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Abstract 

 
  In this paper, the distribution of zeros of solutions of the first order neutral differential equation 

                              0,  thxtftgxtptx   

is discussed. New criteria are deduced . Illustrative example is given. 
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1. Introduction 

 
The aim of this paper is to study the distribution of zeros of solutions of the first order neutral 

differential equations of the type 

                             0,  thxtftgxtptx                                                        (1.1)                                                                                                                                        

where  ),0[,),[, 0  tChp ,  ),0[,),[ 0  tCg ,  RRtCf ,),[ 0   and     thtg ,   are 

nondecreasing in t ,  and    thxtf ,   is nondecreasing in   tx   . 

Further we assume that   

(I) There exist  tQ ,    thxB  such that for 0tt  ,
   

  
      0

,
 thxBtQ

thx

thxtf
 

 ),0[,),[ 0  tCQ , and   RRCB ,   

 II       


thtg
tt
limlim . 

The results of this paper improve and extend those of Wu et al ([2] and [3]). 

Eq.  1.1   includes the differential equation  
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                               0 thxtQtgxtptx                                                            (1)                                                     

Which recently discussed by Wu et al( [1] and [2]). In Sec 2 we deduce some preliminaries about the 

first-order inequality  

                                    0 txtxRtptx                                                                   (1.2) 

Where      tttCp   ,,0,),[, 0 ,  t   is nondecreasing with   


t
t

lim , and 

 ),1(,),[ 0  tR ,    1txR  . 

The inequality  

                                  0 txtptx                                                                             (2) 

of [2], and [3] is a special case of (1.2).  Sec.3 includes the main results for Eq.  1.1 .  Our results 

depend and improve those of [1-6]. At the end, we give an example to illustrate our results. 

 

2. First-order differential inequalities 

 
Following [2]  , we use the following notation. Let   

1nnf   be a sequence of functions defined by 

     
 

   
,........3,2,1,0,

1
,

1

1
,1 210 





  n

ef

f
fff

nf

n

n

n 






              (2.1)  

where  1,0 . It is easy to see that if 
e

1
  , then either  nf  is nondecreasing and    


n

n
flim  

or  nf  is negative or   after a finite numbers of terms. However for  10    we have   

    eff nn    21  , ,........2,1,0n  

and       eff n
n

,1lim 


  , where  f  satisfies  

                                   fef                                                                                   (2.2) 

The authors in [1] defined a sequence    
1mm   for 10    by  

 
 

 
  

.,.........3,2,1 , 
12

 , 
12

2

1

121 





  m
m

m











                                 (2.3) 

It is easy to see that for 10   , we have     mm 1 , ,.....3,2,1m , We also  observe that 

when 
e

1
0    , then   

 
21

12







  , and in general   

 
    

,.....3,2,1,
1212

22

1

1 





 m
m

m










. 

Hence, the sequence    
1mm    is decreasing and bounded from below. Thus there exists a function  

    such that 

     


m
m
lim   , and   

  
2

112









   . This implies that   

          
e

1
0  ,  

211

2211

22

2







 



                            (2.4) 

We will need the iteration of the inverse of each of the functions  g,   and  h   , using the notation  

  tt 0   and inductively define the iterates of  1   by  

       ,......2,1  ,  11   itt ii   
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Like wise for g  and h  . 

Lemma 2.1 Let   tx   be a solution of  2.1  on ),[ 0 t .  Further assume that there exist  01 tt   and a 

positive constant   such that  

                  
 

  1  ,  ttdssp
t

t
 


                                                                               (2.5) 

and that there exists 10 tT   and  0

3 TT   such that  tx   is positive on  TT ,0 . Then for some 0n , 

we get    

               
  
 

      TTtf
tx

tx n

n ,for    0 0

2 


                                                (2.6)        

 where  nf  is defined by  1.2  . 

