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Abstract

The aim of this work is to examine the upper-semicontinuity properties of
the family of global attractors admitted by a non-isothermal viscous relaxation
of some nonlocal Cahn-Hilliard equations. We prove that the family of global
attractors is upper-semicontinuous as the perturbation parameters vanish. Ad-
ditionally, under suitable assumptions, we prove that the family of global at-
tractors satisfies a further upper-semicontinuity type estimate whereby the dif-
ference between trajectories of the relaxation problem and the limit isothermal
non-viscous problem is explicitly controlled, in the topology of the relaxation
problem, in terms of the relaxation parameters.

Keywords: Nonlocal Cahn-Hilliard equations, global attractors, upper-
semicontinuity

1 Introduction

Inside a bounded domain (container) Ω ⊂ R3, we consider a phase separation
model for a binary solution (e.g. a cooling alloy),

φt = ∇ · [κ(φ)∇µ],
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where φ is the order-parameter (the relative difference of the two phases), κ is
the mobility function (which we set κ ≡ 1 throughout this article), and µ is the
chemical potential (the first variation of the free-energy E with respect to φ).
In the classical model,

µ = −∆φ+ F ′(φ) and E(φ) =

∫
Ω

(
1

2
|∇φ|2 + F (φ)

)
dx,

where F describes the density of potential energy in Ω (e.g. the double-well
potential F (s) = 1

4(1− s2)2).

Recently the nonlocal free-energy functional appears in the literature [21],

E(φ) =

∫
Ω

∫
Ω

1

4
J(x− y)(φ(x)− φ(y))2dxdy +

∫
Ω

F (φ)dx,

hence, the chemical potential is, µ = aφ− J ∗ φ+ F ′(φ), where

a(x) =

∫
Ω

J(x− y)dy and (J ∗ φ)(x) =

∫
Ω

J(x− y)φ(y)dy.

In this article we consider the following problems: for α > 0, δ > 0, and
ε > 0 the relaxation Problem Pα,ε is, given T > 0 and (φ0, θ0)

tr, find (φ+, θ+)tr

satisfying

φ+
t = ∆µ+ in Ω× (0, T ) (1)

µ+ = aφ+ − J ∗ φ+ + F ′(φ+) + αφ+
t − δθ+ in Ω× (0, T ) (2)

εθ+
t −∆θ+ = −δφ+

t in Ω× (0, T ) (3)

∂nµ
+ = 0 on Γ× (0, T ) (4)

∂nθ
+ = 0 on Γ× (0, T ) (5)

φ+(x, 0) = φ0(x) at Ω× {0} (6)

θ+(x, 0) = θ0(x) at Ω× {0}. (7)

Formally setting α = 0 and ε = 0 in the above equations we obtain the limit
Problem P0,0: given T > 0 and φ0, find φ0 satisfying

(1 + δ2)φ0
t = ∆µ0 in Ω× (0, T ) (8)

µ0 = aφ0 − J ∗ φ0 + F ′(φ0) in Ω× (0, T ) (9)

∂nµ
0 = 0 on Γ× (0, T ) (10)

φ0(x, 0) = φ0(x) at Ω× {0}. (11)

The main focus of this article is to examine the stability of the asymptotic
behavior, via global attractors, when we allow both α → 0+ and ε → 0+. For
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ease of presentation, throughout we assume there is δ0 > 0 so that δ ∈ (0, δ0],
and also (α, ε) ∈ (0, 1]× (0, 1].

Let us now give some preliminary words on the motivation for using nonlocal
diffusion. First, in [2, Equation (0.2)] the nonlocal diffusion terms aφ − J ∗ φ
appear as, ∫

Ω

J(x− y) (φ(x, t)− φ(y, t)) dy,

i.e. a(x) = J ∗ 1. Heuristically, this integral term “takes into account the
individuals arriving at or leaving position x from other places.” In this setting,
the term a(x) ≥ 0 is a factor of how many individuals arrive at position x.
Since the integration only takes place over Ω, individuals are not entering nor
exiting the domain. Hence, this representation is faithful to the desired mass
conservation law we typically associate with Neumann boundary conditions.
Although Neumann boundary conditions for the chemical potential µ make
sense from the physical point of view of mass conservation, it is not necessarily
true that the interface between the two phases is always orthogonal to the
boundary, which is implied by the boundary condition ∂nφ = 0 which commonly
appears in the literature. This is partially alleviated by using nonlocal diffusion
on φ.

There is obvious motivation already in the literature to investigate Problem
Pα,ε from the point of view of a singular limit of a Caginalp type phase-field
system (cf. [12, Equations (1.1)-(1.3)], [13, Equations (1.1)-(1.3)] and [33]). Of
the non-isothermal, nonlocal Allen-Cahn system,{

αφt + aφ− J ∗ φ+ F ′(φ) = δθ

ε1θt −∆θ = −δφt,
(12)

with α > 0, δ > 0, and ε1 > 0, the singular limit ε1 → 0+ formally recovers the
following isothermal, viscous, nonlocal Cahn-Hilliard equation,

φt −∆(aφ− J ∗ φ+ F ′(φ) + αφt) = 0. (13)

Equation (13) in the case where F is a singular (logarithmic) potential was
studied in [14]. We should also notice that when we iterate this procedure to
an appropriate non-isothermal version of (13), the resulting system is equivalent
to (13). Indeed, when we consider the system,

φt = ∆µ

µ = aφ− J ∗ φ+ F ′(φ) + αφt − δθ
ε2θt −∆θ = −δφt,
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the formal limit ε2 → 0+ yields the isothermal, viscous, nonlocal Cahn-Hilliard
equation,

ϕt = ∆(aφ− J ∗ φ+ F ′(φ) + βϕt),

where
β =

α

1 + δ2
and ϕ(t) = φ((1 + δ2)t).

A full treatment of well-posedness and global attractors and their regularity
already appears in the literature. In particular, for Problem P0,0 see [14] and
for Problem Pα,ε see [36]. Our main goal is to determine in what sense Problem
Pα,ε might converge to Problem P0,0. Such convergence results may have begun
with the hyperbolic relaxation of a Chaffee–Infante reaction diffusion equa-
tion in [25]. The motivation for hyperbolic relaxation is that it alleviates the
parabolic problems from the sometimes unwanted property of “infinite speed
of propagation”. Hale and Raugel proved in [25] the existence of a family of
global attractors that is upper-semicontinuous in the phase space. A global at-
tractor is a unique compact invariant subset of the phase space that attracts all
trajectories of the associated dynamical system, even at arbitrarily slow rates
(cf. [30] and [35, Theorem 14.6]). In a sense which will become clearer in Sec-
tion 4, upper-semicontinuity guarantees the attractors to not “blow-up” as the
perturbation parameter vanishes; i.e.,

sup
x∈Aε

inf
y∈A0
‖x− y‖Xε −→ 0 as ε→ 0+.

A complete treatment of the upper-semicontinuity of the global attractors ad-
mitted by the semiflow for the corresponding local problem appears in [16]. In
many respects, the present work aims to emulate the continuity result found
there.

Unlike global attractors, exponential attractors (sometimes called inertial
sets) are compact positively invariant sets possessing finite fractal dimension
that attract bounded subsets of the phase space exponentially fast (cf. [7]). It
can readily be seen that when both a global attractor A and an exponential
attractor I exist, then A ⊂ I provided that the basin of attraction of I is the
entire phase-space, and so the global attractor is also finite dimensional. In
this article we do not turn our attention to proving the existence of exponential
attractors, however, we will be interested in certain convergence properties that
may be possessed by families of exponential attractors.

Robust families of exponential attractors (that is, both upper- and lower-
semicontinuous with explicit control over semidistances in terms of the per-
turbation parameter) of the type reported in [19] have appeared in numerous
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applications, of which we will limit ourselves to here mention only a few of
those applications to Cahn-Hilliard equations and phase-field equations. Most
similar to our Problem Pα,ε (a non-isothermal viscous relaxation), Gal and Mi-
ranville show in [15] the existence of a family of exponential attractors that is
robust (at zero) with respect to δ and ε for any α > 0 fixed. They also estab-
lish robustness for α, δ and ε at 0. The global well-posedness for their model
is detailed in [11]. Robust exponential attractors for an isothermal nonviscous
Cahn-Hilliard equation with singularly perturbed boundary conditions appears
in [10]. The works [6] and [20] which contains some applications of memory
relaxation of reaction diffusion equations: Cahn–Hilliard equations, phase-field
equations, wave equations, beam equations, and numerous others. The novelty
here being the presence of an exponentially fading “memory” term appearing
with a singularly perturbed kernel which converges to the Dirac delta func-
tion as the perturbation parameter vanishes. These works ([6, 20]) are also
focused on proving the existence of a robust family of exponential attractors.
The hyperbolic relaxation of the 3D Cahn-Hilliard equation, i.e.

εφtt + φt −∆(−∆φ+ F ′(φ) + αφ) = 0,

is discussed in [17] where it is shown that the problem admits a family of
exponential attractors, robust at α = ε = 0. For the interested reader, an
analysis the 1D counterpart appears in [18]. Finally, we recall from the above
discussion that the viscous Cahn-Hilliard equations appears as a singular limit of
a Caginalp type phase-field system. Relaxation problems of this type were also
shown to possess robust exponential attractors. Indeed, we refer to [33] and [13],
the latter being subject to physically relevant dynamic boundary conditions.

