘sub’ shall not be intended in absolute terms. Rather
they refer to a sub-dependency relation of arbitrary depth and between two se-

quences at consecutive depths. Hence we can generate subsequences recursively
over and over again, downwards to arbitrary depth and decimal n-th place of

the (ir-)rational index. For example, at a next stage, let g = 3, 81. The index
g has two decimal places. According to the above topological inclusion,

I4 ⊂ I3,81 ⊂ I3,8 ⊂ I3,

with two orders of sub-dependency: one main sequence and two subsequences.
Again, let g = 3, 79, then we find

I4 ⊂ I3,81 ⊂ I3,8 ⊂ I3,79 ⊂ I3.

Moreover we find

I4 ⊂ I3,82 ⊂ I3,81 ⊂ I3,8 ⊂ I3,79 ⊂ I3,78 ⊂ I3.

One such higher degree of freedom for Γ-sequences fits better and more intu-

itively (than the Γ-type) the topological properties of the regular sets model,
where convergence of inclusion sets was not supposed to be always uniform.34

34Refer back to fig. 2.6.1 at p. 36, which is very close to the sense of fig. 4.5.1. The magnitude of the integer
and decimal digits in g, from 0 to 9 at the digits n-th place in g, affects the convergence or divergence speed
rate.
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Proposition 4.5.1. Every Λ-type sequence with rational indexes can be assumed as
the composition of Γ-type subsequences, each one with integer indexes.

It is easy to extend this discussion to irrational indexes, when the sequence may

finally reach any real value. For (4.6.1), one can state:

Proposition 4.5.2. Let α ∈ R be a limit point. We can resume the types and
behaviors of sequences as follows:

1. the limit α can be reached via finitely many steps by a Γ-type sequence;

2. if α ∈ L ⊂ R\Q, the limit α can be reached via transfinitely many steps by
a ∆-type sequence;

3. if α ∈ D(κ) ⊂ R\Q, κ ≥ 2, the limit α can be infinitesimally approximated
by a ∆-type sequence.

We are going to show the possibility of matching the numerical natures of
the indexes with the real limits. The limits for sequences with with rational

indexes can be exclusively and sequences with irrational indexes follow the
above points 2 and 3.

(n)

(n+1) - 1
k

(n+1)

(n+1) - 1
k

+
1
k 2

θ

Figure 4.5.1: Nested domains for sequences with non-integer indexes.
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Any rational (index g) can be computed by this bounded sum:

g =
p

q
≡

d
∑

i=−c

n

10i
, c, d < +∞, n ∈ N, 1 ≤ n ≤ 9, g ∈ [0, 1]. (4.5.1)

Given any i ∈ Z, the summands n/10i compute the integer and the decimal

part of p/q. Since each summand n/10i, i > 0 is again rational and because of N
and Q are equipotent, we can find an integer (sub-)index h1 for another Γ-type

subsequence. Each level associates to the interval width Lg = |ϕg0 − ϕg1|. The
speed of one such function is measured by the length Lg covered at each step,
i.e. at each variation of the index h or g: for example Lg. The convergence

speed rate of subsequences cannot exceed the given Ln. See for example fig.
4.5.1, where we represent two orders of nested subsequences through the black

bold and the dashed circles: the indexes, associated to each nested domain, are
listed on the right.

It is straightforward that the smaller n/10i is, the slower ϕhpoq...
(n) (where

h,m, n, o ∈ N) is.35 The nesting rule Ih+1 ⊂ Ih, for integer indexes, extends to

rationals and inductively leads to

Ig+1 ⊂ Ig≡h+ pi
qi

⊂ Ig, 0 ≤ pi
qi

≤ 1. (4.5.2)

Let pi/qi be a sequence. The domain of the subsequence of inclusion sets Ig+ pi
qi

is smaller than the domain of the main sequence. In fact, as it is bounded by
two rational values which are topologically represented by the subsets Ig, Ig+ pi

qi

,

according to (4.5.2) and to section 3.

A longer chain of decimals in the index equals to a slower approximating
function. Likewise, a longer chain of decimals for a Λ-type sequence to a given

limit point can be turned into a Γ-type subsequence with increasing integer
indexes and accumulating to the same limit point. Moreover, given a differ-
ent approximating function, we can replace the Λ-type with only one Γ-type

sequence. The speed of ϕ pi
qi

relates to the amount of decimal places in g. One

35In addition, the sign ± may be applied to denote moving forwards or backwards via Γ, Λ or ∆-type
sequences.
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also observes that

lim inf
pi
qi
→0

|ϕn − ϕn+
pi
qi

| = 0, 0 ≤ pi
qi

≤ 1. (4.5.3)

applies recursively for all indexes and sub-indexes hpo...q
, i.e. to any (sub-

)sequence with (sub-)indexes hpo...q
and its immediate subsequence n+ pi

qi
. Thus

Proposition 4.5.3. The increasing and decreasing nature of the magnitude of each
sub-index relates to the faster or slower speed rate of the related subsequence of

approximating functions.

The final extension applies inductively to ∆-type sequences with real in-

dexes. The possibility for the index g to be irrational certainly raises the
question on how slow one subsequence is required to run. Recall that if a se-

quence of any type Γ,Λ or ∆, say for example Γ : {ϕh(n)}, does reach the given
limit, say λ, then the following two conditions are equivalent:

1. in terms of values, ϕh(n) ≡ λ for a given h;

2. in terms of indexes, the convergence ϕk(n) → ϕh(n) ≡ λ stops as limh = k

holds after the sequence of indexes h = 1, 2, . . . , k.

We remark that the indexes sequence is not the Γ-type or the Λ-type sequence;

while the former involves indexes exclusively, the latter deals with the values
returned by the approximating functions.36 The reaching or even the approx-

imation of limit values by sequences follow an analogous discussion about the
approximation of indexes. The response may optionally rely on the theory
of Diophantine Approximations. Here one differs Diophantine from Liouville

irrationals.

In this direction, the limit index s ∈ R\Q and Diophantine, the behaviour
of ∆-type sequence is ruled by the same conditions, as stated in the theory of
Diophantine Approximations. In fact, f ≡ pi

qi
→ s and lim inf |s− pi

qi
| > 0: given

a Diophantine α and ϕs(n) ≡ θ, we find again (4.6.1). On the other hand, if

36This consideration is not pointless, because indexes and functions may match. For example, in the case
ϕh(1) ≡ 1 · h ≡ ϕ(h). Otherwise, they may follow the same trend: as the chain of decimals elongates. The
approximating functions are applied to smaller and smaller domains.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 60



Differential Equations and Control Processes, N 2, 2007

the limit index s ∈ L, ∆-type sequence can reach Liouville numbers because of
g ≡ pi

qi
→ s and lim inf |s− pi

qi
| = 0. This is one further evidence of the intimate

relation between the numerical nature of the limit and of the dynamical nature
of the sequence.37

Proposition 4.5.4. The possibility of reaching to θ ∈ L associates instead to the
existence of a subsequence of approximating functions whose speed rate decreases

infinitesimally or it is ‘absolutely’ 38 slower than any time-constructable func-
tion.39

Roughly speaking, reaching to θ ∈ L requires a transfinite number of
approximating functions to compensate the decreasing speed rate; otherwise,

finitely many such functions would not be enough.

An approximating function ϕf(h) of ∆-type sequence, with f ∈ R, can

reach the limit θ ∈ L when f ∈ R\Q. Hence its speed rate decreases infinitesi-
mally to zero as the chain of decimals develops. One would like to distinguish

two cases: when the limit index g ∈ L and when s ∈ D(κ), κ ≥ 2, i.e. when
the speed rate can decrease to zero or just slow infinitesimally to zero. In both

cases, we notice that the limit value is irrational and accessible. The above dis-
cussion followed according to the theory of Diophantine approximations, which
collects the study of the best conditions for approximating irrationals via ra-

tional convergents pi/qi among the goals. But, since Q is dense in R, one can
choose convergents which do not satisfy these rules and which are arbitrarily

close to the given irrational limit. The condition f ∈ R shows up organically as
the extremal completion of the regular set construction, because it is natural

for ∆-type sequences to reach any real number, in conformity to the relation
(4.6.1), when rational or irrational limits are reached after finitely many or, if
required, transfinitely many steps respectively. We need now to restate propo-

37One can add something more along these lines. Dynamically speaking, slower speed rates are both shown
during the convergence of iterated points to a Cremer point as well as inside any petal of the Leau-Fatou flower,
while reaching to the fixed saddle point. See section 5.1.

38After sections 4.8 and 4.9, focusing on metrics, we will understand how the expression in absolute refers to
the (approximating) function speed.

39In computational complexity theory, it is a function χ from naturals to naturals (thus we can find a map
σ(n), n ∈ N so that σ ◦χ(n) : N → Q) and enjoying the property that χ(n), n ∈ N can be constructed from n by
a deterministic Turing machine in the time of order χ(n). For example, polynomials with positive non-integral
coefficients are time-constructable, as well as exponentials in the form qn where q, n ∈ N.
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sition 4.5.4 in terms of sequences:

Proposition 4.5.5. The possibility of reaching θ ∈ L depends on the existence of

a sequence (either of Γ or of ∆-type) whose set of approximating functions (or
the set of indexes) has cardinality ℵ0, or equivalently where the maximal index

is ω0.

4.6 Again on non-integer indexes

The equipotency between N and Q motivates the assumption of the injection
τ : N → Q and of sequences with non-integer indexes h. This affects the
behavior of the Γ sequence. Regarding rational approximation of irrationals, a

special attention will also be paid to the limit case of h ∈ R\Q, after drawing
the following, opportune conclusions.

According to the previous properties b), c) and d) of transfinite numbers, a
first result is as follows:

Proposition 4.6.1. The least transfinite ordinal ω0 is the natural limit for the set
of finite ordinals h < ω0 so that, given h→ ω0:

• the Γ-type sequence reaches the limit θ when h is transfinite;

• the sequence ϕh(n) ends with the transfinite index h = ω0;

• ϕω0
(n) is the limit case, i.e. it is the limit function at the end of the

sequence ϕh(n).

From the transfinite induction, it turns out that the question about the limit, as
reconsidered in this new and wider transfinite environment, drops the assump-

tion that the fate of the Γ-type sequence of ϕh(n) is to decrease infinitesimally
as the index h grows, that is, always running but never reaching to its natural

stop, the limit value. Transfinite indexes push the Γ-type sequence ϕh(n) to the
limit function ϕω0

(n).

Since θ ∈ L is accessible, we showed here that Γ can reach θ when Card(Γ)
is a transfinite value exclusively. The accessibility property of θ and transfinite
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sequence condition are intimately related. Otherwise, if transfinite sequences
are not sufficient to reach the lower bound in the Liouville inequality (2.5.1) and

θ is not be accessible, like it happens for Diophantine irrationals: in fact, trans-
finite integers are maximal in absolute and there are no ordinals with greater

magnitude. The accessibility property, if enjoyed but not satisfied through finite
ordinals, it shall be through transfinite integers.

Countable transfinitely many approximating functions ϕh(n) are required to
reach θ. These last remarks help us to anticipate what follows:

Proposition 4.6.2. Let Γ be a sequence, indexed by ordinals h ∈ O and which
reaches θ ∈ L. There exists an equipotent sequence Λ, indexed by transfinitely

many indexes g and reaching to θ.

This wider opening to rational indexes will bring much more insight on the

nature and on the dynamics of Γ and of Λ, yet unclear when h was just an
integer. More benefits will follow, like in the final proof here. Let h ∈ Q. One

likes to push Λ-type sequences to the extremely efficient performance. Questions
naturally arise on the sense of a sequence with irrational indexes, which results

from their approximation via rationals. The case of h ∈ R\Q may seem to
represent an exception for the dynamics of Γ-type or of Λ-type sequences of
approximating functions, unless we look at things as follows.