Proof: From   2.1  , we obtain  

                    ],[for    0 0

1 TTttxtxRtptx                                               (2.7)                                                              

which implies that  tx  is nonincreasing on   ],[ 0

1 TTt   .  Thus it follows that 

              
 

       0  then 0  txtxdssx
t

t



 

Then 

               
  
 

    TTtf
tx

tx
,for    1 0

2

0

 


                                                       (2.8) 

If   Ttt 3   , then integrating  2.1  from  t  to t  we get  

                    
 

       dssxsxRsptxtx
t

t


  

Let          txtxRtxtE , .  Then  

                     
 

    dssxtEsptxtx
t

t
,


  

Thus 

                        
 

 dssptxtEtxtx
t

t


 ,  

Now from  5.2 , we have  

                         txtEtxtx ,   

                            txtxRtxtx    

So we get  

                 
  
 

  
  
 tx

tx
txR

tx

tx 



1  

and  

                
  
 

    11  txR
tx

tx



 

Then 

                
  
     

     ,for    0
1

1

1

1
0

3

1 TTtf
txRtx

tx 





 



 

where    1txR  . 

Next, we show that  

                 
  
 

    TTtf
tx

tx
,for    0 0

4

2

 


                                                      (2.9) 

Integrating  2.1  from  t  to t , we get 
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          tssdssxsxRsptxtx
t

t
  


  ,   

Dividing  2.1  by  tx  and integrating again from  s  to  t , we get                  

                 
 

   
   

 
    

  
 









 






d

x

x
xRpd

x

x t

s

t

s  


 

 Then  

                    
 

 

 
    

  
 













 d
x

x
xRpx

t

s

t

s |ln  

 i.e. 

       
 

 
    

  
 










d

x

x
xRpsxtx

t

s lnln  

Thus, we have  

                 
  
    

 
    

  
 









 


d

x

x
xRp

tx

sx t

s exp  

From the condition    1txR  and  8.2 , we have 

                 
  
    

 
 

  
 

 
 

 
  








 






dpfd

x

x
p

tx

sx t

s

t

s





  0expexp  

Moreover from  9.2  and the above inequality we get  

                      
 

         
 

    dssxsptxdssxsxRsptxtx
t

t

t

t


    

So we have 

                        
 

   
 

 
  




dpfsptxtxtx

t

s

t

t





  0exp  

Now as in [2], we get  

                        
  
 




0

1

f

e
txtxtx

f 
  

So  

                 
  
 

 

   
   ,for   0

1
0

4

0

0

0

TTt
ef

f

tx

tx
f




 





 

Repeating the above procedures, we get  

                 
  
 

      TTtf
tx

tx n

n ,for    0

2 


                                                  (2.10) 

Lemma 2.2: Assume that there exist 01 tt  , and a positive constant 1  such that   5.2   be satisfied 

and   txR  1 .  Suppose that there exist 0T  1t  and a positive solution  tx  of  2.1   on 

  00 , TT N  .Then for some 3 Nm ,we have   

                 
  
 

        0

3

0

3 ,for    TTt
tx

tx N

m

 


                                         (2.11) 

where   1m  be as defined in  3.2   . 

Proof: From   11.2  , we know that  

                 
 

 
 

  1  ,      and    
1

ttdsspdssp
t

t

t

t
 







                                   (2.12) 

Now since    dsspF
t


  is a continuous function,      tF 1  and   0tF  .Thus, there exists a 

1 such that   dssp
t


  , where  tt 1

1

  . 
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Consider the case      0

1

0

3 TtT N   . Integrating both sides of  2.1  from t  to 1 , we obtain  

                            dssxsxRspxtx
t





1

1                                                     (2.13) 

Since  tst 1

1

    , it follows that         tstT 

10

2    . Integrating both sides of  

 2.1  again but from  s  to t , we get 

                     
 

       duuxuxRuptxsx
t

s


  

From  7.2 ,   ux    is nonincreasing on     tusT   0

2  . Thus, we have  

                             




   duuptxtxRtxsx

s

t
 .                                       (2.14) 