Our interest in robustness is due to the fact that it typically relies on an
estimate of the form,

‖Sε(t)x− LS0(t)Πx‖Xε ≤ Cεp, (14)

for all t in some interval, where x ∈ Xε, Sε(t) : Xε → Xε and S0(t) : X0 → X0

are semigroups generated by the solutions of the perturbed problem and the
limit problem, respectively, Π denotes a projection from Xε onto X0 and L is
a “lift” from X0 into Xε, and finally C, p > 0 are constants. In obtaining our
(direct) upper-semicontinuity type result (appearing in Section 4), controlling a
difference of this type in a suitable norm is crucial. The estimate (14) means we
can approximate the limit problem with the perturbation with control explicitly
written in terms of the perturbation parameter. Usually such control is only ex-
hibited on compact time intervals. For the model problems under consideration
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here, the right-hand side of the corresponding difference will be controlled in
terms of the perturbation parameters α and ε, and on compact time intervals,
but at a cost of restricting the size of two other structural parameters.

In the next section we provide the functional framework behind Problem
P0,0 and Problem Pα,ε. Section 3 is devoted to recalling several important as-
pects of Problem P0,0 and Problem Pα,ε such as (global) well-posedness, dissi-
pation, and the existence of global attractors. The upper-semicontinuity results
appear in Section 4. The main points of this article are as follows:

• We prove the family of global attractors admitted by Problem Pα,ε and
Problem P0,0 is upper-semicontinuous as the perturbation parameters α, ε
vanish. Here we rely on the classical proof in [25].

• Under an additional assumption relating the interaction kernel and the po-
tential, we also show that the difference of trajectories of Problem Pα,ε and
Problem P0,0 emanating from the same initial data, is explicitly controlled,
in the topology of the perturbation problem, in terms of the perturbation
parameters α and ε on compact time intervals [0, T ].

It seems that such results for nonlocal Cahn-Hilliard equations do not yet
appear in the literature. These results show that the perturbation Problem Pα,ε

may be viewed as a “relaxation” of the limit Problem P0,0 in the sense that, for
any Problem P0,0, there is a Problem Pα,ε that is close (made more precise in
Section 4).

2 Preliminaries

Now we detail some preliminaries that will be applied to both problems. To
begin, define the spaces H := L2(Ω) and V := H1(Ω) with norms denoted by,
‖ · ‖ and ‖ · ‖V , respectively. Otherwise, we write the norm of the Banach space
X with ‖ · ‖X . The inner-product in H is denoted by (·, ·). Denote the dual
space of V by V ′, and the dual paring in V ′ × V is denoted by 〈·, ·〉. For every
ψ ∈ V ′, we denote by 〈ψ〉 the average of ψ over Ω, that is,

〈ψ〉 :=
1

|Ω|
〈ψ, 1〉,

where |Ω| is the Lebesgue measure of Ω. Throughout, we denote by ψ̂ := ψ−〈ψ〉
and for future reference, observe 〈ψ̂〉 = 〈ψ − 〈ψ〉〉 = 0. We will refer to the
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following norm in V ′, which is equivalent to the usual one,

‖ψ‖2
V ′ =

∥∥∥A−1/2
N (ψ − 〈ψ〉)

∥∥∥2

+ 〈ψ〉2.

Define the space L2
0(Ω) := {φ ∈ L2(Ω) : 〈φ〉 = 0}. Let AN = −∆ :

L2
0(Ω) → L2

0(Ω) with domain D(AN) = {ψ ∈ H2(Ω) : ∂nψ = 0 on Γ} de-
note the “Neumann-Laplace” operator. Of course the operator AN generates
a bounded analytic semigroup, denoted e−AN t, and the operator is nonnegative
and self-adjoint on L2(Ω). Recall, the domain D(AN) is dense in H2(Ω). Fur-
ther, define V0 := {ψ ∈ V : 〈ψ〉 = 0}, and V ′0 := {ψ ∈ V ′ : 〈ψ〉 = 0}. Then
AN : V → V ′, AN ∈ L(V, V ′), is defined by, for all u, v ∈ V ,

〈ANu, v〉 =

∫
Ω

∇u · ∇vdx.

It is well known that the restriction AN |V0 maps V0 to V ′0 isomorphically, and
the inverse map N = A−1

N : V ′0 → V0, is defined by, for all ψ ∈ V ′0 and f ∈ V0

ANNψ = ψ, NANf = f.

Additionally, these maps satisfy the relations, for all u ∈ V0 and v, w ∈ V ′0 ,

〈ANu,N v〉 = 〈u, v〉, (15)

〈v,Nw〉 = 〈w,N v〉.

The Sobolev space V is endowed with the norm,

‖ψ‖2
V := ‖∇ψ‖2 + 〈ψ〉2. (16)

Denote by λΩ > 0 the constant in the Poincaré-Wirtinger inequality,

‖ψ − 〈ψ〉‖ ≤
√
λΩ‖∇ψ‖. (17)

Whence, for cΩ := max{λΩ, 1}, there holds, for all ψ ∈ V,

‖ψ‖2 ≤ λΩ‖∇ψ‖2 + 〈ψ〉2 (18)

≤ cΩ‖ψ‖2
V .

For each m ≥ 0, α > 0, and ε > 0 define the following energy phase-space
for Problem Pα,ε,

Hα,ε
m := {ζ = (φ, θ)tr ∈ H ×H : |〈φ〉|, |〈θ〉| ≤ m},
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which is Hilbert when endowed with the α, ε-dependent norm whose square is
given by,

‖ζ‖2
Hα,εm := ‖φ‖2

V ′ + α‖φ‖2 + ε‖θ‖2.

When we are concerned with the dynamical system associated with Problem
Pα,ε, we will utilize the following metric space

X α,ε
m :=

{
ζ = (φ, θ)tr ∈ Hα,ε

m : F (φ) ∈ L1(Ω)
}
,

endowed with the metric

dXα,εm
(ζ1, ζ2) := ‖ζ1 − ζ2‖Hα,εm +

∣∣∣∣∫
Ω

F (φ1)dx−
∫

Ω

F (φ2)dx

∣∣∣∣1/2 .
We also define the more regular phase-space for Problem Pα,ε,

Vα,ε
m := {ζ = (φ, θ)tr ∈ V × V : |〈φ〉|, |〈θ〉| ≤ m},

with the norm whose square is given by, ‖ζ‖2
Vα,εm := ‖φ‖2 + α‖φ‖2

V + ε‖θ‖2
V .

Naturally, for Problem P0,0 we set H0,0
m := {φ ∈ H : |〈φ〉| ≤ m} with ‖ζ‖H0,0

m
:=

‖φ‖V ′. Also, V0,0
m := {φ ∈ V : |〈φ〉| ≤ m} with ‖ζ‖V0,0

m
:= ‖φ‖.

The following assumptions on J and F are based on [8, 14]:

(H1) J ∈ W 1,1(R3), J(−x) = J(x), and a(x) :=
∫

Ω J(x− y)dy > 0 a.e. in Ω.

(H2) F ∈ C2,1
loc (R) and there exists c0 > 0 such that, for all s ∈ R,

F ′′(s) + inf
x∈Ω

a(x) ≥ c0.

(H3) There exists c1 >
1
2‖J‖L1(R3) and c2 ∈ R such that, for all s ∈ R,

F (s) ≥ c1s
2 − c2.

(H4) There exists c3 > 0, c4 ≥ 0, and p ∈ (1, 2] such that, for all s ∈ R,

|F ′(s)|p ≤ c3|F (s)|+ c4.

(H5) There exist c5, c6 > 0, and q > 0 such that, for all s ∈ R,

F ′′(s) + inf
x∈Ω

a(x) ≥ c5|s|2q − c6.
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Let us make some remarks and report some important consequences of these
assumptions. From [5, Remark 2]: assumption (H2) implies that the potential
F is a quadratic perturbation of a (strictly) convex function. Indeed, if we set
a∗ := ‖a‖L∞(Ω), then F can be represented as

F (s) = G(s)− a∗

2
s2, (19)

with G ∈ C2(R) being strictly convex, since G′′ ≥ c0. With (H3), for each
m ≥ 0 there are constants c7, c8, c9, c10 > 0 (with c8 and c9 depending on m and
F ) such that,

F (s)− c7 ≤ c8(s−m)2 + F ′(s)(s−m), (20)

1

2
|F ′(s)|(1 + |s|) ≤ F ′(s)(s−m) + c9, (21)

and

|F (s)| − c10 ≤ |F ′(s)|(1 + |s|). (22)

The last inequality appears in [16, page 8]. With the positivity condition (H3),
it follows that, for all s ∈ R,

|F ′(s)| ≤ c3|F (s)|+ c4. (23)

A word of notation: In many calculations, functional notation indicating
dependence on the variable t is dropped; for example, we will write ψ in place
of ψ(t). Throughout the article, C > 0 will denote a generic constant, while Q :
Rd

+ → R+ will denote a generic increasing function in each of the d components.
Unless explicitly stated, all of these generic terms will be independent of the
parameters α, δ, ε, T, and m. Constants due to the embeddings V ′ ←↩ H,
or H ←↩ V , are denoted by CΩ. Finally, throughout we will use the following
abbreviations

cJ := ‖J‖L1(Ω) and dJ := ‖∇J‖L1(Ω).