Recall that the original index was h ∈ N. Let Γ be a function space W ,

generated by the sequence of all functions ϕh(n). It is well known in Set Theory
and Functional Analysis that W is a sequence space, that is, the set of all
functions with n ∈ N. Since h ∈ N, then

ϕ : N → I ≡ [0, 1]\D(∞). (4.6.1)

(In the next section, we will show the reason why we excluded the set D(2+).)

The equivalence between Γ and the regular sets model for Liouville numbers,
shown in section 3, allows to drop N and work with the larger set O instead,

O ⊃ N. If we assume that the image domain of ϕ extends to R, (4.6.1) forks
into these two cases:

1. ϕQ : O → LQ ⊂ I, where h < ω0 and LQ ⊂ Q is the limit set of rational
points. Γ is a countable sequence of finitely many approximating functions;
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2. ϕL : O → LL ⊂ I, where h = ω0, LL ⊂ R\(Q ∪ D(+∞)) and LL is the
limit set of Liouville numbers. Γ is a countable sequence of transfinitely

many approximating functions.

4.7 Equivalences

The equivalence between the Diophantine Approximations of Liouville irra-

tionals and the regular sets model allows to review the latter in terms of se-
quences of indexes. Let G and H be two functions, so that

Q G−→ L for real indexes fn+1 = G(fn)

ψ ↓↑ ↓↑ ψ

N H−→ O for integer indexes hn+1 = H(hn)

where ψ : N → Q (or, more extensively, ψ : O → R) is an invertible map.40

Then G ◦ ψ = ψ ◦H holds.

We address one open question to the reader. With regard to the property c)

at p. 52, the value we found is enough for our further purposes, but we wonder
whether such estimation could be improved by showing that the cardinality
could be even larger than ℵ0 or not. 41

We showed that moving from Q to R is theoretically possible via sequences

of transfinitely many steps, provided that the functions

ϕh(n) → ψ(n) ⇔ Q → R

are sufficiently fast. L ⊂ R\Q ⊂ R is everywhere dense and includes un-
countably many points. This amounts to look for a function ψ from a set of

cardinality ℵ0 (say N or Q) to a set of cardinality ℵ1 (say R or L). In the
topological terms of inclusion sets Ih for the regular sets model, the possibility

to reach the given limit equals to E ≡ F ≡ ⋂

Eh: this equivalence is out of
reach if h ∈ N or if g ∈ Q. If Eh 6≡ ∅ and Eh+1 ⊂ Eh is a nesting sequence
inside I ≡ [0, 1], there is no loss of generality if ψ(n) ≡ 1/ϕh(n), termed the

40In the sense that one such function ψ maps natural numbers to rationals and, equivalently, a transfinite
value to a real number.

41If the cardinality of such sequences should be larger than ℵ0, (AC) and the Continuum Hypothesis would
lead to ℵ1. The maximal index would be the first uncountable transfinite value ω1.
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choice function, with regard to (AC).42 Therefore, if ǫ/ϕh(n) with h ∈ O (or
another map,43 say χf(n) : N → R with f ∈ R), the topological equivalences

(in Lebesgue’s terms)

E ≡ F ≡ X\
⋃

Eh

and (in Borel’s terms)

E ≡ F ≡
⋂

Eh

hold.44 We have been working with approximating functions ϕh(n) of abstract
type up to now, i.e. with no regard of their nature. Rather we focused on the

properties of the sequences Γ,Λ and ∆ for (3.2.3) to hold. We will check later
whether the standard polynomial type may work or not. If not, we will look for

another, performing type.

Finite Transfinite

Sequenced indexes Limit ordinal

h, h+ 1, . . . η

Γ sequence Limit function

ϕh(n), ϕh+1(n), . . . ϕη(n)

Rational approximants Liouville number
pn

qn
, pn+1

qn+1
θ

Leau-Fatou flower Non-linearizable hedgehogs

4.8 Transfinite fractions

We need to upgrade our tools and move from the ‘ordinal fractions ’, where p
and q are finite cardinal numbers, to the analogous ‘transfinite fractions ’, the

42We will come back to these remarks during the final proof, especially during the construction in section 6.6,
p. 84.

43In general, the approximation function reshapes when the index turns from naturals to rationals, covering
ranges of values not usually retrieved if indexed by natural numbers.

44The questions discussed in these last two section will be the topic of a further work.
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quotient between two integers where at least one is transfinite. This exten-
sion is plausible in terms of formal algebraic systems of symbols, according to

Gleyzal [44] and to Artin and Schreier [2]. Gleyzal formulated the existence
of a parametrizable and ordered field O, which represents the maximal gener-

alization of R. When such parameter is 0, Gleyzal showed that O turns into
R. Otherwise, O turn into distinct algebraic systems of prime numbers, or of

integers, rationals, of reals or of complex numbers of transfinite order ([44], p.
586). As the existence of transfinite fraction is formally acknowledged, we call

upon the theory of Grzegorczyk hierarchy [39] and in particular Ackermann
functions [20, 31, 55], in order to generate the transfinite fractions.

Ackermann functions are computable, but not primitively recursive; their
growth is much faster than single exponential functions ax and even than the

multiple version aa
...a

x

. One defines the Ackermann function ⊕ as follows:

m⊕1 n = m

m⊕k n = m⊕k [m⊕k [. . . [m⊕k m]]],

where m is exponentiated to the nh, h = k − 1 power:

m⊕k n⇒ mnk−1

. (4.8.1)

For example,

3 ⊕2 4 ⇒ 341

= 81, m = 3, n = 2, k = 4;

10 ⊕3 4 ⇒ 10(42) = 1016, m = 10, n = 3, k = 4.

It is evident that they are as incredibly fast as they can reach large num-
bers through relatively small values of the parameters. From the completely

parametric formulation of Ackermann functions, one realizes that their speed
rate is larger than standard polynomials and that the fine tuning of m and k

can open the reach to cardinals with arbitrarily large magnitude. Since primes
are subset of integers, we can generate transfinite integers or transfinite primes
via Ackermann functions.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 66



Differential Equations and Control Processes, N 2, 2007

4.9 On the Inverse Ackermann functions

In this section we will focus on deductions we have already drawn. According
to Ackermann’s developments, it is also worthwhile to extend the Ackermann

functions to negative exponents k, they are analogously termed as Inverse Ack-
ermann functions ⊖. Their formal definition requires only a slight twist of the

sense of (4.8.1):

ǫ ·m⊖k n⇒ ǫ ·mn|k−1|

=
ǫ

mn|k−1|
m 6= 0, k > 0, n > 0. (4.9.1)

It is clear that
lim inf ǫ ·m⊖k n = 0. (4.9.2)

This condition satisfies the definition of zero Lebesgue measure sets, as we
compare it to corollary (3.1.2). Let m again be a transfinite value. There-

fore (4.9.1) turns into a transfinite fraction and the lower bound (4.9.2) finally
vanishes identically:

lim inf
ǫ

mn|k−1|
= 0. (4.9.3)

Otherwise, the zero limit would not be accessible to such fractions.

With regards to the analogy between the regular sets model and Liouville’s

limit (discussed in section 2.1), we would be remiss not to point out the impli-
cations of (4.9.3) viewed from these new perspective. In particular, (4.9.3) can

be revisited in light of (3.2.2), which leads to the Liouville limit. So the Inverse
Ackermann function plays the same role as of approximating function

lim inf ‖qθ‖ ≤ ǫ

ϕh(n)
?−→ lim inf ‖qθ‖ =

ǫ

mn|k−1|
= 0. (4.9.4)

This last passage is critical: although it follows a flow of inductions, it gives rise

to important questions on the possibility of moving from left to right of (4.9.4);
in fact, some exceptions may come up. Both the approximation function ϕ(n)

and the parameters need to be carefully examined. Let θ ∈ L. We show that
the limit equality

lim inf ‖qθ‖ =
ǫ

qκ
= 0

holds when, equivalently, qn is transfinite or pn/qn is a transfinite fraction. More
interestingly, we need to link the above lower bounds to the double inequality
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(3.1.7) at p. 44, which we restate again here, for lessening the connection:

ǫ

qi+1
n+1ϕ(qn+1)

≤ ‖qn+iθ‖ ≤ ǫ

qinϕ(qn)
. (4.9.5)

Once again, the sequence of denominators {qinϕ(qn+1)} shall enjoy the same

properties as by Inverse Ackermann functions in the form (4.9.4). How? The
double nature of the expression {qinϕ(qn+1)} states that this goal can be accom-

plished:

• either via one transfinite sequence, i.e. a sequence with at least one element

endowed with a transfinite index, say i here;

• or via an approximating function with (multi-)exponential shrinking speed,

i.e. whose coefficients show up in the same form of Inverse Ackermann
function as above.

4.10 Categories of transfinite fractions

In both cases, the denominators of (4.9.5) shall include at least one factor
behaving such as (4.9.4). From a wider viewpoint, the right-hand side fraction

in (4.9.1), can be listed into one among the five categories below for fractions
with transfinite elements:

1. m is transfinite and n, k are non-transfinite;

2. m, k are non-transfinite and n is transfinite;

3. m,n are non-transfinite and k is transfinite;

4. m,n are transfinite and k is non-transfinite;

5. m,n, k are transfinite.

One can also state an alternative definition of the transfinite extension in (4.9.1),

as one argues that the limit (4.9.3) is always satisfied by all these categories.
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Our final purposes dictate to pay a closer attention to transfinite fractions,
but in a more general flavor, where the fraction is endowed with both Acker-

mann and Inverse Ackermann functions in the numerator and in the denom-
inator respectively. The main restriction in the previous form ǫ/qn was that

transfiniteness can be called in the denominator exclusively, so that transfinite
sequences do always decrease to zero: this may help to understand the fate of

the sequence of approximants to Liouville numbers in metric terms, but not
the nature of the fraction pn/qn. Hence we will consider this fraction in lowest

terms:
pn

|k−1|

qn|k−1|
. (4.10.1)

For sake of simplicity, we can melt exponents into one, n for example, and

assume that the sequence of numerators and of denominators grows together
with n. We find this more comfortable version, with no loss of generality for

the further conclusions:
pnn
qnn
. (4.10.2)

Now we can resume the previous list into this shorter version including rational
non-rational fractions:

a) pn is non-transfinite and qn is transfinite;

b) pn is transfinite and qn is non-transfinite;

c) pn and qn are non-transfinite;

d) pn and qn are transfinite;

Question 4.10.1. What is the range of values assumed by these four categories?
Again, which values can be accessed by sequences of fractions belonging to each

of these four categories?

Category a) gives rise to fractions tending to vanish identically, while cat-

egory b), being the inverse of a) shall necessarily tend to transfinite rationals.
Category c) gives rise to rational numbers, as known. Since p and q are co-

prime, then pn and qn are coprime too: no integer can be generated by (4.10.2).
Therefore category d) gives rise to none of the above categories (: no integers, no
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rationals), thus to irrational numbers. When the question is explored in terms
of accessibility property, we refer to irrationals which are accessible to rational

fractions. By definition, these are Liouville numbers.45 One straightforward
example of category d) is the well-known Liouville constant :

c =

ℵ0
∑

j=1

10−j! = 0.110001000000000000000001000 . . . ,

which is approximated by

|c− pn/qn| =
∞
∑

j=n+1

10−j! = 10−(n+1)! + 10−(n+2)!+···<10−(n!n)

= 1/qnn. (4.10.3)

where46

pn =
n
∑

j=1

10(n!−j!), qn = 10n!.