Now from  13.2  and  14.2 , we have  

                                    dsduuptxtxRtxspxRxtx
s

tt 









   

 1

11  

Thus 

                               dsduupsptxxRtxRtxxRtxRxRtxxtx
s

tt
 

1

11

2

11 


  

                                                                                                                                      (2.15) 

By changing the variables, we get  

                         dudsupspdsduupsp
ut

s

tt
  

111

 


 

Thus 

                         duspupdsduupspds
ut

s

tt
  

111

 


 

This implies that 

                    
22

1
  

2

1 22
1111 






  duupdsduspupduupspds

ttt

s

tt
 

Substituting into   15.2  , we have  

                                  txxRtxRxRtxxtx 


 1

2

11
2

  

Since  1 st   so       1xsxtx    and          1xRsxRtxR   , then 

                               1

2
2

11
2




 xRtxxRtxxtx   .                                (2.16) 

Thus 

                 
  
 

 
  1

2

12





xRtx

tx 
   ,                                                                              (2.17) 

Now since  
 

  
 

2

1

2

1212







 




xR
  where     11 xR  , then  

                 
  
 

 
        0

1

0

3

12
,for    

12
TTt

tx

tx N 


 



                    (2.18)              

If      0

2

0

3 TtT N   , we have      0

1

10

3 TtT N    . Thus, by   18.2    

                  
 

         0

2

0

3

1

1 ,for    
1

TTttxx N 


   ,                             (2.19) 

Since  tx   is nonincreasing on     ],[ 00

1 TT N    and        0

1

110

2 TtT N     , we 

obtain 
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 txx



1

1

1
  . 

Substituting into  16.2  , we have  

      
 

                   0

2

0

3

1

2
2

1

1

,for  
2

1
TTtxRtxxRtxtxtx N 





 

Thus 

        
 

     
 

  1

2
2

1

1 2

1
1 





xR

tx

tx
xR   

Using the conditions     11 xR  , 10    we have  

                 
 

  
 

      0

2

0

3
2

1

,for      
2

1
1 TTt

tx

tx N 





 

Thus 

                 
  
 

  
       0

2

0

3

22

1

,for    
12

1

TTt
tx

tx N


 


 
 

Repeating the procedures, we have 

                 
  
 

  
        00

3

2

1

,for  
12

1

TTt
tx

tx mN

m

m 








 
 

Remark 2.1.The above result depends and improves Lemma 2.2 of [2] and Lemma 2 of [4]. 

Theorem 2.1.  Assume that there exists 01 tt   and a positive constant  
e

1
,   , such that Eq.  2.1  

holds. Then, for any  1tT   , every solution of Eq.  2.1   has at least one zero on   ],[ TT k  , where 

                  

1                          3

1
1

            ,min
{ 


 


e

k
                                                                 (2.21) 

      mnmn fmn   /min2 1,1   and 

     . or 0/min3 111    nnn ffn   

Proof: Suppose that  tx   is a solution of Eq.  2.1   for  ],[ TTt k  . If   0tx   for  

 TtT 2   , then from Eq.  2.1   we obtain 

                              ],[for    0 31 TTttxtxRtptx    

This implies that  tx  is nonincreasing on     ],[ 0

3

0

1 TTt     and  

                         ],[for      212 TTtTxtx     

Integrating both sides of Eq.  2.1   from  T2   to   T3  , we obtain  

                      
 

 
        dssxsxRspTxTx

T

T








 

3

2

23
 

                                   
 

 
     dssxspTx

T

T








 

3

2

2  

                                   
 

 
 








 





 dsspTx
T

T

3

2
12




  . 

In view of  7.2  and 1  ,we have     03  Tx  .This is a contradiction and so it is easy to see that 

3k   . 