We now review Problem P0,0.

3 The model problems

First we recall several results for Problem P0,0.
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3.1 The limit Problem P0,0

When we examine the limit Problem P0,0, observe that through the time rescal-
ing s 7→ (1 + δ2)t,

φs(s) = (1 + δ2)φt((1 + δ2)t) = ∂t[φ((1 + δ2)t)],

we subsequently do not need to include the term δ appearing in (8) in this
preliminary discussion. The term δ will need to appear later when we compare
both Problem P0,0 and Problem Pα,ε on the same (compact) time interval. All
of the following results for Problem P0,0 are namely due to [5, 8] and can be
found in [14, Section 2.1].

Definition 1 For T > 0 and φ0 ∈ H with F (φ0) ∈ L1(Ω), we say that φ is a
weak solution of Problem P0,0 on [0, T ] if φ satisfies

φ ∈ C([0, T ];H) ∩ L2(0, T ;V ),

φt ∈ L2(0, T ;V ′),

µ = a(x)φ− J ∗ φ+ F ′(φ) ∈ L2(0, T ;V ).

In addition, upon setting,

ρ = ρ(x, φ) := a(x)φ+ F ′(φ),

for every ϕ ∈ V, there holds, for almost all t ∈ (0, T ),

〈φt, ϕ〉+ (∇ρ,∇ϕ)− (∇J ∗ φ,∇ϕ) = 0.

Also, there holds,

φ(0) = φ0. (24)

We say that φ is a global weak solution of Problem P0,0 if it is a weak
solution on [0, T ], for any T > 0. The initial condition (24) holds in the L2-
sense; i.e., for every ϕ ∈ V,

(φ(0), ϕ) = (φ0, ϕ). (25)

It is well-known that the average value of φ is conserved (cf. e.g. [38,
Section III.4.2]). Indeed, taking ϕ = 1 in (37) yields, ∂

∂t

∫
Ω φ(x, t)dx = 0 and

we naturally recover the conservation of mass

〈φ(t)〉 = 〈φ0〉 and ∂t〈φ(t)〉 = 0. (26)
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Theorem 1 Assume (H1)-(H5) hold with p ∈ (6
5 , 2] and q ≥ 1

2. For any φ0 ∈ H
with F (φ0) ∈ L1(Ω), there exists a unique global weak solution φ to Problem P0,0

in the sense of Definition 1 satisfying the additional regularity, for any T > 0,

φ ∈ L∞(0, T ;L2+2q(Ω)),

F (φ) ∈ L∞(0, T ;L1(Ω)).

Furthermore, setting

E0(t) :=
1

4

∫
Ω

∫
Ω

J(x− y) (φ(x, t)− φ(y, t))2 dxdy +

∫
Ω

F (φ(x, t))dx, (27)

the following energy equality holds, for all φ0 ∈ H with F (φ0) ∈ L1(Ω), and
t ∈ [0, T ],

E0(t) +

∫ t

0

‖∇µ(s)‖2ds = E0(0). (28)

Proof: See [14, Theorem 2.2], which follows [8, Corollary 1 and Proposition 5]
and [5, Theorem 1]. �

At this point in the discussion we can formalize the semi-dynamical system
generated by Problem P0,0.

Corollary 1 Let the assumptions of Theorem 1 be satisfied. We can define a
strongly continuous semigroup (of solution operators) S0,0 = (S0,0(t))t≥0,

S0,0(t) : X 0,0
m → X 0,0

m

by setting, for all t ≥ 0,
S0,0(t)φ0 := φ(t)

where φ(t) is the unique global weak solution to Problem P0,0.

We now cite the result showing that Problem P0,0 admits a global attractor.
The result is due to [8, Theorem 4] (see also [14, Theorem 2.7]).

Theorem 2 The semigroup S0,0 = (S0,0(t))t≥0 admits a global attractor A0,0 in
H0,0
m . The global attractor is invariant under the semiflow S0,0 (both positively

and negatively) and attracts all nonempty bounded subsets of H0,0
m ; precisely,

1 for each t ≥ 0, S0,0(t)A0,0 = A0,0, and
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2 for every nonempty bounded subset B of H0,0
m ,

lim
t→∞

distH0,0
m

(S0,0(t)B,A0,0) := lim
t→∞

sup
ζ∈B

inf
ξ∈A0,0

‖S0,0(t)ζ − ξ‖H0,0
m

= 0.

Additionally,

3 the global attractor is the unique maximal compact invariant subset in H0,0
m

given by

A0,0 := ω(B0,0
0 ) :=

⋂
s≥0

⋃
t≥s

S0,0(t)B0,0
0

H0,0
m

.

Furthermore,

4 the global attractor is connected,

5 the global attractor is bounded in V0,0
m , and

6 the fractal dimension of A0,0 is finite; i.e.,

dimF (A0,0,H0,0
m ) := lim sup

r→0

ln mH0,0
m

(A0,0, r)

− ln r
<∞,

where mH0,0
m

(A0,0, r) denotes the minimum number of balls of radius r from
H0,0
m required to cover A0,0.

Proof: The first three claims are a direct result of the existence of an absorbing
set and the compactness of S0,0 on H0,0

m . The fourth claim follows because
Knesser’s property is satisfied (cf. [4, Section 5]). The fifth claim is due to
[14, Corollary 2.9]. Finally, the last claim follows due to the existence of an
exponential attractor whose basin of attraction is the whole phase space (cf.
[14, Theorem 2.8]). �

The following result will be useful in Section 4. This follows from [14,
Lemma 2.12].

Lemma 1 Let the assumptions of Theorem 1 be satisfied and assume φ is a
weak solution to Problem P0,0. There exists a positive monotonically increasing
function Q(m) such that for all t ∈ [0, T ],∫ t

0

‖φt(s)‖2ds ≤ Q(m)T. (29)
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3.2 The relaxation Problem Pα,ε

Now we recall some important results for Problem Pα,ε. The omitted proofs
may be found in [36]; otherwise, as certain details in the next section rely on
the proofs of some results stated here, we report, for the reader’s convenience,
those more important proofs in the appendix.

Definition 2 For T > 0, δ0 > 0, δ ∈ (0, δ0], (α, ε) ∈ (0, 1] × (0, 1], and
ζ0 = (φ0, θ0)

tr ∈ H×H with F (φ0) ∈ L1(Ω), we say that ζ = (φ, θ)tr is a weak
solution of Problem Pα,ε on [0, T ] if ζ = (φ, θ)tr satisfies

φ ∈ C([0, T ];H) ∩ L2(0, T ;V ), (30)

φt ∈ L2(0, T ;V ′), (31)
√
αφt ∈ L2(0, T ;V ), (32)

µ = a(x)φ− J ∗ φ+ F ′(φ) + αφt − δθ ∈ L2(0, T ;V ), (33)

θ ∈ C([0, T ];H) ∩ L2(0, T ;V ), (34)

θt ∈ L2(0, T ;V ′). (35)

In addition, upon setting,

ρ = ρ(x, φ) := a(x)φ+ F ′(φ), (36)

for every ϕ, ϑ ∈ V, there holds, for almost all t ∈ (0, T ),

〈φt, ϕ〉+ (∇ρ,∇ϕ)− (∇(J ∗ φ),∇ϕ) + α(∇φt,∇ϕ) = δ(∇θ,∇ϕ) (37)

〈θt, ϑ〉+ (∇θ,∇ϑ) = −δ〈φt, ϑ〉. (38)

Also, there holds,

φ(0) = φ0 and θ(0) = θ0. (39)

We say that ζ = (φ, θ)tr is a global weak solution of Problem Pα,ε if it is
a weak solution on [0, T ], for any T > 0. The initial conditions (39) hold in the
L2-sense; i.e., for every ϑ ∈ V, (25) and

(θ(0), ϑ) = (θ0, ϑ) (40)

hold.