The factorials appearing in both numerator pn and denominator qn attest that

they are of multi-exponential kind, as we can check for the simpler form of qn:

qn = 10n! = 1023...n

.

Since n! grows faster than (n! − j!), then pn < qn and 0 < c < 1. The relation
(4.10.3) brings back again to light the ‘Inverse Ackermann nature’ of category

a) for functions governing the metrics between the sequence of rational approx-
imants pn/qn and the Liouville number. As we refer back to the definition of
Diophantine irrationals (3.2.1) at p. 46, it is straightforward that κ in (3.2.1)

plays the same role in the ordinary fraction ǫ/qκ as the exponent n|h−1| does in
the transfinite fraction ǫ/mn|h−1|

(both fractions belong to the unit interval) like

for (4.9.4), and release this new definition tying to corollary 6.3.2 at p. 81:

Definition 4.10.1. According to Liouville’s approximation formula, Liouville irra-

tionals are the only Diophantine irrationals of transfinite order. The converse
holds as well: the only Diophantine irrationals of transfinite order are Liouville.

45Refer back to our remarks on the accessibility to irrationals via transfinite sequences in section 2.5 and ff.
46One notices a close analogy to the sequences of approximating functions with rational indexes (4.5.1), whose

speed can slow infinitesimally to down to zero at Liouville numbers.
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One can add the following corollary:

Corollary 4.10.1. If e2πiθ − 1 = 0 holds, then θ ∈ Q or θ ∈ L. In the latter case,

θ can be expressed in terms of a transfinite fraction exclusively.

In light of transfinite sequences, there exists no drastic separation between
Diophantine and Liouville irrationals: both can be viewed under the same co-
herent approach, determined by the speed of convergents and growth of denom-

inators qn. As we will understand below, the effect of this numerical definition
is analogous to the gluing power of hedgehogs in summarizing all invariant

sets arising in indifferent dynamics. In theoretical terms, we refer back to the
possibility, given by the regular sets model, to obtain a dual viewpoint on the

question of Diophantine Approximations which we will address at the end of
section 5.1. In practical terms, one easily understands that, after walking along

a different path, we claimed the impossibility of algorithmically computing Li-
ouville numbers and also of electronically drawing hedgehogs.

Last but not least we will give a response to the question mark in (4.9.4),
raising the possibility of moving from the left to the right side. It is not so

obvious that we can do so. First the deductions from the last two sections call
for revisiting the du-Bois Reymond’s theorem 3.1.1 at p. 41. This statement
holds when ϕh(n) is of polynomial type, thus it is not the case for Ackermann

functions check in, being evidently exponential. The condition ‖qnθ‖ = 0 then
holds under the latter situation exclusively. Polynomial speed is much slower

than that of exponentials because of the degree of freedom in the input of the
parameter values (base and exponent) inside the Ackermann function formula:

the largely parametrizable nature together with the exponential form of such
functions allow the latter to run transfinitely faster than polynomials. The
lower bound cannot be zero. Moving from the left side to the right of (4.9.4)

is impossible when ϕh(n) is a polynomial. Otherwise, when the approximation
function is multi-exponential, this extension (4.9.4) shall take place. One can

give the following complement to du-Bois Reymond’s theorem:

Proposition 4.10.1. Positive and monotonically increasing Ackermann functions

with transfinite input values are absolutely the fastest ones.
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It is clear that, in these new circumstances, the corollary 3.1.2 holds no
more. The studies of exponential maps in the form aa

...a

, a ∈ R go long back in

time and they are collected nowadays under the definitions of infinitely iterated
exponentials, chains or towers of exponentials, or of hyper-powers. See [26, 43,

45, 46, 56, 60, 66] among the very wide literature on this last topic.

5 Forward to applications

5.1 Forcing through the folds of Reals

Moving from the previous discussion, we settle the equivalence between the reg-
ular sets model and the Liouville inequality. We will later apply it to questions

of different nature. The construction of the regular sets model with Liouville
numbers as fundamental points is artificial, not peculiar to such numbers. One
can freely apply it when the limit is Diophantine and draw the same consequen-

ces like in section 2.7.

Given θ ∈ R\Q and an infinitesimal inclusion set Ih, θ ∈ Ih, we know that θ
cannot be the only Liouville number inside Ih. There exist uncountably many
Diophantine and Liouville irrationals, and θ cannot be regarded as the natural

limit of a regular set. The previous degree of freedom suggests to run towards
Liouville numbers from two distinct paths of approximation: one is external,

along rationals (handling pn and qn), the other is internal along Diophantine
irrationals (through growing sequences of order κ).47

Liouville Diophantine

I r r a t i o n a l sR a t i o n a l s

Figure 5.1.1: Paths of approximation.

The former path is much more convenient to us, since we can count on

47If Liouville numbers are approximated by Diophantine irrationals of arbitrarily large order κ, Siegel com-
pacta progressively shrink to the Cremer point.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 72



Differential Equations and Control Processes, N 2, 2007

the results for continued fractions as well as on Set Theory. More promising
deductions will be drawn later, after focusing on the topological affinity between

hedgehogs and Leau-Fatou flowers, namely the empty linearization domains
that occur with non-linearizable hedgehogs and the rationally indifferent fixed

point δ. Both belong to the Julia set Jθ. The definition of the Leau-Fatou
flower is among the basics in Holomorphic Dynamics and can be found inside

the textbooks [25, 64].

5.2 Cremer values and algorithms

According to du-Bois Reymond’s theorem 3.1.1 (see p. 41), a portion of state-

ment of 4.1.2 can be restated as follows:

Proposition 5.2.1. L is fundamental for the regular sets model and it cannot be

attained via one approximation process of countably many steps

What is the connection to hedgehogs?

Figure 5.2.1: The 7-petal Leau-Fatou flower for the quadratic type germ with rational value θ =

3/7 = 0, 428571.

The fundamental points of a zero measure set enjoy the same topological
distribution as of values θ in the germ (1.1.5). It is clear that the shrinking

process of Eh relates to the growth of h and one can associate each rational
approximant to the width of each Eh. The degree of freedom for this process
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allows to apply the model to Diophantine numbers, where the lower bound of
the widths ties to the maximal order κ. We can thus assert:

a) that numerically the existence of Diophantine irrationals of arbitrarily high
but finite κ→ ω0 ties to the existence of inclusions intervals Ih+1 ⊂ Ih with

positive width;

b) that topologically the shrinking process Ih+1 ⊂ Ih is of countable nature,
i.e. it relies on (in-)finitely many steps, and we can approximate hedgehogs

with Siegel compacta S of positive area;

c) that the growth rate of the convergents pn/qn can give rise to differently

sized compacta48 according to the dynamics of the quadratic type germ
(1.1.5), which relate to the wedging action of the unbounded Fatou com-
ponent (whose attracting point is at ∞) into the bounded basin;

d) that irrationals θ are not computable via finitely many steps.

According to the algorithm definition,49 the entry d), as well as 5.2.1, can be
revised for non-linearizable hedgehogs:

Proposition 5.2.2. Reaching Liouville numbers via a sequenced process is not al-
gorithmically feasible. Non-linearizable hedgehogs with Cremer points are not
computable.

6 Results in Holomorphic Dynamics

Computing the Hausdorff dimension of non-linearizable hedgehogs involves a

strategy of several stages, where in essence we convert the results already ob-
tained for the regular sets model into equivalent statements for Holomorphic

Dynamics. A summary appears in the table below, mirroring the concepts in
table 2.8 at p. 39.

48Related speed rates are expressed in logarithmic terms, See [73], p. 249. S is maximal for θ of constant
type (κ = 2, see [64], p. 119), whereas, we find hedgehogs with Siegel compacta for κ > 2, with a sufficiently
small neighborhood of θ, isomorphic to a rotational disc centered at δ.

49Any procedure (a finite set of well-defined instructions) to accomplish a task which, given an initial state,
will terminate into one defined end-state.
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Number Theory Holomorphic dynamics

Decreasing modulus ↔ Petals metrics

Rational approximants ↔ Number of petals

Liouville number ↔ The hedgehog

Posthumously to the compilation of the results in this article, the author
became acquainted with two works based upon a same heuristic approach as in

our further discussion.

First we mention [47], where Heinemann and Strattman investigated on the

Hausdorff dimension Hs(Jα) of Julia sets Jα for the iterates of the quadratic
germ fα : e2πiαz+O(z2), where α ∈ R. Even if their attack consists in increasing

the Leau-Fatou petals number ad infinitum, id did not rely on Diophantine
Approximations. Their goal was to show that lim supHs(Jα) = 2, while we are
going to prove that the case of Hs(Jα) = 2 holds, provided that α ∈ L ⊂ R\Q.

Secondly, one short passage in the celebrated work [36] (bottom of p. 247),

where Fatou introduced a rough approach by incrementing the petals ad infini-
tum, i.e. via qn → ∞ in pn/qn of e2πi pn

qn , so that pn/qn → θ ∈ R\Q. Fatou
believed to have brought more evidences to his (erroneous) opinion that the

functional equation (1.1.6) fails inside any small neighborhood of δ. The passage
also attests that Fatou pioneered the attack via rational approximants.50 The

lack of the theoretical background attests that Fatou’s heuristic approach was
sketched but not deepened. Despite the results, Fatou’s strategy represented an

important advancement and his mistakes, although improperly, invite to check
if such method could represent an opening to further developments.

6.1 1st Part: the rational path to Liouville numbers

We start from the conversion formula for periodic rationals x ∈ [0, 1] into the
fractional notation:

x = supnxn =
pn
qn

= xs +
cs+110t−1 + cs+210t−2 + . . .+ cs+t

(10t − 1)10s
, (6.1.1)

50About twenty four years later, Siegel showed that Diophantine Approximations were exactly the striking
tool to solve Fatou’s concerns.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 75



Differential Equations and Control Processes, N 2, 2007

where s ≥ 0 is the anti-period length, xs is the anti-period value, t is the period
length, and cs+1, cs+2, . . . , cs+t are the periodic digits. For example, let 0.1245;

then xs = 0.1, s = 1, t = 3 and c2 = 2, c3 = 4, c4 = 5.

This formula extends to rationals with anti-period only through slight mod-
ifications. We cancel out the anti-period xs. Non-periodic rationals may be re-
considered as periodic with zero digit period. Let s > 0 the number of decimals

and n the digits index. One has 1 ≤ n ≤ s and cn are the anti-period digits; n
increases from 1 to s, while n = 1 holds for the most significant digit and n = s

for the least significant. Then

x = supnxn =
pn
qn

=
c110s−1 + c210s−2 + . . .+ cn10s−n

10s
. (6.1.2)

The rational approximants pn/qn in the Liouville limit formula can be re-viewed
as non-periodic rationals whose anti-period grows ad infinitum, as illustrated
in the sequence

0.80, s = 1, t = 1, c1 = 8

0.820, s = 2, t = 1, c1 = 8, c2 = 2

0.8270, s = 3, t = 1, c1 = 8, c2 = 2, c3 = 7

0.82710, s = 4, t = 1, c1 = 8, c2 = 2, c3 = 7, c4 = 1

. . .

0.8271 . . . 0, s→ ∞, t = 1, c1 = 8, c2 = 2, c3 = 7, c4 = 1, . . .

Equivalently this can be interpreted as the sequence of exclusion intervals
⋃

En in the regular sets model. In the fraction form of (6.1.2), or even when

reduced to the lowest terms, both the numerator pn and the denominator qn
grow to infinity (each one according to a given speed rate). Since 0 ≤ xn < 1,

the growth for sequence of denominators qn will be faster.