In the case 1
1

 
e

 , assume that   tx   is a solution of Eq.  2.1   satisfying    0tx   for  
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 ],[ TTt k    . Let    mnk 2   

                       TTtf k

mn

   ,for    .                                                      (2.22) 

From the definitions of     and  f   , then   n   and  m   must exist. By Lemma 2.1, we have 

                 
  
 

      TTtf
tx

tx n

n
,for  0

2 



 


.                                                 (2.23) 

On the other hand, by Lemma 2.2, we obtain 

                 
  
 

       00

3 ,for  TTt
tx

tx mN

m





 


  .                                    (2.24) 

Setting       TTt mNn     2   in   23.2   and   24.2 , we get 

                  
    
   

 



 



 




mn

n

n
Tx

Tx
f

2

1

                                                             (2.25) 

This contradicts  22.2 . It is easy to see that        111  or 0/min3 nnk ffnk ,  

Since   
 

2

1







m  , ,.....2,1m  .The proof is complete. 

 

3. Main Results 

 
In this section, we discuss upper bound on the distance between zeros of solutions of Eq.  1.1 , we 

consider  the function          tGQtQthptH /  where       thghtG 1  , We assume the 

following conditions. 

  1H        ttgth   ,   ]),0[,),([ 0  tCtH  and    1 tG  , when   0 tH , or  

       01  tQtGtH  , when   0 tH .  

  2H    
  

     
   


  

ds
shgH

shxBsQt

thg 11
1

  , 
e

1
   , t t1   

  3H    
  

     
   


  

ds
shgH

shxBsQt

thg 11
1

  ,  
e

1
0    , 1tt    

Theorem 3.1: Suppose that  1H , and  2H   hold. Then  for any    1

2 thT   every solution of 

Eq.  1.1   has at least one zero in  the interval    ],[ 1 ThgT
k  , where k is given by  20.2   . 

Proof: Suppose that  tx  is a solution of Eq.  1.1   with   0tx   for all   1,TTt  , where  

   .1

1 ThgT
k   Let  

                           1

1 ,for  TTgttgxtptxtz                                                   (3.1) 

Then 

                    1

1 , for 0 TTgttz  ,                                                                         (3.2) 

and 

                         1

1 , for 0, TThtthxtftz   .                                           (3.3) 

From     3.3,1.1   and   I  , with     ],[ 1 TTgth   , we get 

                           thxthxBtQtz                                                                       (3.4) 

                                   thgxthpthzthxBtQtz  . 

So 

                                        thgxthpthxBtQthzthxBtQtz  .              (3.5) 
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But since by  4.3   

                           txtxBthQthz 11   , 

then , 

                     
  
  

 11

1

, for TTt
thQ

thz
txtxB 








 , 

and 

                    
    

         thgxBthghQ

thghz
thgx

1

1




  . 

Since       thghtG 1 .  Then        ththggtG  1 . By substituting into  5.3  we obtain 

                   
    

         





 






thgxBthghQ

thghz
thpthxBtQthzthxBtQtz

1

1

 

             
   
    

  
  

   1

1 , for TTght
tGQ

tGz

thgxB

thxB
thptQthzthxBtQ 







 
  

Hence 

      
   
    

  
  

            1

1 ,for  0 TTghtthzthxBtQ
tGQ

tGz

thgxB

thxB
thptQtz 







 
  

   
   
    

               1

1 , for 0 TTghtthzthxBtQtGz
thgxB

thxB
tHtz   .          (3.6) 

Now let 

                      
   
    

     1

1 ,for  TTGttGz
thgxB

thxB
tHtzt                      (3.7) 

Then from  2.3  and  7.3 , we have 

                     ],[ for 0 1

1 TTGtt    ,                                                                  (3.8) 

and  

     
   
    

    
   
    

  

 
   
    

    tGtGz
thgxB

thxB
tH

tGz
thgxB

thxB
tHtGz

thgxB

thxB
tHtzt















 

                                                                                                                                        (3.9)  

where      0 tztY  . 