In addition to (26) and (26), taking ϑ = 1 in (38) yields, ∂
∂t

∫
Ω θ(x, t)dx = 0

and we also establish

〈θ(t)〉 = 〈θ0〉 as well as ∂t〈φ(t)〉 = ∂t〈θ(t)〉 = 0. (41)

Together, (26) and (41) constitute conservation of enthalpy.
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Theorem 3 Assume (H1)-(H5) hold with p ∈ (6
5 , 2] and q ≥ 1

2. For any ζ0 =
(φ0, θ0)

tr ∈ H × H with F (φ0) ∈ L1(Ω), there exists a global weak solution
ζ = (φ, θ)tr to Problem Pα,ε in the sense of Definition 2 satisfying the additional
regularity, for any T > 0,

φ ∈ L∞(0, T ;L2+2q(Ω)), (42)
√
αφ ∈ L∞(0, T ;V ), (43)

F (φ) ∈ L∞(0, T ;L1(Ω)), (44)

θt ∈ L2(0, T ;H). (45)

Furthermore, setting

Eε(t) :=
1

4

∫
Ω

∫
Ω

J(x− y) (φ(x, t)− φ(y, t))2 dxdy+

+

∫
Ω

F (φ(x, t))dx+
ε

2

∫
Ω

θ(t)2dx, (46)

the following energy equality holds, for all ζ0 = (φ0, θ0)
tr ∈ Hα,ε

m with F (φ0) ∈
L1(Ω), and t ∈ [0, T ],

Eε(t) +

∫ t

0

(
‖∇µ(s)‖2 + α‖φt(s)‖2 + ‖∇θ(s)‖2

)
ds = Eε(0). (47)

The following proposition establishes the uniqueness of weak solutions to
Problem Pα,ε. Furthermore, it shows that the semigroup Sα,ε (defined below)
is strongly continuous with respect to the metric X α,ε

m .

Proposition 1 Assume (H1)-(H4) hold. Let T > 0, m ≥ 0, δ0 > 0, δ ∈ (0, δ0],
(α, ε) ∈ (0, 1] × (0, 1], and ζ01 = (φ01, θ01)

tr, ζ02 = (φ02, θ02)
tr ∈ Hα,ε

m be such
that F (φ01), F (φ02) ∈ L1(Ω). Let ζ1(t) = (φ1(t), θ1(t)) and ζ2(t) = (φ2(t), θ2(t))
denote the weak solution to Problem Pα,ε corresponding to the data ζ01 and
ζ02, respectively. Then there are positive constants ν̄1 = ν̄1(c0, J, α, ε, δ0) ∼
{α−2, ε−1} and ν̄2 = ν̄2(F, J,Ω, δ0), independent of T , ζ01, and ζ02, such that,
for all t ∈ [0, T ],

‖ζ1(t)− ζ2(t)‖2
Hα,εm +

+

∫ t

0

(
2‖∂tφ1(s)− ∂tφ2(s)‖2

V ′ + α‖∂tφ1(s)− ∂tφ2(s)‖2 + 2‖θ1(s)− θ2(s)‖2
V

)
ds

≤ eν̄1t
(
‖ζ1(0)− ζ2(0)‖2

Hα,εm +
2ν̄2

ν̄1
(|M1 −M2|+ |N1 −N2|)2

)
(48)

where Mi := 〈φi(0)〉, Ni := 〈θi(0)〉, i = 1, 2.
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As before, we can now formalize the semi-dynamical system generated by
Problem Pα,ε.

Corollary 2 Let the assumptions of Theorem 3 be satisfied. We can define a
strongly continuous semigroup (of solution operators) Sα,ε = (Sα,ε(t))t≥0, for
each α > 0 and ε > 0,

Sα,ε(t) : X α,ε
m → X α,ε

m

by setting, for all t ≥ 0,
Sα,ε(t)ζ0 := ζ(t)

where ζ(t) = (φ(t), θ(t)) is the unique global weak solution to Problem Pα,ε.
Furthermore, as a consequence of (48), if we assume

M1 = M2 and N1 = N2,

the semigroup Sα,ε(t) : X α,ε
m → X α,ε

m is Lipschitz continuous on X α,ε
m , uniformly

in t on compact intervals.

We now give a dissipation estimate for Problem Pα,ε from which we de-
duce the existence of an absorbing set. The idea of the estimate follows [16,
Proposition 2]. It is here where we require the slight modification of hypothesis
(H1).

Lemma 2 Assume (H1)-(H4) hold. Let m ≥ 0, δ0 > 0, δ ∈ (0, δ0], (α, ε) ∈
(0, 1]× (0, 1], ζ0 = (φ0, θ0)

tr ∈ Hα,ε
m with F (φ0) ∈ L1(Ω). Assume ζ = (φ, θ)tr is

a weak solution to Problem Pα,ε. There is a positive constant ν3 = ν3(δ0, J,Ω),
but independent of α, ε, and ζ0, such that, for all t ≥ 0, the following holds,

‖φ̂(t)‖2
V ′ + α‖φ̂(t)‖2 + ‖

√
aφ(t)‖2 + ‖θ̂(t)‖2 + (F (φ(t)), 1)− (J ∗ φ(t), φ̂(t))

+

∫ t+1

t

(
‖φt(s)‖2

V ′ + α‖φt(s)‖2 + ‖θ(s)‖2
V

)
ds

≤ Q(‖ζ0‖Hα,εm )e−ν3t +
1

ν3
Q(m), (49)

for some monotonically increasing functions Q.

Consequently, the set given by

Bα,ε0 :=

{
ζ ∈ Hα,ε

m : ‖ζ‖2
Hα,εm ≤

1

ν3
Q(m) + 1

}
, (50)

where Q(·, ·) is the function from (49), is a closed, bounded absorbing set in
Hα,ε
m , positively invariant under the semigroup Sα,ε.
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Remark 1 According to the proof (see Appendix A), ν3 is a function of δ0 and
the relation is ν3 ∼ 1− cδ2

0 > 0 for a sufficiently small constant c > 0.

Remark 2 The following global uniform bound follows immediately from esti-
mate (49) and (112). Under the assumptions of Lemma 2, there holds

lim sup
t→+∞

‖ζ(t)‖Hα,εm ≤ E(0) +
1

ν3
Q(m) =: Q(‖ζ0‖Hα,εm ,m) (51)

for a monotonically increasing function Q, independent of α and ε

With the existence of a bounded absorbing set set Bα,ε0 (in Lemma 2),
the existence of a global attractor now depends on the precompactness of the
semigroup of solution operators Sα,ε. To this end, we know that there is a t∗ > 0
such that the map Sα,ε(t∗) is a strict contraction on Hα,ε

m , up to a precompact
pseudometric M∗ (the proof is based on the proof of Proposition 1). Such a
contraction is commonly used in connection with phase-field type equations as
an alternative to establish the precompactness of a semigroup; for particular
recent results, also see, for example, [22, 24, 40].) The existence of a global
attractor in Hα,ε

m now follows by well-known arguments and can be found in
[37, 3] for example. Additional characteristics of the attractor follow thanks to
the gradient structure of Problem Pα,ε. Indeed, from (47) we see that if there
is a t0 > 0 in which

Eε(t0) = Eε(0),

then, for all t ∈ (0, t0),∫ t

0

(
‖∇µ(s)‖2 + α‖φt(s)‖2 + ‖∇θ(s)‖2

)
ds = 0. (52)

Hence, we deduce φt(t) = 0 and θt(t) = 0 for all t ∈ (0, t0). Therefore,
ζ = (φ, θ)tr is a fixed point of the trajectory ζ(t) = Sα,ε(t)ζ0. Since the semi-
group Sα,ε(t) is precompact, the system (X α,ε

m , Sα,ε, Eε) is gradient/conservative
for each α ∈ (0, 1] and ε ∈ (0, 1]. In particular, the first three claims in
the statement of the following theorem are a direct result of the existence of
the an absorbing set, a Lyapunov functional Eε, and the fact that the system
(X α,ε

m , Sα,ε(t), Eε) is gradient. The fourth property is a direct result [37, Theorem
VII.4.1], and the fifth follows from [39, Theorem 6.3.2].

Theorem 4 For each α ∈ (0, 1] and ε ∈ (0, 1] the semigroup Sα,ε = (Sα,ε(t))t≥0

admits a global attractor Aα,ε in Hα,ε
m . The global attractor is invariant under the

semiflow Sα,ε (both positively and negatively) and attracts all nonempty bounded
subsets of Hα,ε

m ; precisely,
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1 for each t ≥ 0, Sα,ε(t)Aα,ε = Aα,ε, and

2 for every nonempty bounded subset B of Hα,ε
m ,

lim
t→∞

distHα,εm (Sα,ε(t)B,Aα,ε) := lim
t→∞

sup
ζ∈B

inf
ξ∈Aα,ε

‖Sα,ε(t)ζ − ξ‖Hα,εm = 0.

Additionally,

3 the global attractor is unique maximal compact invariant subset in Hα,ε
m given

by

Aα,ε := ω(Bα,ε0 ) :=
⋂
s≥0

⋃
t≥s

Sα,ε(t)Bα,ε0

Hα,εm
.

Furthermore,

4 the global attractor Aα,ε is connected and given by the union of the unstable
manifolds connecting the equilibria of Sα,ε(t), and

5 for each ζ0 = (φ0, θ0)
tr ∈ Hα,ε

m , the set ω(ζ0) is a connected compact invariant
set, consisting of the fixed points of Sα,ε(t).

The next result shows the global attractor is bounded in a more regular
space. Further regularity results can be found in [36, Section 4.4].

Lemma 3 Under the assumptions of Lemma 2, the set given by

Bα,ε1 :=

{
ζ ∈ Vα,ε

m : ‖ζ‖2
Vα,εm ≤

(
1

ε
+ 1

)(
E(0) +

(
2

ν3
+ 1

)
Qα(m) + 1

)}
,

(53)
for some positive monotonically increasing function Qα ∼ α−1, is a closed,
bounded absorbing set in Vα,ε

m , positively invariant under the semigroup Sα,ε.