6.2 2nd Part: petal metrics and approximation conditions

Let the family of polynomials fλ = e2πiλz + O(zk), k ≥ 2, holomorphic at the
origin and with one super-attracting fixed point at ∞. We are assume there
exist no other (essential, pole-like) singularities all over C∞.
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Let P1≤n≤p be one petal of any Leau-Fatou flower with p petals. Let hPn
be

the petal height, i.e. the measure of the longest straight-line segment emanating

from the rationally indifferent fixed point and included inside Pn. Both ends
belong to the Julia set. Let wPn

be the petal width, i.e. the longest straight-line

segment, perpendicular to hPn
and inside the given petal Pn, whose both ends

belong to the Julia set. See fig. 6.2.2.
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Figure 6.2.1: Zooming into petals. In a neigh-
borhood of a rationally indifferent fixed point, at-
tracting and repelling directions alternate. As the
number of petals grows, the angle ω tends to 0 and
petals shrink.
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Figure 6.2.2: Petal metrics.

Let the Leau-Fatou flower be regular if both hP and wP are the same for

all petals; otherwise the flower is irregular. The petal’s area AP is positive, as
well as the petal angle ωP so that ωP decreases to 0 (see fig. 6.2.1) together

with AP . According to proposition 2.5.1 at p. 33, we know that Diophantine
irrationals cannot be reached by rational approximants. But Liouville numbers
can. Proposition 3.1.1 in section 3.1 grants the accessibility for sequences of ra-

tional approximants {pn/qn} to Liouville numbers. At this point, we summarize
all the previous results into this list of conditions: namely . . .

1. . . . that the destination exists (Liouville’s inequality and the metrics for
the set L of Liouville numbers);

2. . . . that the destination is accessible and how to get to it (transfinite in-
duction and sequences of rational approximants);

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 77



Differential Equations and Control Processes, N 2, 2007

3. . . . how many steps are required to get to destination (transfinitely many).

4. . . . the required speed to get to destination (faster than polynomials; in

fact, at least multi-exponential).

Now we can safely run from rationals to Liouville numbers. According to (3.1.7),
one considers the sequence of fractions

pnn
qnn
,

where the exponent n governs the growth of both numerators pnn and denomi-
nators qnn. We assume that both pn and qn belong to O (refer back to section

4.3). These fractions can represent Liouville numbers, according to category 5
of the list at p. 68. It is easy to find close analogies with (3.1.7) at p. 44 and
to show that we can set

ϕn(q) = qnn ⇒ pnn
ϕn(q)

. [51]

With no loss of generality, we replace the general form
pnn

qnnϕn(q)
with the simpler

pnn
qnn

, whose speed is quite slower but still enough for our purposes.

6.3 Transfinite Induction and Topology: the inflation

We apply the transfinite induction to {pnn/qnn}. In section 4.2 we remarked that
one such process affects ordinal numbers (the indexes). After it has been ex-

ported to iterates, the topology of the Leau-Fatou flower around δ too. Thus
we need to understand how one could apply the transfinite induction while
‘travelling from flowers to non-linearizable hedgehogs’. The accomplishing of

this goal requires the introduction of one topological property T , which holds
for the iterates fnθ of (1.1.5), where n ≤ ω0. Equivalently, from complex func-

tions fnα : e2πiαnz + O(zk) with αn ≡ pn/qn ∈ Q to same functions but with

51Assuming that pn grows slowlier than ϕn(q), the maps on the left and the right are Ackermann and Inverse
Ackermann functions respectively.
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αn ≡ θ ∈ L. The property T is: ‘the existence of a Julia set curve, locally
pathwise connected and intersecting the fixed point δ at the origin’. The further

construction shows that the boundary topology of flowers (when θ ∈ Q) and
of non-linearizable hedgehogs (when θ ∈ L) look like similar: in both cases,

the Julia set is a continuous curve intersecting the indifferent fixed point δ.
Now it is useful to assume the existence of one transfinite sequence of fractions

with increasing denominators qnn ≥ 1 (with integer exponents n), running from
rational numbers to θ ∈ L:

1 =
1

1
≡ p0

0

q0
0

→ p1
1

q1
1

→ p2
2

q2
2

→ p3
3

q3
3

→ · · · →
pℵ0

ℵ0

qℵ0

ℵ0

≡ θ. (6.3.1)

Question 6.3.1. Why did we set up this particular sequence?

Answer: Recall the reader that the construction of transfinite sequences ap-
proximating the Liouville irrationals through rational numbers was illustrated

in section 4.3. We pointed out to the double inequality (3.1.7), whose formula-
tion asserts that the required speed rate of the approximants shall not be slower

than the (multi)-exponential rate 2n+1 in qn = q2n+1

. We showed that the pair
(O,≤) defines the zero-start union set of all finite with the least transfinite

ordinals ω0: thus O has an absolute maximum element MO of transfinite kind.
Then Card(O) ≡ ℵ0 and MO = ℵ0. Let pn, qn ∈ O from now on. The maximal

index MO = max(O) shall be the least countable transfinite ordinal ω0. Equiv-
alently, Card(Γ) ≡ ℵ0 if we assume that n starts from 0 (given a transfinite set,
we can assume the converse according to conditions b) and d) at p. 52). For

zero-start sets (see p. 51), the double role of ordinals allows to assume that
the cardinality ℵ0 of O is equal to the magnitude of the maximal index of the

sequence. It is sufficient to push52 the exponent 2n+1 up to ℵ0 and to rewrite
the right-hand side of (3.2.2), according to the terms of theorem 2.5.4, into this

lowest term fraction:

Card(Γ) = ℵ0 ⇒
pℵ0

ℵ0

qℵ0

ℵ0

(6.3.2)

52We may be contented of this estimation here. But we can show a stronger result. Because of the index
n ∈ O, we can push it to transfinite values and find that the double exponent form in the denominator q2

n+1

rewrites as follows:
2ℵ0+1 ≡ 2ℵ0 ≡ ℵ1.

This generate fractions in the form pℵ1

ℵ1
/qℵ1

ℵ1
: but this goes far beyond what we need to apply the lemma 6.3.1.
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After the developments at p. 69, the resulting fraction
p
ℵ0
ℵ0

q
ℵ0
ℵ0

belongs to category

d): the only one being able representing the Liouville numbers. Now we invoke

this lemma about Leau-Fatou flowers ([64], p. 104):

Lemma 6.3.1. If λ from (1.1.5) is a primitive q-th root of unity, the number n of
attracting directions at the fixed point δ is a multiple of q. In other words, the

multiplicity n+ 1 of δ must be congruent to 1 modulo q.

We are not interested here in keeping the whole fraction pnn/q
n
n. This lemma

allows to drop numerators and keep the denominators exclusively. We will re-

visit the sequence (6.3.1) in these latter terms. By transfinite induction, (6.3.1)
involves an increasing amount of qn attracting and repelling directions until qℵ0,
when θ ∈ L is reached.53 After transfinitely many steps, assume we finally get

to the fraction at the right-hand side of (6.3.2). Thanks to Cantor, we know
the power-sets formula 2ℵ0 = ℵ1 and in general that qℵ0 = ℵ1 for q ≥ 2. We

inductively draw this (still raw) conclusion: given (1.1.5) and θ ∈ L, there exists
an invariant set such as Leau-Fatou flower with uncountably many directions

emanating radially everywhere from the fixed point δ. The approximation of
Liouville irrationals requires that the speed of convergents qn shall not be slower

than the (multi)-exponential rate, with positive and integer coefficients.

Question 6.3.2. Why can we not set up a slower sequence than (6.3.1) ?

Answer: Suppose we do not, despite the Liouville approximation formula.

For example, the sequence consists of denominators qn, whose exponents growth
rate is 1: q1

1, q
1
2, q

1
3, . . . , q

1
n. The largest q1

n ∈ O is ℵ0 and no slower speed

can guarantee the approximation of Liouville numbers as well as the previous
lemma would retrieve a number of ℵ0 directions. For the sequences of qn,

the (multi)-exponential growth rate with magnitude ≥ 2 is required: slower
speeds cannot fulfill the prerequisites to get to Liouville numbers. We will go

over this conclusion, thereby realizing what topological contradictions arise and
discussing the topology of the Julia set when θ ∈ L in (1.1.5). We can state
the following corollary which extends the lemma 6.3.1 to transfinite fractions:

53According to (3.1.7) at p. 44, the application of multi-exponential operators (or inverse Ackermann functions
for transfinitely many convergent functions to approximate the Liouville number) can help to get one such
denominator with transfinite exponent. Refer to the discussion after Khintchine’s theorem 2.2.1.
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Corollary 6.3.2. Given θ ∈ L ⊂ [0, 1], the following conditions are equivalent:

1. θ is exclusively representable by a transfinite fraction p/q, where p, q are
transfinite;

2. according to the construction in lemma 6.3.1, the set of attracting and
repelling directions for a Leau-Fatou flower, continuously impresses a circle
C centered at δ and with positive radius;

3. the petal angle ω vanishes identically.

While rational approximants an = pn/qn get closer and closer to θ ∈ L, the
denominators qn grow together with the number of alternating (repelling and
attracting) directions in the Leau-Fatou flowers. See the simulation along the

slides sequence in fig. 6.3.1, where a regular flower was assumed for sake of
simplicity. This lemma also implies that, as the denominators qn grow in mag-

Figure 6.3.1: The rational path. As pn and qn in (6.1.2) grow, the number of repelling (in grey)
and attracting directions (in black) grows. Directions need not to be uniformly distributed around
the fixed points for the construction to work, as it is the case here.

nitude, the petals’ width infinitesimally shrink and the attracting (or repelling)
directions progressively inflate a disk-shaped neighborhood of the fixed point δ,
i.e. they spread radially everywhere. By making use of the hypotheses in the

beginning of section 6.2, we can state:

Proposition 6.3.1. Let fλ : e2πiλz + O(zk), k ≥ 2 so that the (essential, pole-like)

singularities of fλ do not belong to any repelling cycle. The related Leau-Fatou
flower enjoys the following properties:
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a) the petal width wP is positive;

b) the petal height hP is upper bounded.

c) the argument λ ∈ Q, λ = p/q ∈ [0, 1) in e2πiλ, where p and q are finite
ordinals.

One understands that a) is straightforward because of the condition about

the petal angle ω > 0 assures that AP > 0 too. Then b) follows because of
hP <∞. Since fλ is a polynomial, there exists necessarily one super-attracting

fixed point at infinity and the basin B∞ 6≡ ∅. The basin
⋃q<+∞
n Pn ≡ B0

cannot include the point at infinity and the elongation of Pn is necessarily
upper bounded54 and positive, 0 < hP < ∞, for allowing the flower existence.

While a) follows from c), the metrics in b) just follow from the polynomial fλ.
55

[A] [B]

Figure 6.3.2: Progressive inflation. As qn grows, attracting/repelling directions emanate from the
fixed point δ and intersect the circle C. On the right, a later stage. The grey shaded disks illustrate
the forward process. In any case, UA ∪ UR ≡ U ⊂ C.

The remarks in sections 4.1 and 4.3, on the necessary cardinality of the

Γ-type sequence for reaching θ ∈ L, finally find here their full import. The
countable sequence of rational approximants pn/qn relates to a discrete-type
inflation as the decimals chain grows longer and the denominators qn grow in

54A deeper study on the flower metrics of fλ : e2πiαz +O(zk), k ≥ 2 would be helpful to understand whether
∞ is the correct upper bound or it could be sharpened to an optimal value. One such approach is not known
to the author.