Now from  6.3  and   9.3  , we obtain 

   
   
    

    
   
    

  

          
   
    

      ,1















tGtGY
thgxB

thxB
tHthzthxBtQ

tGz
thgxB

thxB
tHtGz

thgxB

thxB
tHt

                 (3.10) 

Let  

                 
   
    

0












thgxB

thxB
 .                                                                                  (3.11) 

If    0 tH  and    01 tG  , then from   11.3  , we have 

                              1

1 , for 0 TTGtthzthxBtQt                           (3.12) 

If    0 tH  and         01  tQtGtH  , then from  11.3  , then we have 
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     1











 tGtGY

thgxB

thxB
tHtGz

thgxB

thxB
tHtGz

thgxB

thxB
tH  

 
   
    

    
   
    

     1 tGtGY
thgxB

thxB
tHtGz

thgxB

thxB
tH  

 
   
    

    
   
    

     1 tGtGY
thgxB

thxB
tHtGz

thgxB

thxB
tH  

 
   
    

    
   
    

     1 tGtGY
thgxB

thxB
tHthz

thgxB

thxB
tH

 
   
    

  
 
 

     
   







 





thz

tGtGY

tH

tH
thz

thgxB

thxB
tH

1
 

   
   
    

  
 
 

              
          

















thgxthpthx

tGhxBtGhxtGQtG

tH

tH
thz

thgxB

thxB
tH

1
 

                  

        
   
    

  
 
 

              
       







 





thgxthp

tGhxBtGhxtGQtG

tH

tH
thz

thgxB

thxB
tH

1
 

                  
   
    

  
 
 

     
   







 





thp

tGQtG

tH

tH
thz

thgxB

thxB
tH

1
 

If we have  
   
    

10 
thgxB

thxB
 , then we have 

                   
 
 

     
   







 





thp

tGQtG

tH

tH
thztH

1
 

                             01  thztQtGthztH  

                           01  tQtGtHthz  . 

Also  12.3  holds. 

Since   0 tz  and  7.3   we have 

                    
   
    

      1

11 , for 1 TTghttgz
thgxB

thxB
tHt 








  

From  
   
    

10 
thgxB

thxB
 , then 

                           ],[ for 1 1

11 TTghttgztHt   

So 

                   
   
   

  1

2

1

1

, for 
1

TTht
thgH

thg
thz 











                                       (3.13) 

Substituting   13.3  into   10.3  , we have 

   
   
    

    
   
    

  

     
   
   

 
   
    

     1
1 1

1




















tGtGY
thgxB

thxB
tH

thgH

thg
thxBtQ

tGz
thgxB

thxB
tHtGz

thgxB

thxB
tHt





 

 
 

   
          1

21

1
, for 0

1
TThtthgthxB

thgH

tQ
t 





                 (3.14) 
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Then from Theorem 2.1, the proof is completed. 

Remark 3.1. Theorem 3.1 depends and extends those in [2] and [3]. 

 

 

4. Example 

 
Consider the delay differential equation 

                       01214  txttx                                                                           (4.1) 

Where    0tp   ,   ttB  ,   ttg   ,      1211  tttx  ,   1 tth  .  Here 

     
    
  

0,124 
tGQ

tQthp
tHttQ   

        111  ttxthxtth   , then 

      11  ttBthxB                                                                                              (4.2) 

       111 11   ttgthgtth   , then 

      011  tHthgH                                                                                            (4.3) 

Then from     3.4,2.4   we have 

                 
  

     
    3

2

3

2
48

1

2

11


  
ttds

shgH

shxBsQt

thg
 

  
3

2

01 ,max ttt    .Hence 

                  
 

2

312
21 






  

                  
  

2

312

2

1

2

1











, 

And 

                   10 f  

                   3
1

1
1 





f  

                   13291213.192 f  

                   885202225.03 f  

                   5233,03  nf   

                     5212212  mnf   

Thus      55,5min,min  k   .Thus the hypotheses of Theorem 3.1 be satisfied. Then every 

solution of Eq.  1.1   has at least one zero in     ],[
51 ThgT


   .   

Remark4.1.The above example may show that the conclusions do not follow the known oscillation 

criteria in the literature ([1],[2],[4],[5],and [6]). 
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