Furthermore, each global attractor Aα,ε is bounded in Vα,ε
m , i.e., Aα,ε ⊂ Bα,ε1 ,

and compact in Hα,ε
m .

Remark 3 The “radius” of the set Bα,ε1 depends on α and ε like, respectively,
α−1 and ε−1.

The final result is this section concerns bounding the global attractor Aα,ε
in a more regular subspace of Vα,ε

m . For each m ≥ 0, α ∈ (0, 1] and ε ∈ (0, 1],
we now define the regularized phase-space

Wα,ε
m := {ζ = (φ, θ)tr ∈ Vα,ε

m :
√
αµ ∈ H2(Ω), |〈φ〉|, |〈θ〉| ≤ m},
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with the norm inherited from Vα,ε
m . Also, we define the following metric space

Yα,εm :=
{
ζ = (φ, θ)tr ∈Wα,ε

m : F (φ) ∈ L1(Ω)
}
,

endowed with the metric

dYα,εm
(ζ1, ζ2) := ‖ζ1 − ζ2‖Vα,εm +

∣∣∣∣∫
Ω

F (φ1)dx−
∫

Ω

F (φ2)dx

∣∣∣∣1/2 .
Theorem 5 For each α ∈ (0, 1], ε ∈ (0, 1] and for any t ≥ t∗, the semigroup
Sα,ε satisfies Sα,ε(t) : X α,ε

m → Yαm. Moreover, the global attractor Aα,ε admitted
by the semigroup Sα,ε is bounded in Wα,ε

m and compact in Hα,ε
m .

4 Upper-semicontinuity of the global attractors

The following semicontinuity results are not possible until we provide a natural
embedding for the attractor of Problem P0,0 (here called a lift) into the phase-
space of Problem Pα,ε. To add motivation for the definition of the lift map, it
is first worthwhile to notice that the equations (8)-(11) are equivalent to the
system

φ0
t = ∆µ0 in Ω× (0, T ) (54)

µ0 = aφ0 − J ∗ φ0 + F ′(φ0)− δθ0 in Ω× (0, T ) (55)

−∆θ0 = −δφ0
t in Ω× (0, T ) (56)

∂nµ
0 = 0 on Γ× (0, T ) (57)

φ0(x, 0) = φ0(x) at Ω× {0}. (58)

Hence, in our setting, a lift is a mapping L : H0,0
m → Hα,ε

m defined by

L(φ0) := (φ0, θ0 =M(φ0)),

where M : H → H is a so-called canonical extension operator, given by

M(φ0) := δµ0. (59)

It should be noted that the chemical potential µ0, and hence M, regularizes
into V for any t > 0; more precisely, we cite [14, Proof of Lemma 2.17], where,
for any τ > 0

sup
t≥τ
‖µ0(t)‖V ≤ Q(m, τ).
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The lifted limit Problem P0,0 can then be described by

φ0
t = ∆µ0 in Ω× (0, T ) (60)

µ0 = aφ0 − J ∗ φ0 + F ′(φ0)− δθ0 in Ω× (0, T ) (61)

−∆θ0 = −δφ0
t in Ω× (0, T ) (62)

∂nµ
0 = 0 on Γ× (0, T ) (63)

∂nθ
0 = 0 on Γ× (0, T ) (64)

φ0(x, 0) = φ0(x) at Ω× {0} (65)

θ0(x, 0) =M(φ0(x)) at Ω× {0}. (66)

We emphasize that the lift of the initial data φ0 ∈ H0,0
m from Problem P0,0 is

given by L(φ0) = (φ0,M(φ0)).

Remark 4 Notice that in the original formulation of the limit problem (see
(8)-(11)) we need the term 1 + δ2 in equation (8) because later (below) we
want to compare the difference between the perturbation problem and the lifted
limit problem on the same compact time interval. This observation is important
because we will later rescale the time variable in order to obtain a suitable control
of the problems in the weak energy phase space.

For each (α, ε) ∈ [0, 1]× [0, 1], define the family of sets in Hα,ε
m ,

Aα,ε :=

{
Aα,ε for (α, ε) ∈ (0, 1]× (0, 1]

LA0,0 when α = 0 and ε = 0.
(67)

4.1 A “classical” upper-semicontinuity result

The main result of this section immediately follows.

Theorem 6 The family {Aα,ε}α,ε∈(0,1], defined by (67), is upper-semicontinuous
at α = 0 and ε = 0 in the metric space X 1,1

m . More precisely, there holds

lim
α,ε→0

distX 1,1
m

(Aα,ε,A0,0) := lim
α,ε→0

sup
a∈Aα,ε

inf
b∈LA0,0

‖a− b‖X 1,1
m

= 0. (68)

Proof: The proof essentially follows the classical argument in [25, 26] and also
[40]. Of course several modifications are required to account for the precise
model problems considered here. Let ζ = (φ, θ) ∈ Aα,ε and ζ̄ = (φ̄, θ̄) ∈ LA0,0.
We need to show that, as α, ε→ 0,

sup
(φ,θ)∈Aα,ε

inf
(φ̄,θ̄)∈LA0,0

(
‖φ− φ̄‖2V ′ + ‖φ− φ̄‖2 + ‖θ − θ̄‖2 +

∣∣∣∣∫
Ω
F (φ)dx−

∫
Ω
F (φ̄)dx

∣∣∣∣)1/2

→ 0. (69)
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Assuming to the contrary that (69) did not hold, then there exist η0 > 0 and
sequences (αn)n∈N ⊂ (0, 1], (εn)n∈N ⊂ (0, 1], (ζn)n∈N = ((φn, θn))n∈N ⊂ Aαn,εn,
such that αn → 0, εn → 0, and for all n ∈ N,

inf
(φ̄,θ̄)∈LA0,0

(
‖φn − φ̄‖2

V ′ + ‖φn − φ̄‖2 + ‖θn − θ̄‖2 +

∣∣∣∣∫
Ω

F (φn)dx−
∫

Ω

F (φ̄)dx

∣∣∣∣)
≥ η2

0. (70)

By Theorem 5, the compact sets Aαn,εn are bounded in the space W1,1
m and we

have the following uniform bound, for some positive constant C > 0 indepen-
dent of n,

‖φn‖2
V ′ + ‖φn‖2 + ‖θn‖2 ≤ C.

This means that there is a weakly converging subsequence of (ζn)n∈N (not re-
labelled) that converges to some (φ∗, θ∗) weakly in W1,1

m . By the compactness
of the embedding W1,1

m ↪→ H1,1
m , the subsequence converges strongly in H1,1

m . It
now suffices to show that (φ∗, θ∗) ∈ LA0,0, since this is a contradiction to (70).

With each ζn = (φn, θn) ∈ Aαn,εn, for n ∈ N, there is a complete orbit

(φn(t), θn(t))t∈R = (Sαn,εn(t)(φn, θn))t∈R

contained in Aαn,εn and passing through (φn, θn) where

(φn(0), θn(0)) = (φn, θn)

(cf., e.g., [32, Proposition 2.39]). In view of the regularity Aαn,εn ⊂ (B1,1
1 ∩W1,1

m ),
we obtain the uniform bounds,

‖φn(t)‖2
V + ‖θn(t)‖2

V + αn‖µn(t)‖2
H2(Ω) ≤ C, (71)

where the constant C > 0 is independent of t, αn, and εn. Additionally, from
[36, inequality (3.170)] we also have the uniform bounds

‖φnt (t)‖2
V ′ ≤ C. (72)

Now, for all T > 0, the functions φn, θn,
√
αnφ

n
t =

√
αn∆µ

n, and φnt
are, respectively, bounded in L∞(−T, T ;V ), L∞(−T, T ;V ), L∞(−T, T ;H) and
L∞(−T, T ;V ′). Thus, there is a function ζ = (φ, θ) and a subsequence (not
relabelled), in which,

φn ⇀ φ weakly-* in L∞(−T, T ;V ), (73)

θn ⇀ θ weakly-* in L∞(−T, T ;V ), (74)
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√
αnφ

n
t ⇀ 0 weakly-* in L∞(−T, T ;H), (75)

φnt ⇀ φt weakly-* in L∞(−T, T ;V ′). (76)

By virtue of the compact embedding

{ψ ∈ L∞(−T, T ;V ) : ψt ∈ L∞(−T, T ;V ′)} ↪→ C([−T, T ];H) (77)

(see, e.g., [31]) the above convergence properties yield

φn → φ strongly in C([−T, T ];H). (78)

Thus, directly from (H2),

sup
t∈[−T,T ]

‖F ′(φn(t))− F ′(φ(t))‖2 ≤ sup
t∈[−T,T ]

C‖φn(t)− φ(t)‖2,

for some positive constant C independent of n, αn, and εn. By virtue of (78) it
is then easy to see that

F ′(φn)→ F ′(φ) strongly in C([−T, T ];H).