55The restriction of proposition 6.3.1 to fλ will be further discussed at the end of section 6.8.
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magnitude. From Liouville’s limit and proposition 5.2.1, we recall that it is not
possible to reach θ ∈ L after finitely many steps and or not sufficiently fast.

This discussion is still unsatisfactory. Let’s visualize it. We associate the

sequence of fractions pn/qn to the possibility of determining the number k ≤ ℵ1

of attracting and repelling directions, the sets Ak and Rk respectively. Accord-
ing to lemma 6.3.1, we know that k is a multiple of q. Let C be a circle centered

at the fixed point δ. Let U ⊆ C, where U is the set of intersection points un
between C and the attracting/repelling directions emanating from δ. One sees

that they ‘impress’ the circle C (see fig. 6.6.2/A). We are led to consider the
following two subsets of U :

UA = {uAk
: Ak ∩ C}

UR = {uRk
: Rk ∩ C}

(6.3.3)

C

uA1

uA2

uA4

uA3

Figure 6.3.3: Zooming into the inflation. If the process is countable, the distance between any
pair of points u is strictly positive.

And U ≡ UA ∪ UR. According to the finite sequence of pn/qn, we have

U ⊂ C, where Card(U) < ℵ1 and the distance between any pair of intersection
points u1n

, u1n+1
is always positive, |u1n

− u1n+1
| > 0.

6.4 3rd part: Hunting with Liouville and Cantor

This construction relies on the full and continuous inflation of the circle C and

enjoys a precise correspondence to the classical Cantor’s diagonalization argu-
ment on the impossibility of a one-to-one map between the natural numbers
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and a continuous line; indeed, one can use the diagonalization process to draw
almost identical consequences here. Since C is a continuum, we need uncount-

ably many intersection points u to cover it. The cardinalities of both UA and
UR need to be ‘upgraded’ to 2ℵ0, for U to cover completely C; the cardinality

of the union set U will be 2ℵ0 too. This was possible by merging the extension
of theorem 2.5.4 to transfinite sequences of rational approximants with lemma

6.3.1. This translates the conclusions from such theorem into the geometries of
complex iterated maps. The terms of Cantor’s diagonalization and the chance

of its accomplishment shall be revisited in light of transfinite sequences or of
the speed rate of the one-to-one map.

6.5 Heuristics

We complete this discussion by looking at the question from the opposite view-
point of non-transfinite sequences, because our construction develops some re-
strictions. It is helpful to recall this basic theorem from Set Theory:

Theorem 6.5.1. The set Q of rational numbers, consisting of positive and negative
fractions, can be put into one-to-one correspondence with N+.

This theorem leads to the unfortunate empirical implication that, starting

from Q, one cannot reach θ ∈ L and have uncountably many attracting and
repelling directions which cover continuously the circle C around δ. It looks

like impossible to generate transfinite fractions from fractions whose terms are
finite ordinals. Fractions with finite ordinals as terms generate finitely many
attracting and repelling directions impressing on C discretely : |u1 − u2| > 0

holds for any given pair of intersection points un, un+1 on C. The cardinality of
Q is ℵ0 < ℵ1. The ‘jump’ from finite to transfinite ordinals is purely theoretical.

Non-linearizable hedgehogs are definitely out of reach in computational terms.
The next results shall be interpreted under this remark.

6.6 4th Part: The basin annihilation

We move to the geometry of iterates near a Cremer point δ and we discuss the
topology of the related invariant set.
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Question 6.6.1. Could a Leau-Fatou flower with uncountably many petals exist?
Does it make sense?

Given θ ∈ R, the run from Q to L stops when ωP = 0: it is the extremal

stage of our construction. It is a unique and new situation, where the flower
topology around δ is not kept up but annihilated. One such mismatch may

come up as the transfinite induction applies to the numerical terms of rational
approximants pn/qn and to the geometrical terms of Leau-Fatou flowers with

increasing petals number. One could expect, like for numbers, that any prop-
erty, holding in all successor cases (with finite ordinals), would also hold in the
limit transfinite case. This new situation alerts to take care of the topological

implications, as well as to focus on the Julia set instead of the basin compo-
nent in the Leau-Fatou flower, during the transition from finite to transfinite

ordinals, in order to cross-check all statements and to prevent mistakes and
contradictions. We study the shrinking width of petals and the consequences

in topological terms. From the contraction process one expects that each single
petal finally turns into a uni-dimensional curve. The construction itself can be
compared to a race splitting into two stages, the run and the arrival :

1. the run consists of a countable union of attracting and of repelling di-

rections while θ ∈ L is approximated through rational convergents pn/qn;
petals still have positive area.

2. the arrival is the uncountable union set of such directions when θ ∈ L is
reached by rational convergents pn/qn of transfinite kind. Inductively, the

petal angle ω vanishes identically.

Question 6.6.2. Could petals have zero area and be uni-dimensional curves?

For sake of simplicity, we will consider petals as open subsets of the basin B0 of

attraction (to the fixed point δ = 0) exclusively here. The consequences on the
related Julia set will be drawn at last. We show that petals do not degenerate
into curves when the angle ω = 0 or when the repelling and attracting petals

(according to the classic Leau-Fatou flower construction) disappear. It is not
so premature then to infer that Fatou components cannot be uni-dimensional

by invoking one fundamental theorem in classic holomorphic dynamics, in the
same original version as stated by Fatou and by Julia for meromorphic maps:
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A

B

Figure 6.6.1: Area and segments. The rectangle area can be considered as the union of uncount-

ably many segments AB.

Theorem 6.6.1. The Julia set J is totally disconnected or a continuous line, unless

it covers the entire Riemann sphere: J ≡ C∞.

Given a two-dimensional set (either C or C∞) and according to the topo-
logical definition of Fatou set (F ≡ C∞\J), one understands that F shall have
positive area or be empty. Hence:

Proposition 6.6.1. F cannot consist of isolated points.

Nonetheless these are still weak assumptions. Stronger evidences will be
brought in. First, ad absurdum, let each petal be a curve by now.

Let θ ∈ L. According to our deductions from the application of Leau-
Fatou flower theorem to transfinite fractions, there exists uncountably many
attracting/repelling directions around the Cremer point δ. By the combinatorial

viewpoint, it is easy to check that there are only four distributions for the two
sets UAk

and URk
in the construction (6.3.3):

A) UAk

B) URk

C) UAk
URk

URk
UAk

D) UAk
≡ ∅ URk

≡ ∅

Since UAk
and URk

are sets of attracting and of repelling directions, distri-

butions are permutable: so cases 2 and 3 are the same. The case 4 assumes
that both sets are empty, locally around the fixed point. Since attracting and

repelling directions point out to the neighboring regions of the basins of attrac-
tion to δ and to ∞ respectively, that previous table offers the resume of the 4
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distribution cases for the basins B0 and B∞ around δ. We will check which one
holds or not. With no loss of generality, these four distributions radially spread

inside regular sectors with amplitude ω, 0 ≤ ωi ≤ 2π, as it customarily holds
for Leau-Fatou flowers. We will dismiss all cases but D) because of A), B) and

C) lead to contradictions (refer to figs. 6.6.2):

A) the full distribution of R0 over 2π. There is one only sector with two

angles ω0 = 2π and ω∞ = 0. The basin B0 surrounds the Cremer point
δ, which by definition belongs to Jθ. Thus δ is isolated. Contradiction:

Julia sets for polynomials (1.1.5), have no isolated points and are not of
(multi-)exponential kind ([64], p. 47).

B) full distribution of R∞ over 2π. Again, one only sector where amplitudes
are ω∞ = 2π and ω0 = 0. Here B∞ surrounds the Cremer point. Thus δ is

isolated and the contradiction holds in the same terms as at A).

C) sectorial (or interlacing) distribution of R0 and of R∞ over 2π. Because of
entry 2 at p. 85 holds for θ ∈ L, one assumes the existence of more unions

of uncountably many uni-dimensional petals. Around δ, the basins B0 and
B∞ form 2n alternating sectors, with strictly positive angles ω0i

and ω∞i

respectively, so that

n
∑

i=1

ω0i
< 2π,

n
∑

i=1

ω∞i
< 2π ⇒

n
∑

i=1

ω0i
+

n
∑

i=1

ω∞i
= 2π.

See fig. 6.6.1. We want to discuss on the number of such sectors. This

situation splits into 2 sub-cases with interlacing distributions:

C.a) if alternating and repelling sectors are uncountably many, A) and B)

hold simultaneously, as if alternating directions superimpose on re-
pelling ones. Besides the odd implication that both basins would fill-in

the same neighborhood around δ, we would draw again the contradic-
tion: the Cremer point δ is isolated.

C.b) if alternating and repelling sectors are countably many, the same dis-
tribution like for Leau-Fatou flowers, when θ ∈ Q, holds. But (3.2.1)

holds by hypothesis here; equivalently, if ω > 0 we find countably
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many elements uAk
, uRk

of the construction (6.3.3). Thus both sets
UA, UR are countable. But θ ∈ L: the number of elements uAk

, uRk

shall be necessarily uncountable and yielding ω = 0. Contradiction.

[A]

[B]
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[C]

Figure 6.6.2: Contradictions arise. These drawings show the three hypothetical distributions of
petals when ω = 0. They all lead to contradictions. In [A], one shows the distribution when B0

would be a continuum which completely surrounds δ. We find the same configuration in [B] but for
B∞. In [C], the sectorial distribution where continua of B0 and B∞ alternate.

We know that the point at infinity is super-attracting and fixed for (1.1.5): the

basin B∞ to infinity is non-empty. The dichotomy between Fatou sets F and
Julia sets J shall necessarily hold for such polynomials in C∞: C∞ ≡ F ∪ J .

We have that this fourth and last case shall be true:

D) empty distribution of B0 and of B∞ all over 2π.

We term the situation in D) as the basin annihilation. Therefore this local
statement follows:

Proposition 6.6.2. Given a Cremer fixed point δ and the holomorphic germ (1.1.5),
there exists a bounded neighborhood H ⊂ C of δ, so that dim(B0) 6≡ 1, 2 and

dim(B∞) 6≡ 1, 2. In addition, dim(B0) 6≡ 0 and dim(B∞) 6≡ 0 because of propo-
sition 6.6.1. Thus B0 ≡ ∅ and H∩ B∞ ≡ ∅: finally, H ≡ J .
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ω > 0 holds when θ ∈ Q. We deduce the following corollary:

Corollary 6.6.2. Given fn(δ) ≡ δ, f ′(δ) ≡ e2πiθ, θ ∈ Q, the petals area is positive.

Is each petal
a curve ?

NO YES

α > 0 α = 0

Analyze the
distribution

Is a sectorial
distribution ?

YES

Countable
number of
sectors ?

θ is
rational

NO

YES Which is the basin
surrounding δ ?

contraddiction

δ is
isolated

contraddiction

B

B

0NO

START

Discuss the
limit case

STOP

Figure 6.6.3: Flow diagram of the proof.