It follows that (φ, θ) is a weak solution of the limit problem P0,0 on R (see (60)-
(66)). In particular, (φn, θn) = (φn(0), θn(0))→ (φ(0), θ(0)) in V0,0

m . Therefore,
we have that (φ(0), θ(0)) = (φ∗, θ∗) and (φ(0), θ(0)) ∈ V0,0

m . As (φ, θ) is a
complete orbit through (φ∗, θ∗), it follows that (φ∗, θ∗) ∈ LA0,0, in contradiction
to (70). This completes the proof. �

Remark 5 It is important to note that the above convergence result appears in
the metric induced by the topology of H1,1

m ; i.e., α and ε are fixed in the norm.
This is contrary to the result that follows in the next section.

4.2 An upper-semicontinuity type result; explicit control over
semidistances

This section is devoted to an upper-semicontinuity type result for the family
of global attractors admitted by Problem Pα,ε and Problem P0,0. A major step
toward establishing this result is demonstrating the difference between trajecto-
ries of each problem, corresponding to the same initial data φ0 can be controlled,
in the topology of Hα,ε

m , explicitly in terms of the relaxation parameters α and
ε. The result given here will depend on an important assumption that allows
for needed control between the kernel J and the potential F.
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(H6) The constants cJ = ‖J‖L1(Ω) and c0 > 0 of (H2) satisfy c0 > cJ .

Remark 6 By (19), for all s ∈ R,

F ′′(s) ≥ c0 − a∗.

Hence, the condition in (H6) is satisfied for any J in (H1) in which

inf
x∈Ω

∫
Ω

(J(y − x)− J(y)) dy > −(c0 − a∗).

This means the double-well potential is admissible for suitable (“quasiconvex”)
kernels J .

The following results will lead us to the upper-semicontinuity type result.
In large part, this is possible since the radius of the absorbing set Bα,ε0 (and
hence the bound on Aα,ε) is independent of α, ε (see Remark 1).

Lemma 4 Assume (H1)-(H4) hold. Let m ≥ 0, R > 0, T > 0, δ0 > 0, and
δ ∈ (0, δ0]. For all φ0 ∈ V0,0

m with F (φ0) ∈ L1(Ω) and ‖φ0‖V0,0
m
≤ R. Assume

φ0 is a weak solution to Problem P0,0. There exists a positive monotonically
increasing function Q, depending on R and m, such that for all t ∈ [0, T ], there
hold

(1 + δ2)

∫ t

0

‖φ0
tt(s)‖2

V ′ds ≤ Q(R,m)T and hence,

∫ t

0

‖µ0
t (s)‖2

V ds ≤ Q(R,m)T.

(79)

Proof: Differentiate (8) and (9) with respect to t and set u0 = φ0
t and m0 = µ0

t .

The differentiated system is

(1 + δ2)u0
t = ∆m0 in Ω× (0, T ) (80)

m0 = au0 − J ∗ u0 + F ′′(φ0)u0 in Ω× (0, T ) (81)

∂nm
0 = 0 on Γ× (0, T ) (82)

u0(x, 0) = (1 + δ2)−1∆µ0(0) at Ω× {0}. (83)

Multiply (80) by A−1
N u0

t in L2(Ω) and multiply (81) by u0
t in L2(Ω), and sum

the results to obtain

1

4

d

dt

{∫
Ω

∫
Ω

J(x− y)(u0(x)− u0(y))2dxdy

}
+

+ (F ′′(φ0)u0, u0
t ) + (1 + δ2)‖u0

t‖2
V ′ = 0. (84)
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By (19),

(F ′′(φ0)u0, u0
t ) ≥ (c0 − a∗)(u0, u0

t ) = (c0 − a∗)
1

2

d

dt
‖u0‖2,

and we find

d

dt

{∫
Ω

∫
Ω

J(x− y)(u0(x)− u0(y))2dxdy + 2(c0 − a∗)‖u0‖2

}
+

+ 4(1 + δ2)‖u0
t‖2
V ′ = 0. (85)

Thus, integrating (85) over (0, t) immediately shows (79). This finishes the
proof. �

For the following we define the projection Π : Hα,ε
m → H0,0

m given by Π(φ, θ) =
φ. Also, we remind the reader that the constant due to the embedding H ↪→ V ′

is denoted by CΩ > 0.

Lemma 5 Assume (H1)-(H4) and (H6) hold. Let m ≥ 0, R > 0, T > 0,
δ0 > 0, δ ∈ (0, δ0]. There exists a positive monotonically increasing function Q,
depending on R, m and T , such that for all t ∈ [0, T ], (α, ε) ∈ (0, 1] × (0, 1],
and for all ζ0 = (φ0, θ0)

tr ∈ Vα,ε
m with ‖ζ0‖Vα,εm ≤ R, there holds

‖φ̃(t)‖2
V ′ + α‖φ̃(t)‖2 + ε‖θ̃(t)‖2 +

∫ t

0

(
‖φ̃t(s)‖2

V ′ + α‖φ̃t(s)‖2 + ε‖θ̃(s)‖2
V

)
ds

≤ (α + ε)1/2Q(R,m, T ). (86)

Proof: Then the difference ζ̃ = (φ̃, θ̃) = (φ+, θ+) − (φ0, θ0), representing the
difference between Problem Pα,ε and the lifted Problem P0,0 (60)-(66), satisfies
the equations

φ̃t = ∆µ̃ in Ω× (0, T ) (87)

µ̃ = aφ̃− J ∗ φ̃+ F ′(φ+)− F ′(φ0) + αφ̃t − δθ̃ + αφ0
t in Ω× (0, T ) (88)

εθ̃t −∆θ̃ = −δφ̃t − εθ0
t in Ω× (0, T ) (89)

∂nµ̃ = 0 on Γ× (0, T ) (90)

∂nθ̃ = 0 on Γ× (0, T ) (91)

φ̃(x, 0) = 0 at Ω× {0} (92)

θ̃(x, 0) = θ0(x)−M(φ0(x)) at Ω× {0}. (93)

Observe,

〈φ̃〉 = 0 and 〈θ̃〉 = 〈θ0〉 − 〈M(φ0)〉. (94)
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Multiply (87)-(89) in L2(Ω) by A−1
N φ̃t, φ̃t, and θ̃, respectively, and sum the

resulting identities to find, for all t ∈ [0, T ],

d

dt

{
ε‖θ̃‖2

}
+ 2‖φ̃t‖2

V ′ + 2α‖φ̃t‖2 + 2‖A1/2
N θ̃‖2

+ 2(aφ̃+ F ′(φ1)− F ′(φ2), φ̃t)− 2(J ∗ φ̃, φ̃t)
= 2|Ω|〈φ̃〉〈µ̃〉 − α(φ0

t , φ̃t)− ε(θ0
t , θ̃). (95)

Estimating the resulting products using assumption (H2) yields, for any η > 0,

2(aφ̃+ F ′(φ1)− F ′(φ2), φ̃t) ≥ 2c0(φ̃, φ̃t) = c0
d

dt
‖φ̃‖2, (96)

and

−2(J ∗ φ̃, φ̃t) = − d
dt

(J ∗ φ̃, φ̃). (97)

Let us now estimate the auxiliary terms

α|(φ0
t , φ̃t)| ≤

α

4
‖φ0

t‖2 + α‖φ̃t‖2 (98)

and

ε|(θ0
t , θ̃)| ≤ ε‖A−1/2

N θ0
t ‖2 + ‖A1/2

N θ̃‖2. (99)

Combining (95)-(99) and recalling ε ∈ (0, 1] and (16), we have, for almost all
t ∈ [0, T ],

d

dt

{
ε‖θ̃‖2 + c0‖φ̃‖2 − (J ∗ φ̃, φ̃)

}
+ 2‖φ̃t‖2

V ′ + α‖φ̃t‖2 + ε‖θ̃‖2
V

≤ C|Ω||〈φ̃〉||〈µ̃〉|+ ε〈θ̃〉2 +
α

4
‖φ0

t‖2 + ε‖A−1/2
N θ0

t ‖2. (100)

Using the local Lipschitz assumption (H2), it is easy to show that,

|〈µ̃〉| ≤ CF |〈φ̃〉|+ δ0|〈θ̃〉|
=: µ̃∗, (101)

for some positive constant CF depending on cJ and the Lipschitz bound on F ′.
Thanks to (29) we have ∫ t

0

α‖φ0
t (s)‖2ds ≤ αQ(m)T, (102)
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and we also have the following thanks to (79)1 (recall θ0
t = φ0

tt),∫ t

0

ε‖A−1/2
N θ0

t (s)‖2ds ≤ εQ(R,m). (103)

Then integrating (100) over (0, t), we obtain, for all t ∈ [0, T ],

ε‖θ̃(t)‖2 + c0‖φ̃(t)‖2 − (J ∗ φ̃(t), φ̃(t))+

+

∫ t

0

(
2‖φ̃t(s)‖2

V ′ + α‖φ̃t(s)‖2 + ε‖θ̃(s)‖2
V

)
ds

≤ ε‖θ̃(0)‖2 + C|Ω||〈φ̃〉|µ̃∗ + ε〈θ̃〉2 + (α + ε)Q(R,m, T ). (104)

Here we apply (92)-(94) and (59) to reduce (104) into

ε‖θ̃(t)‖2 + c0‖φ̃(t)‖2 − (J ∗ φ̃(t), φ̃(t))+

+

∫ t

0

(
2‖φ̃t(s)‖2

V ′ + α‖φ̃t(s)‖2 + ε‖θ̃(s)‖2
V

)
ds

≤ (α + ε)Q(R,m, T ).