The proposition 6.6.2, although labelled as ‘pathological ’ in respect of the

usual Julia set topologies for the iterates of rational maps, does not give rise
to contradictions. The annihilation of the bounded basin B0 follows the ac-
complishment of the transfinite induction (discussed in section 6.3), where the

property T , namely the existence of a Julia set curve intersecting the finite
fixed point, always holds while the argument θ runs from Q to L. The bounded

basin of attraction cannot grant one such property, because it disappears when
θ ∈ L. For the family of polynomials fα, when α ∈ Q or α ∈ L, the Julia
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set always intersects δ = 0. One minor conclusion from the previous proof is
that the existence of the Leau-Fatou flower, assumed as a neighborhood U of

δ, where δ ∈ U , U ∩ B0 6≡ ∅ and fnα → δ, may not be meant as the dominant
property for the transfinite induction to work. One understands the existence

of a (bounded) region H about δ, whose multiplier is e2πiθ and for θ ∈ L, so
that B0 ∩ H ≡ ∅ and B∞ ∩ H ≡ ∅. After the propositions 6.6.1 and 6.6.2, we

argue that dim(B0) 6≡ 0, 1, 2 over C∞, when θ ∈ L. We can finally state:

Theorem 6.6.3. Let fθ = e2πiθz+O(z2) and θ ∈ [0, 1] be Liouville. There exists a
bounded, non-empty neighborhood of δ which intersects no Fatou components.

This can be equivalently stated in terms of Julia sets:

Theorem 6.6.4. Let fθ = e2πiθz + O(z2) and θ ∈ [0, 1] be Liouville. Let Jθ be
the related Julia set. There exists a bounded, non-empty area H ⊃ δ so that

H ≡ Jθ. The Julia set fills-in H like a plane-filling curve.

It would be interesting to investigate on the metrics. In particular, on the petal
height hP when pn/qn approximate θ ∈ L, in order to determine the size of H.

6.7 The infinite broom and local connectivity

The previous construction splits into the non-limit and the limit stage, where

there are countably and uncountably many attracting/repelling directions re-
spectively. The investigation of the topological properties can be made through

the revisitation into a parameterized version resulting from the modifications
applied to the infinite broom space B, shown in fig. 6.7.1/a. We introduce this
metric56 definition of local connectivity ([64], p. 169):

Definition 6.7.1 (Local connectivity). Let X ⊂ C∞ be a compact metric space. X is

locally connected if, for every ǫ > 0, there exists δ > 0 so that any two points
of X of distance < δ are contained in a connected subset of X of diameter ≤ ǫ.

56There exist more equivalent versions, but not involving metrics. We like this one because of matching our
metric environment related to the basin annihilation. Observe that this definition is recursive: at the successive
stage, the role of X can be played by the ‘connected subset of X ’ and so on. Thus ǫ and δ can be arbitrarily
decreased. Moreover, if the operator ‘< δ’ is replaced with ‘≤ δ’, this definition switches the local connectivity
from the open to the closed type (which does not affect the possibility for X to be open or closed). We are not
interested anyway in this further distinction, keeping up the above version.
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The broom spaces are generated by a sequential construction where suc-
cessive subset combs Cn infinitesimally squeeze. B is not locally connected

because of the positive distance between any pair of Cn. This lets the above
connectivity test fail at any pair of points belonging to two distinct combs. Our

modifications strengthens the reasons for this failure by first (6.7.1/b) letting
Cn ∩ Cn+1 = an, n → ∞, where an is a sequence of points; finally (6.7.1/c)

all resulting combs intersect at one point A, ∀Cn :
⋂

Cn = A. The sequence
Cn tends to shrink up to a limit line, thus following the same fate as petals

do in our construction. Equivalently, flowers (intended the union of disjoint
petals) are compact, connected but not locally connected, according to defini-
tion 6.7.1: for example, consider two points of two distinct petals respectively.

These conclusions extend to their boundaries: either ∂B and Jθ are not locally
connected for all non-limit stages of the construction. Anyway one notices that

both curves are locally pathwise connected.57

(a) (b) (c)

Figure 6.7.1: Broom space and petals. As the middle vertexes of fig. a are taken to the bottom
baseline (b) and top vertexes are glued into the same point (c), the baseline breaks into a number
of segments, playing as the bases of the resulting triangles. The original broom space on the left (a)
turns into another equivalent model on the right (c), being petals-like: the latter does not match the
flower configuration, but it plays as a version parametrized by one petal which, under the action of
qκ in the lemma 6.3.1, squeezes to a line (marked in bold), being the limit to this construction.

At the limit stage, combs shrink to a line. The parametrized construction of

fig. 6.7.1 just offers a restricted view, playing only for the broom space version
and equivalently for just one petal. But the full envision of Julia sets Jθ around

the origin opens the broom parametrization to an arbitrary number of petals:
here the limit stage corresponds to uncountably many such lines belonging to

57In particular, the broom boundary ∂B is a simple curve and can be also locally arcwise connected, while
the Julia set Jθ cannot because it may include double points.
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Jθ. It is easy to assume the existence of a planar continuum filled in by the
boundary Jθ at the non-linearizable case. It is straightforward that Jθ is also

locally pathwise connected. But, in addition, Jθ is a continuum now and spreads
radially everywhere: therefore Jθ is locally connected. One sees that the origin

is inaccessible from any point z /∈ C∞. This consequence finds one analogy to
the following theorem, stated by Pérez-Marco in 1994 ([72], p. 4):

Theorem 6.7.1. If a rational function has a Cremer point, its Julia set contains
a dense set of non-accessible points.

The persistence of the Julia set curve (along our whole construction and

always enjoying the local pathwise connectivity property) shows that the trans-
finite induction shall apply to Jθ exclusively and to its topological properties

T , like we remarked before in the beginning of section 6.3.

6.8 5th Part: Locally connected non-linearizable Hedgehogs

We explain what happens to non-linearizable hedgehogs in local terms, that is,
inside a sufficiently small and bounded neighborhood H of the fixed point δ = 0,

where the previous construction took place. This motivates our conclusions
through complementary and known results about Diophantine irrationals. If

θ ∈ L, the previous construction leads us to assume that

B0 ∩ H = ∅ and B∞ ∩H = ∅.

It is straightforward that consequences shall be drawn in terms of the local
action induced by our construction, which just works locally, hence the results

shall be also locally evaluated. We already showed that the petal height is
necessarily bounded in proposition 6.3.1: so hedgehogs cannot extend up to the

point at infinity but they just fill in a bounded neighborhood of δ – in particular
the Leau-Fatou flower. Petals shrink to zero area and they finally disappear.

One is able to show that B0 ≡ ∅ for θ ∈ L. Let the quadratic polynomial
Pθ : e2πiθz + z2 where the argument θ ∈ L and the related Julia set Jθ.

As we remarked before, Jθ is a (1◦) continuum. The transfinite induction
from Q to L also assures that Jθ is a (2◦) curve too. Thus Jθ is locally con-
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nected58 and non-linearizable Julia set spreading radially everywhere around
the Cremer point δ. For sake of clarity, we liked to follow the terminology in

the recent preprint [9], where such Jθ is classified as of solar type:59 in light
of these results, as recently stated into the theorem 1.1 at [9], p. 3, the local

connectivity property can be re-framed as follows:

Proposition 6.8.1. Jθ is connected im-kleinen.

When θ ∈ L, it is like there would be transfinitely many attracting/repelling
directions, or equivalently the Julia set Jθ emanates from δ so that, in a suf-
ficiently small disk C centered at δ, one has Jθ ∩ C ≡ C. By a proper home-

omorphism, there exists a full Lebesgue measure set of angles over S1, where
degenerate impressions (i.e., consisting of one point) are given. Resuming, given

θ ∈ L, the Julia set for (1.1.5) is (1◦) a locally connected curve, (2◦) spreads
radially everywhere about the origin, (3◦) fills in a bounded and connected re-

gion (theorem 6.6.4). If θ ∈ L, Jθ is a plane-filling curve inside a bounded
neighborhood of δ and we can state:

Theorem 6.8.1. Given θ ∈ L, the Hausdorff dimension of the Julia set Jθ is 2.

On the other hand, if θ 6∈ L but θ ∈ D(2+), one refers back to a complementary
result by McMullen ([63], p. 1):

Theorem 6.8.2 (McMullen). The Hausdorff dimension for Julia sets of polynomials
fθ, where θ is Diophantine, is strictly less than 2.

Let fθ : e2πiθz + O(z2), where θ ∈ L ⊂ [0, 1]. We summarize all the

topological situation around the Cremer point into these equivalent conditions:

1. The Julia set Jθ of fθ has Hausdorff dimension 2, and δ ∈ Jθ;

58This property allows to apply the so-called Carathéodory’s extension theorem ([64], p. 169): a conformal

isomorphism ψ : D
∼=→ U ⊂ C∞ extends to a continuous map from the closed disk D onto U if and only if the

boundary ∂U is locally connected, or if and only if the complement C∞\U is locally connected. Here we can set
U ≡ ∂U ≡ H ≡ Jθ. See also [73], pp. 246 and ff., where the correspondence between the two models was shown
in order to earn one more degree of freedom and study iterates via analytic circle diffeomorphism.

59This work lists a second configuration, termed red dwarf and featuring no local connectivity around δ. The
existence of a similar case was shown by Douady and Sullivan [92] for the quadratic family Pc(z) : z2 + c, with
Cremer points and where z, c ∈ C. See also [91] for a study on the mono and bi-accessibility to Cremer points
for polynomials Pc(z).
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2. Jθ is a plane-filling curve inside a bounded and connected, planar neigh-
borhood with strictly positive area around δ;

3. B∞ is the only Fatou component, so B∞ ≡ C∞\Jθ.

The non-linearizable hedgehog is one such Julia set Jθ. This corollary follows:

Corollary 6.8.3. Let θ ∈ L ⊂ [0, 1]. The dynamical system generated by the

iterates of f(z) : e2πiθz + O(z2) consists of the basin B∞ of attraction to ∞
and of the Julia set Jθ, whose Hausdorff dimension is 2 and fills in a bounded,

connected, two-dimensional neighborhood around the Cremer point δ = 0.

It would be interesting to study how the Hausdorff dimension increases

together with the order κ of the Diophantine value θ and how this affects both
the topology and geometry of hedgehogs. Along this direction, we mention the

following theorem by Heinemann and Stratmann ([47], p. 572):

Theorem 6.8.4. Let ft : C → C be given by z 7→ e2πiθz + z2. There exists a

sequence {θn} such that, where dimH(J(fθn
)) denotes the Hausdorff dimension

of the Julia set J(fθn
), the following formula holds:

lim sup
n→∞

dimH(J(fθn
)) = 2.

In our notation, since the Julia set Jθ of theorem 6.8.1 covers a non-empty

planar region H and spreads radially around δ with no provileged directions,
one argues that Jθ shall include non-accessible points from C\H.

7 Remarks and speculations

7.1 Flowers and singularities distribution

In conclusion, our hypotheses and results about non-linearizable hedgehogs de-

pend on the polynomial nature of Pθ : e2πiθz + O(zk), k ≥ 2 and to θ ∈ L.
Therefore we cannot miss to remark the following restrictions.

First, our construction depends on the geometry of the Leau-Fatou flower:
as the sequence {pn/qn} approximates θ ∈ L, the shape of Jθ is deduced by
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that of the flower, while the number of petals grows. Given a rational angle,
this flower has no privileged direction(s) to spread its petals. Via transfinite

induction, this same property is inherited by Jθ. We found out the so-called
solar hedgehog Jθ, i.e. a Julia set curve with (1◦) Hausdorff dimension 2, (2◦)
filling in a non-empty region, (3◦) including the irrationally indifferent fixed
point δ, (4◦) spreading radially everywhere around it. In second instance, we

assumed a very simple singularities distribution for Pθ: lacking of poles at finite
distance and of essential points, a relatively easy local environment was to be

investigated about the origin. Here nothing affects the radially everywhere
distribution of Jθ because, as one guesses, the distance from the origin to the
closest singularity of Pθ at ∞ would be shorter than the maximal modulus of

any point z ∈ Jθ (i.e.: the singularity seems to be too far to not affect the
radially everywhere extension of Jθ). Hence the ‘solar’ term follows.

At this stage, we might want to get rid of these restrictions, looking at the
wider realm of complex rational functions R(z). The investigation on the iter-

ates of R(z) was also the starting point for Fatou and Julia, back in late 1910s.
Regarding the questions about local behavior, these two French mathemati-

cians, and later Cremer, Siegel, Cherry et Alia, were concerned of determining
the possibility of the linearization Rn(z) 7→ e2πiαn, α ∈ R\Q in a sufficiently

small neighborhood of the indifferent fixed point δ. After the outstanding con-
tributions by Cremer and Siegel begun to settle the question definitely, it was
natural to deepen several aspects by focusing on the iterations of polynomi-

als Pα, working out the linearization when α is algebraic of finite order κ. It
turned out that this trend shifted the original question from rational maps to

polynomials Pα or in the form z2 + c where c ∈ C, producing a wide literature.

Although the knowledge of hedgehogs topology for a general polynomial is

still far from the full accomplishment, the question on linearization has been
completely settled for the quadratic type of Pα. Besides higher orders, one would

also like to pay the attention again to rational maps,60 where the investigation
of hedgehogs might open to newer perspectives, as we try to illustrate further.

Given an hedgehog H, its geometry (as well as topology) could be shaped,

60Indifferent dynamics for rational maps have been mostly investigated in terms of Blaschke’s products,
introduced in the next section. Refer to [48, 49, 69, 74, 88]. See also [75, 80, 81] for general rational maps.
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as we conjecture, by the singularities distribution around H; for example, by
singularities at finite distance and of different order. No doubt that another

remarkable question is about the accessibility to H. In this direction, the reader
can find some related results scattered in a number of works [8, 9, 54, 85, 91, 97].

Because every polynomial is a rational map, this latter family shows up as
the best place to ground the general theory on hedgehogs:

Question 7.1.1. Given a complex rational map R(z) ≡ p(z)
q(z) with Cremer point

δ, how can the distribution of singularities of R(z) affect the shape and the
extension of the non-linearizable hedgehog H ?
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Figure 7.1.1: May it be a full resume about the hedgehog topologies for rational maps?

Besides the solar type, which we showed to appear for iterates of polynomial Pθ and drawn in (a), we
guessed two more configurations in (b) and in (c), possibly occurring for rational maps R. Cremer
point δ is the white disc, located in the interior (thus inaccessible from B0) or on the boundary (with
one or more accessibility directions respectively). The number of components in (c) is guessed to be
n ≥ 2 in general.

It seems likely that an answer to this question can be presumably given

by looking at the algebraic or transcendental polynomial nature of p(z) and of
q(z). In this direction, as even shown in [9], hedgehogs are not only of solar

type, thus the Leau-Fatou flower cannot be the only model to shape H for a
rational map with Cremer points. One might want to deepen the conditions
determining what are the shapes of H. One hypothetical scenario was sketched

out in figures 7.1. Drawings are compatible to C∞ = Jθ∪B∞, when θ ∈ L. One
would like checking if different situations occur: for example if the Hausdorff
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dimension of non-linearizable hedgehogs is lesser than 2, or if the complement
C\H includes more than one basin of attraction. One notices that B0 ≡ ∅
holds in all the three suggested configurations; the Julia set curve has still
Hausdorff dimension 2 and fills in the dashed regions. With regard to figs.

7.1, we wonder whether (b) or (c) might hold and at what conditions: if just
numerical because of the given rotational angle or they depend on the existence

of neighboring singularities which are sufficiently close to JRθ
. It would be

also interesting to determine theorems ruling these possibilities and, if so, to

give examples of rational maps related to such two cases. Since the Julia set
structure is homogeneous, the situations where non-linearizable hedgehogs can
be met seem to restrict to rational maps with two basins of attraction.

7.2 On the doubly connected case

The construction we illustrated in section 6.1 intimately relates to the poly-

nomial (1.1.5) and to the Leau-Fatou flower, when |e2πiθ| = 1 and θ ∈ Q.
By looking at hedgehogs as degenerate Siegel compacta, one understands that

the previous proof is peculiar to the simple connectivity of such compacta.
This represent a restriction because it cannot be exported to doubly connected
hedgehogs, when the rotation domain, termed a ‘Herman ring’, is isomorphic

to an annulus ([73], p. 281). One also knows that Herman rings cannot arise
for polynomials according to Sullivan’s classification (theorem 9.2, [7], p. 122),

but they can for Blaschke products

f(z) : e2πiθz2 z − a

1 − az
, (7.2.1)

i.e. for the group of conformal automorphisms of the unit disc, with degree

d ≥ 3. The Diophantine-Liouville dichotomy holds here as well ([64], pp. 148–
151), like in the simple connected case of Siegel discs [88]. One wonders if a

modification of our previous construction may help. If so, it would be interesting
to check first the local invariant set for (7.2.1), when θ ∈ Q and then let the

construction run, with proper adaptations. Given θ ∈ L, one expects a plane-
filling curve inside a doubly connected neighborhood here.
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7.3 On computer simulations

Computer simulations, in the two cases where the Siegel compactum does not
degenerate into the Cremer point, are very close to their actual shape. Although

computers can handle rational numbers, we do not see Leau-Fatou flowers when
we input a sufficiently sharp rational approximation of an irrational number µ,

but quasi-rotational dynamics, i.e. fairly close to what the full Siegel com-
pactum related to µ would look like if the endless chain of decimals could

actually be input.

‘Irrationality’ does not only involve the existence of the endless chain of

decimals, but also the non-periodicity of the sequence. In addition, we do not
feel the separation between rationals and irrationals as drastic as the fractional
representation might suggest. The existence of such a continuity can be further

strengthened by noticing the almost-reproducibility of some computer simu-
lations mentioned at the top, which depict hedgehogs with non-empty Siegel

compacta. The classic computer experiments on Siegel disks showed that we
deal with numbers which are not properly rationals, in the sense that, as we

input them into the value θ of e2πiθz+O(z2), we do not see Leau-Fatou flowers;
on the contrary, they cannot be assumed as properly irrationals, because of dec-

imals truncation. We know that the former values, say ξ, are approximations of
irrationals; the term ‘approximation’ is just a numerical convention about ξ be-
ing arbitrarily close to another value θ, anyway this term does not retrieve any

information on the dynamical properties we are interested in here. Therefore,
from the dynamical viewpoint, one may speak of ‘almost-irrational’ numbers,

mid-way between rational and irrationals: again, rationals showing dynamical
properties very close to those for irrationals. A first clue can be watched into

the decimals chain. Being periodic for rationals and aperiodic for irrationals, is
it then possible to classify all reals by a parameter which serves as a disorder

indicator, telling how irregular the decimals chain is?

If so, we guess that one such indicator should take on the lowest value for

rationals whose period starts with the first decimal place (no disorder), then
grows with the place of the period, finally becoming maximal for irrationals.
One might try to check whether there are irrationals whose decimal chain is

‘wilder’ than others. One such disorder parameter could even help to realize
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Figure 7.3.1: The 37-petals Leau-Fatou flower for the quadratic germ with θ = 7/37 = 0.189. Petals
number is as larger as they are tinier. They have been contoured in white to be highlighted.

what we termed as the ‘ideal journey’ through the indifferent dynamics61 and

sketched out in the previous proof. Although irrational values are beyond the
scope of algorithms, one can classify their resistance to rational approximation,

according to the known limit (3.2.1), which states that Diophantine irrationals
may stop access to rational approximants, while Liouville numbers do not, at

least theoretically through a suitable sequence.

7.4 On the computational complexity of Julia sets

According to proposition 5.2.2 (p. 74) and to the previous discussion, one can

easily argue that it makes no sense to look for features of dynamical systems
when θ is Liouville via rational approximants. As approximation is the art of

getting arbitrarily close to a given value, we do not want to approximate Li-
ouville numbers because we find rationals (from both theoretical and empirical

viewpoint) being “arbitrarily close” to Diophantine numbers of large order κ.
Thus they cannot help to retrieve the expected properties (either in dynami-
cal or numerical terms) of Liouville numbers. Approximation still works fine

for Diophantine irrationals, although their computation complexity grows with

61From rationals to Liouville numbers and from Diophantine to Liouville irrationals (see [83]).
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their order. We come finally to the same conclusions as stated in theorem 2.5
by Braverman and Yampolsky (see [5], p. 5).

In any event, we do not agree with this assertion ([5], p. 4): ‘[. . . ] (1◦) all

Cremer quadratic Julia sets are computable - this despite the fact that (2◦) no
informative high resolution images of such sets have ever been produced ’. We
refute (1◦) this claim both in theoretical (because of the regular sets model) and

in empirical terms (providing digital images in [83]): non-linearizable hedgehogs
cannot be displayed electronically. In addition, one should remark that (2◦) (see

[15], section 3, p. 4) relies on the empirical investigation of the classic graphical
methods (working through an exclusively iterative approach) for Julia sets and

therefore cannot attest if the problem is solvable or not. Such flaws have been
discussed in details by Milnor [64], again by Binder, Braverman and Yampolsky

[5, 6, 13, 14, 15, 98] and finally by the author in terms of hedgehogs exclusively
[83], where a time saving approach was given (see examples in figs. 1.1.1/A-B-C
here at page 16). See also [10] for a general overview.

As we remarked in section 1.3, global graphical methods in Holomorphic
Dynamics cannot be customized to fit the local configurations. Our approach,

extensively discussed in [83], joins iteration to the imitative strategy and covers
linearizable hedgehogs exclusively.

7.5 Trends are eloquent

The last remarks on the computability of Julia sets imply that, although algo-

rithms cannot visual the dynamics attached to Liouville numbers, the sequence
of nested sets Eh (approaching θ) yields, an endlessly shrinking sequence as the
width of Eh tends infinitesimally to 0, as h→ ℵ0:

lim inf
h=1,2,...,ℵ0

‖qhθ‖ = 0,

without taking on the limit itself. Given θ ∈ L, one cannot obtain its value

but can at least indicate the trend of what is happening inside the sequence of
nested, arbitrarily small neighborhoods of θ itself. The results we stated before
offer a response to the problem 11-b on generic angles, posed by Milnor in [64],

p. 130: the width of Eh (the countable intersection of open sets) is always
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positive, so there exists at least one generic value ξ ∈ R inside each Eh, because
R is dense in itself. In addition, the monotone and strictly decreasing trend ties

to the growth terms of Cremer’s Non-linearization theorem62 ([64], p. 117):

Theorem 7.5.1 (Cremer Non-linearization theorem). Given λ = e2πiθ on the unit circle
and given d ≥ 2, if the dk-th root of 1/|λk − 1| is unbounded as k → ℵ0, then

no rational function of degree d with a fixed point of multiplier λ is locally
linearizable.

In fact

lim sup
1

dk
√

|e2πiθk − 1|
= ∞

either as dk increases by k → ℵ0 or when lim inf |e2πiθk − 1| = 0, amounting to

the shrinking widths of Eh in the multiplicative model or as the limit (3.2.3) in
the the additive model over R\Z respectively.