It is here where we employ the assumption (H6), then there holds

ε‖θ̃(t)‖2 + (c0 − cJ)‖φ̃(t)‖2 +

∫ t

0

(
2‖φ̃t(s)‖2

V ′ + α‖φ̃t(s)‖2 + ε‖θ̃(s)‖2
V

)
ds

≤ (α + ε)Q(R,m, T ).

By applying the embedding V ′ ←↩ H and using the fact that α ∈ (0, 1], we find

(c0 − cJ)‖φ̃‖2 ≥ c0 − cJ
2
‖φ̃‖2 +

c0 − cJ
2

α‖φ̃‖2

≥ c0 − cJ
2

C−2
Ω ‖φ̃‖

2
V ′ +

c0 − cJ
2

α‖φ̃‖2

≥ c
(
‖φ̃‖2

V ′ + α‖φ̃‖2
)
,

for some suitably small constant c > 0 independent of α and ε. With this we
arrive at the estimate (86) as claimed. This completes the proof. �

The following is the main result of this section.

Theorem 7 Under the hypotheses of Lemma 5, the family of sets (Aα,ε)α,ε∈[0,1]

satisfies the following upper-semicontinuity estimate in the topology of Hα,ε
m ,

distHα,εm (Aα,ε,A0,0) ≤ (α + ε)1/2Q(R,m, T ), (105)

for some positive increasing function Q and where R > 0 is the uniform bound
on Aα,ε in Hα,ε

m (this bound is given by the radius of Bα,ε0 , also recall Remark 1).
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Proof: To begin,

distHα,εm (Aα,ε,A0,0) = sup
a∈Aα,ε

inf
b∈LA0,0

‖a− b‖Hα,εm .

Fix t ∈ [0, T ] and ξ ∈ Aα,ε so that a = Sα,ε(t)ξ ∈ Aα,ε. Then

inf
b∈LA0,0

‖a− b‖H0,0
m

= inf
τ∈[0,T ]
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(τ)ζ‖Hα,εm

≤ inf
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm .

Since Sα,ε(t)ξ = a,

sup
ξ∈Aα,ε

inf
b∈LA0,0

‖Sα,ε(t)ξ − b‖Hα,εm ≤ sup
ξ∈Aα,ε

inf
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm

= distHα,εm (Sα,ε(t)Aα,ε,LS0,0(t)A0,0)

≤ max
t∈[0,T ]

distHα,εm (Sα,ε(t)Aα,ε,LS0,0(t)A0,0).

Thus,

sup
t∈[0,T ]

sup
ξ∈Aα,ε

inf
b∈LA0,0

‖Sα,ε(t)ξ − b‖Hα,εm ≤ max
t∈[0,T ]

distHα,εm (Sα,ε(t)Aα,ε,LS0,0(t)A0,0),

and

sup
a∈Hα,εm

inf
b∈LA0,0

‖a− b‖Hα,εm ≤ sup
t∈[0,T ]

sup
ξ∈Aα,ε

inf
b∈LA0,0

‖Sα,ε(t)ξ − b‖Hα,εm

≤ max
t∈[0,T ]

distHα,εm (Sα,ε(t)Aα,ε,LS0,0(t)A0,0)

≤ max
t∈[0,T ]

sup
ξ∈Aα,ε

inf
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm .

The norm is then expanded

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm
≤ ‖Sα,ε(t)ξ − LS0,0(t)Πξ‖Hα,εm + ‖LS0,0(t)Πξ − LS0,0(t)ζ‖Hα,εm (106)

so that by (86) we know

‖Sα,ε(t)ξ − LS0,0(t)Πξ‖Hα,εm ≤ (α + ε)1/2Q(R,m, T ).

Expand the square of the norm on the right-hand side of (106) to obtain, for
Πξ = Π(ξ1, ξ2) = ξ1 ∈ H0,0

m ⊂ H and ζ ∈ H0,0
m ⊂ H,

‖LS0,0(t)Πξ − LS0,0(t)ζ‖2
Hα,εm

= ‖S0,0(t)Πξ − S0,0(t)ζ‖2
V ′ + α‖S0,0(t)Πξ − S0,0(t)ζ‖2+

+ ε‖M(S0,0(t)Πξ)−M(S0,0(t)ζ)‖2. (107)
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Recall from (59), the terms MS0,0(t)Πξ and MS0,0(t)ζ can be expressed in
terms of the chemical potential µ0. By the continuous embedding H ↪→ V ′,
and by the local Lipschitz continuity of the mapsM (this is possible thanks to
(H2)) and S0,0 on H0,0

m (cf. [14, Proposition 2.13]), then (107) can be estimated
by

‖LS0,0(t)Πξ − LS0,0(t)ζ‖2
Hα,εm ≤ Q(R,m, T )(1 + α + ε)‖Πξ − ζ‖2

H0,0
m
.

Hence, (106) becomes

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm ≤ Q(R,m, T )
(

(α + ε)1/2 + (1 + α + ε)1/2‖Πξ − ζ‖H0,0
m

)
,

and

inf
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm

≤ Q(R,m, T )
(

(α + ε)1/2 + (1 + α + ε)1/2‖Πξ − ζ‖H0,0
m

)
.

Since Πξ ∈ ΠAα,ε = A0,0, then it is possible to choose ζ ∈ A0,0 to be ζ = Πξ.
Therefore,

distHα,εm (Aα,ε,A0,0) = sup
α∈Aα,ε

inf
ζ∈A0,0

‖Sα,ε(t)ξ − LS0,0(t)ζ‖Hα,εm

≤ Q(R,m, T )(α + ε)1/2. (108)

This establishes the estimate (105) and finishes the proof. �

5 Conclusions and further remarks

In this article we have shown that the family of global attractors generated by a
relaxation of Problem P0,0, given by Problem Pα,ε, is upper-semicontinuous as
the perturbation parameters vanish. With this we verify a rather classical result
going back to [25]. We also establish explicit control over the semidistances
in explicit terms of the parameters despite the many difficulties due to the
presence of the nonlocal diffusion term on the order parameter φ. Two essential
results that lead to this type of continuity result are the continuous dependence
estimate in Proposition 1 (because it is instrumental in obtaining Lemma 5) and
Lemma 4, whereby the difficulty of controlling φtt in the nonviscous isothermal
Problem P0,0 becomes apparent. It seems that this type of upper-semicontinuity
result for nonlocal Cahn-Hilliard equations is the first of its kind.
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Also concerning the global attractors, some interesting future work would
include determining whether the (fractal) dimension of the global attractors
found here is finite and independent of α and ε. Hence, we should also examine
the existence of an exponential attractor for Problem Pα,ε, and naturally, its
basin of attraction. With that result, we could seek a robustness result for the
family of exponential attractors (that is, the upper- and lower-semicontinuity
of the attractors with respect to α and ε). Examining problems related to
stability (and hence the approximation of the longterm behavior of a relaxation
problem to the associated limit problem) may prove to be an important source
of further work on nonlocal Cahn-Hilliard and nonlocal phase field models.
Concerning another perturbation/relaxation problem, it might be interesting
to see if comparable results appear in the model problems described by (12).

Of course, some future work may examine several variants to the current
model. Such variants may include a convection term that accounts for the effects
of an averaged (fluid) velocity field, which naturally couples with a nonisother-
mal Navier-Stokes equation (on the former, see for example [34]). Indeed, one
may include nonconstant mobility in the nonlocal Cahn-Hilliard equation (cf.
e.g. [9]). It may be interesting to generalize the coupled heat equation to a
Coleman-Gurtin type equation. Also, one may examine the associated nonlocal
phase-field model (12), and the effects of generalizing the heat equation along
the lines of [27, 28, 29, 23] where Fourier’s law is replaced with a Maxwell-
Cattaneo law because in this more realistic setting, “disturbances” travel at a
finite speed.

It would also be interesting to study the nonlocal variant of the Cahn-
Hilliard and phase-field equations by introducing relevant dynamic boundary
conditions (again, see [16]). In this case, several interesting difficulties may arise
concerning the regularity of solutions because, typically in applications, H1(Ω)
regularity (or better) is sought in order to define the trace of the solution; recall,
trace : Hs(Ω) → Hs−1/2(Γ). Additionally, we should study the case when the
potential is singular (see hypotheses in [14, Section 3], for example).