7.6 Cremer values from a different viewpoint

Recalling the proposition 4.1.1, we claim that given a dense set E of funda-
mental points (for example, L), the zero measure set Eh cannot include the

fundamental points exclusively and it is dense too: hence E ⊂ Eh. Suppose
it does not. Because of the nesting relation, there are two possible cases. The
first is E ⊇ Eh. But E ⊃ Eh cannot hold because of the shrinking behavior of

the sequence Eh. Let E ≡ Eh and Eθ
h be a sequence of sets so that Eh shrinks

to θ (see fig. 3.2.1). We can find either an arbitrarily large index h and a

many-to-one formula f which transforms Eθ
h into θ, that is, f(Eh) = θ. Thus

the inverse f−1 is a multi-valued function mapping θ back to the dense set Eh

of points a or, equivalently, the roots of

F (θ) : f−1(θ) − a = 0

are transfinitely many. Evidently, f−1 cannot be a polynomial of finite degree.
In other words, one such formula F : Uk+1 → V k should map a continuum U

62George Adam Pfeiffer was the first to attest the possibility that our quadratic polynomials with an irra-
tionally indifferent fixed point could even not be linearizable inside a sufficiently small neighborhood of the
finite fixed point δ at 0.
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of Euclidean dimension k + 1 to a continuum V of dimension k, for example.
The condition k = 0 holds for the case of Liouville numbers/Cremer points,

but the same discussion could extend to Euclidean spaces of arbitrarily higher
dimensions. As we showed in section 4.9, Inverse Ackermann functions just

offer a theoretical way to make it happen although, according to our remarks
on Ackermann functions in section 6.4, we are inclined to believe that it is

improbable that one such function f−1 is writable. The examples we gave
belong to formal systems only, whose existence is theoretical. We would crash

onto the same problems that arose from the Burali-Forti paradox, when we dealt
with the forward sequence. The relation between backward indexes would be
now restated as

Ω − 1 < Ω ≤ Ω.

Again, the solution to move backwards from transfinite to finite ordinals is

theoretical exclusively.

When dealing with polynomials, the discussion requires us to be practical,

in which case the Ackermann functions work as accelerators for the speed of
coefficients an inside the polynomials. But the response seems to be negative

again. Otherwise one such function would offer a counter-example to the con-
cept of topological invariance, unless we do not change the terms of the input

function. With regard to our context of regular sets, the discs (En) and the limit
value θ are not equivalent, as was also proved during the early XXth century,
most notably in the celebrated works by Brouwer in 1910 and 1911 [17, 18].

7.7 Speed affects the Julia sets topology

Following the application of the regular sets model and of the previous consid-

erations on (inverse) Ackermann functions, we found that, given a sequence of
nested sets In generated by the application of a family of functions ϕh, there

exists one fixed point δ ∈ ⋂ω0

n=1 In for such sequence and it is accessible

1. either by a sequence of transfinitely many ϕh;

2. or by countably many ϕh whose speed rate is as fast as (multi-) exponential
functions;
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3. or jointly by transfinitely many ϕh of (multi-) exponential kind.

One notices that the graphical representation of regular sets model fits the

dynamics of approximating Γ-sequences, as for example in the Diophantine-
Liouville dichotomy of irrational numbers. In this sense, there exists an inter-
esting similarity with the sequence of nested sets induced by the application of

Montel’s normal families of iterates fn≥0 near a (super-)attracting fixed point
δ, f ′(δ) < 1. On the other hand, if δ is repelling (δ ∈ J), δ could be assumed as

the limit for the family of inverse maps fn<0 converging to δ.

Perfectness and closedness are two among the classic properties of Julia

sets for iterates of polynomials in the form

d<+∞
∑

i=0

aiz
i. (7.7.1)

With regard to the degree of coefficients exclusively, i.e. with no allusion to
the polynomial terms they belong to, we say that all ai are ‘linear ’ in (7.7.2),

because of deg(ai) = 1. If at least one point of J belongs to a given backward
orbit O, then O ⊂ J . Given a transfinite sequence of iterates or a function

with transfinite speed, the points of J would be accessed by the nth-iterate of
any seed point z ∈ C\⋃Bb where Bb are the basins of attraction and F is the
set of points belonging to non-repelling and periodic cycles, so that F ⊂ ⋃Bb.
If O ⊂ J , most complex points would be mapped to a repelling cycle.63 Thus
J ≡ C∞ also depends on F 6= ∅. We sketch out some examples here below: they

show that the possibility of accomplishing O ⊂ J could offer a fuller overview
on Julia sets topologies than the approach through standard polynomials.

First, in section 6 we proved that, given the polynomial (1.1.5) with θ ∈ L,
the Julia set Jθ is a plane-filling curve with Hausdorff dimension 2 and extending

over a bounded and two-dimensional region: in fact, ∞ is a super-attracting
fixed point and cannot belong to Jθ. Then ∞ ∈ F 6= ∅ and there exists at least

one non-empty basin of attraction B∞.

The second example is the iteration of the complex exponential function ez.

The Julia set of ez was conjectured to satisfy J ≡ C∞ by Fatou in 1926 [37].
63One also notices here that definitions of Julia and Fatou sets swap for the families of the iterates of inverse

maps, so that the Julia set of one such family has finitely many points.
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This was proved by Misiurewicz in 1981 [65] via one approach not involving

function speed. The iterates ee
...e

z

are complex Ackermann functions of (multi-
)exponential kind. There is no room here to try out a new proof of Fatou’s

conjecture of 1926, but it would be interesting to check if this approach really
works. A different strategy may stand behind the corner: since one can show

that F ≡ ∅ holds in this case and that the iterates of ez run as fast as Γ-
sequences in the above point 2, the repelling cycles are accessible from any
z ∈ C∞ via sequences of nested subsets and it turns out that J ≡ C∞.

A third interesting example appears in [19], p. 206, where the authors

investigated the Julia sets J of the complex iterates:

fn(z) = anz
2, an =

1

n1+2n . (7.7.2)

Brück and Büger showed that J consists of the point at infinity exclusively
(J ≡ {∞}): J is a singleton, isolated, not perfect, not enjoying the two classic

properties of closedness and perfectness as by the Julia sets of iterated poly-
nomials (7.7.1) or of rational maps R(z) = p(z)/q(z), where p(z) and q(z) are

coprime polynomials. The coefficients an of (7.7.2) are Inverse Ackermann func-
tions: as n → ∞, an → 0 but now they decrease with exponential speed, i.e.

faster than the coefficients ai of (7.7.1).

The first and the third example add two new entries to the standard clas-

sification of Julia sets topologies. About the first one, the only Julia sets with
Hausdorff dimension 2 were known to satisfy J ≡ C∞. After our proof on the

geometry of the non-linearizable hedgehogs, the related casuistry forks into two
sub-cases, which share a transfinite sequence: the approximants pn/qn → θ ∈ L
or the iterates of ez.

Again, coefficients or exponents – whose growth speeds are expressed by

Ackermann functions – may generate Julia sets whose topological properties
could offer counter-examples to the classic properties enjoyed by the iterates of
rational maps R(z), according to Fatou’s and Julia’s classic environment. For

example, the speed rates of the iterated polynomial maps in the form (7.7.1)
are evidently too slow to reach the Julia set points. This situation cannot

be obviously belong to the cases of non-linearizable hedgehogs or of Julia sets
J ≡ C∞. So Hs(J) < 2: J can be a connected line or totally disconnected.
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It is clear that the features of the cases proposed do not rely on the poly-
nomial sum formula – for example, (7.7.1) –, but both on the magnitude and

on the degree of their coefficients an. One can generate polynomials whose co-

efficients are Ackermann functions a
a...an

n
n , so that the required speeds can be

obtained after a lesser amount of iterates.

The full overview of Julia sets topologies for rational and transcendental

maps seems then to involve the investigation on the degree of coefficients and
on the related speed rates of iterated maps. At this point, we can sketch out

this tentative table:64

Hausdorff dimension Hs(J) linear coefficients multi-exponential coefficients

Hs(J) = 0 Totally disconnected set Isolated point

Hs(J) = 1 Connected line ?

Hs(J) = 2 J ≡ C∞ Plane-filling curve, J ≡ C∞

Hopefully, in light of these results and of other ones scattered among several

publications [19, 77, 78, 79], the corpus of the Holomorphic Dynamics could be
rebuilt by improving the original Fatou-Julia approach through a more system-
atic attention to questions inherent to the growth speed of coefficients. These

new cases could be no longer listed as exceptions, as counter-examples or as
‘pathological’.
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9 Conclusions

From [83], we understand that, from both the theoretical and the empirical

viewpoint, only approximations of Siegel discs or of Hedgehogs with Siegel
compacta, endowed with positive area exclusively, are currently possible. Our
investigations on regular sets, together with the above discussion on topological

invariance, suggest that non-linearizable hedgehog visualization is impossible on
a practical basis, even if we are able to learn their behavior over C∞.

In conclusion, we can state general considerations on the features enjoyed
by the construction in the final proof and by the method developed to display

hedgehogs on computers [83]: the approach via rational approximation can
effectively lead to relevant achievements in both topological and visual terms, as

our graphical method discussed in [83] runs analogously to rational convergents
or to regular sets.

Our remarks about Ackermann functions suggest that polynomial functions
fθ in the form (1.1.5) might be just the ‘narrow door’ to hedgehogs. Such

invariant sets could be more easily tracked, and possibly occur more often for
the family of non-polynomial functions, especially exponentials.

Liouville numbers and Hedgehogs enjoy properties beyond the computa-
tional possibilities of classic mathematical approaches, just as God transcends

the cogitation by the human mind and senses. We can postulate their existence
through the clues we find, on one hand, from the existence of limits, on the
other, from the infinite beauty and complexity of Nature. To a watchful eye,

they are impossible not to notice. But the values are too little to pick up, the
speeds are too fast to follow and the entities are too big to be wrapped up:

we cannot watch hedgehogs directly (limits of graphical methods), nor we can
hope to compute Liouville numbers (and irrationals, in general) via any process

developable by the finiteness of human thinking (limit for processes of count-
ably many steps, limits in the algorithmic approach, limit in the approximation

through rational convergents pn/qn): it is right the marginal error between our
approximations and the effective value to decree us as losers in the war against
infinity. Non-linearizable hedgehogs represent a little battle. Reason should

call fantasy to help seeing what is otherwise veiled to senses and to calculus.
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God, infinity and hedgehogs, so to come all the way down from transcendental
to concrete numerical and geometrical entities, they all belong to an outer real-

ity which we can weakly understand, necessarily requiring us to drop everyday
standards, to stop ambling and to jump into new thought patterns, as offered

by transfinite sequences and faith respectively.

Alessandro Rosa

zandor zz@yahoo.it
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Enseign. Math., 2, 45, 1999, pp. 133–68.

[81] Roesch P., Rational maps with non locally connected Julia set, 2005,

preprint.

[82] Rosa A., Methods and applications to display quaternion Julia sets, Elec-

tronic Journal of Differential Equations and Control Processes, St. Peters-
burg, 4, 2005.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 113



Differential Equations and Control Processes, N 2, 2007

[83] Rosa A., On the digital visualization of hedgehogs in Holomorphic Dynam-
ics, Electronic Journal of Differential Equations and Control Processes, St.

Petersburg, 1, 2007, pp. 1–36.

[84] Roth K. F., Rational approximations to algebraic numbers and Corrigen-

dum, Mathematika, 2, 1955, pp. 1–20 and 168.

[85] Schleicher D., Zakeri S., On biaccessible points of Julia set of a Cremer

quadratic polynomial, Proc. AMS, 128, 3, 1999, pp. 933–937.

[86] Seara T. M., Villanueva J., On the numerical computation of Diophantine

rotation numbers of analytic circle maps, Physica D: Nonlinear Phenomena,
217 (2), 2006, pp. 107–120.

[87] Shishikura M., The connectivity of Julia sets of rational maps and fixed
points, Preprint IHES, Bures-sur-Yvette, 1992.

[88] Shishikura M., On the quasiconformal surgery of rational functions, Ann.
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