A

Proof of Lemma 2: We give a formal calculation that can be justified by a
suitable Faedo-Galerkin approximation based on the proof of Theorem 3 above.
Let M0 := 〈φ0〉 and N0 := 〈θ0〉. Multiply (1)-(3) by, A−1

N φt, φt, and θ̂ := θ−N0,
respectively, then integrate over Ω, applying (15) (since φt = φt − 〈φt〉 belongs
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to V ′0 ; recall (26)), and sum the resulting identities to arrive at the differential
identity, which holds for almost all t ≥ 0,

d

dt

{
‖
√
aφ‖2 + ε‖θ̂‖2 + 2(F (φ), 1)− (J ∗ φ, φ)

}
+

+ 2‖φt‖2
V ′ + 2α‖φt‖2 + 2‖∇θ‖2 = 0. (109)

Let φ̂ := φ−M0. We further multiply (1)-(2) by, 2ξA−1
N φ̂ and 2ξφ̂, respectively,

in H, where ξ > 0 is to be determined below. Observe 〈φ̂〉 = 0 and ‖φ̂‖2 =
‖φ‖2 −M 2

0 |Ω|. This yields, for almost all t ≥ 0,

d

dt

{
ξ‖φ̂‖2

V ′ + ξα‖φ̂‖2
}

+ 2ξ‖
√
aφ̂‖2 + 2ξ(F ′(φ), φ̂)

= 2ξ(J ∗ φ, φ̂) + 2ξδ(θ, φ̂)− 2ξM0(a, φ̂). (110)

Together, (109) and (110) make the differential identity,

d

dt

{
ξ‖φ̂‖2

V ′ + ξα‖φ̂‖2 + ‖
√
aφ‖2 + ε‖θ̂‖2 + 2(F (φ), 1)− (J ∗ φ, φ̂)

}
+ 2‖φt‖2

V ′ + 2α‖φt‖2 + 2ξ‖
√
aφ̂‖2 + 2‖∇θ‖2 + 2ξ(F ′(φ), φ̂)

= 2ξ(J ∗ φ, φ̂) + 2ξδ(θ, φ̂)− 2ξM0(a, φ̂). (111)

Introduce the functional defined by, for all t ≥ 0 and ξ > 0,

E(t) := ξ‖φ̂(t)‖2
V ′+ξα‖φ̂(t)‖2+‖

√
aφ(t)‖2+ε‖θ̂(t)‖2+2(F (φ(t)), 1)−(J∗φ, φ̂)+CF .

(112)
(Observe, E(t) = 2Eε(t) + ξ‖φ̂(t)‖2

V ′ + ξα‖φ̂(t)‖2 +CF .) Because of assumption
(H3) and the assumption that F (φ0) ∈ L1(Ω), we know

2(F (φ), 1)− (J ∗ φ, φ̂) ≥ (2c1 − 2c1)‖φ̂‖2 + 2c1M
2
0 |Ω| − 2c2|Ω|, (113)

thus the constant CF may be chosen sufficiently large to insure E(t) is non-
negative for all t ≥ 0, α ∈ (0, 1], ε ∈ (0, 1], and ξ > 0. Then we rewrite (111)
as,

d

dt
E + τE = H, (114)

for some 0 < τ < ξ, and where

H(t) := τξ‖φ̂(t)‖2
V ′ + τξα‖φ̂(t)‖2 + τ‖

√
aφ(t)‖2 + τε‖θ̂(t)‖2+

+ 2τ(F (φ(t)), 1)− τ(J ∗ φ, φ̂) + τCF

− 2‖φt(t)‖2
V ′ − 2α‖φt(t)‖2 − 2ξ‖

√
aφ̂(t)‖2 − 2‖∇θ(t)‖2 − 2ξ(F ′(φ(t)), φ̂(t))

+ 2ξ(J ∗ φ(t), φ̂(t)) + 2ξδ(θ(t), φ̂(t))− 2ξM0(a, φ̂(t)). (115)
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Estimating the products on the right-hand side using the assumptions (H1)-
(H3) as well as Young’s inequality for convolutions (cf. e.g. [1, Corollary 2.25]),
and the Poincaré-type inequality (18) yields (and recall δ ∈ (0, δ0]),

2ξ(J ∗ φ, φ̂) ≤ 2ξ‖J ∗ φ‖‖φ̂‖
≤ 2ξcJ‖φ̂‖2 +M 2

0‖a‖2
∞ + ξ2‖φ̂‖2, (116)

2ξδ(θ, φ̂) ≤ 2ξδ0‖θ‖‖φ̂‖
≤ ξδ2

0‖θ‖2 + ξ‖φ̂‖2

≤ 2ξδ2
0λΩ‖∇θ‖2 + 2ξδ2

0|Ω|N 2
0 + ξ‖φ̂‖2, (117)

and

−2ξM0(a, φ̂) ≤ 2ξM0‖a‖‖φ̂‖
= 2ξM0‖J ∗ 1‖‖φ̂‖
≤ 2ξM0cJ |Ω|1/2‖φ̂‖
≤M 2

0 c
2
J |Ω|+ ξ2‖φ̂‖2. (118)

With assumption (H3) we now consider, with the aid of (20)-(22) (setting m =
M0),

2τ(F (φ), 1)− 2ξ(F ′(φ), φ̂) = −2τ
(

(F ′(φ), φ̂)− (F (φ), 1)
)
− 2(ξ − τ)(F ′(φ), φ̂)

= −2τ(F ′(φ)φ̂− F (φ), 1)− 2(ξ − τ)(F ′(φ), φ̂)

≤ 2τc9|Ω|+ 2τc10‖φ̂‖2 − (ξ − τ)(|F (φ)|, 1) + 2(ξ − τ)c11 + (ξ − τ)c12. (119)

By (H1) again, we find that for a fixed 0 < a0 < essinfΩa(x) (this is where we
need the slightly stricter version of (H1)), there holds

a0‖φ̂‖2 ≤ ‖
√
aφ̂‖2.

Moreover, due to the continuous embedding H ↪→ V ′, there is a constant, which
we denote CΩ > 0, so that C−2

Ω ‖φ̂‖2
V ′ ≤ ‖φ̂‖2 (cf. e.g. [32, p. 243, Equation

(6.7)]), and, now with 0 < ξ < 1,

−2ξ‖
√
aφ̂‖2 ≤ −a0

2
C−2

Ω ‖φ̂‖
2
V ′ −

a0

2
‖φ̂‖2 − ξ‖

√
aφ̂‖2. (120)

Also observe that, using the Poincaré-type inequality (17) again, we have

−
(
2− 2ξδ2

0λΩ

)
‖∇θ‖2 ≤ −

(
1− 2ξδ2

0λΩ

)
‖∇θ‖2 − 1

λΩ
‖θ̂‖2. (121)
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Combining (115)-(121) yields,

H ≤
(
τξ − a0

2
C−2

Ω

)
‖φ̂‖2

V ′ +
(
τξα + 2ξcJ + ξ + 2ξ2 + 2τc10 −

a0

2

)
‖φ̂‖2

+

(
τ − ξ

2

)
‖
√
aφ‖2 +

(
τε− 1

λΩ

)
‖θ̂‖2 − (ξ − τ)(|F (φ)|, 1)

− 2‖φt‖2
V ′ − 2α‖φt‖2 −

(
1− 2ξδ2

0λΩ

)
‖∇θ‖2

+ τCF +M 2
0 c

2
J |Ω|+ 2ξδ2

0|Ω|N 2
0 + 2τc9|Ω|

+ 2(ξ − τ)c11 + (ξ − τ)c12 + ξM 2
0 |Ω|(〈a〉 − a0) +M 2

0‖a‖2
∞. (122)

We should note that the additional constants in a on the right-hand side of
(122) is due to the fact that

−ξ‖
√
aφ̂‖2 ≥ −ξ‖

√
aφ‖2 − ξM 2

0 |Ω|(〈a〉 − a0).

Inserting (122) into (114) produces the differential inequality (this is where we
use the condition that 0 < α ≤ 1 and 0 < ε ≤ 1),

d

dt
E + 2‖φt‖2

V ′ + 2α‖φt‖2 +
(
1− 2ξδ2

0λΩ

)
‖θ‖2

V

+
a0

4
C−2

Ω ‖φ̂‖
2
V ′ +

(a0

2
− 2ξcJ − ξ − 2ξ2 − 2τc10

)
α‖φ̂‖2

+ ξ‖
√
aφ‖2 +

1

λΩ
ε‖θ̂‖2 + (ξ − τ)(F (φ), 1) + τCF

≤ τCF +M 2
0 c

2
J |Ω|+ 2ξδ2

0|Ω|N 2
0 +

(
1− 2ξδ2

0λΩ

)
N 2

0

+ 2τc9|Ω|+ 2(ξ − τ)c11 + (ξ − τ)c12 + ξM 2
0 |Ω|(〈a〉 − a0) +M 2

0‖a‖2
∞.

The extra term with N0 now appearing on the right-hand side is used to make
the V norm in θ. Now we easily see that there are 0 < τ < ξ < 1 so that

ν3 = ν3(δ0, J,Ω) := min
{

1− 2ξδ2
0λΩ,

a0

2
− 2ξcJ − ξ − 2ξ2 − 2τc10

}
> 0.

Now there holds, for almost all t ≥ 0,

d

dt
E + ν3E + ‖φt‖2

V ′ + 2α‖φt‖2 + ν3‖θ‖2
V ≤ Q(m). (123)

Neglecting the normed terms ‖φt‖2
V ′ + 2α‖φt‖2 + ν3‖θ‖2

V , then employing a
Grönwall inequality yields, for all t ≥ 0,

E(t) ≤ e−ν3tE(0) +
1

ν3
Q(m). (124)
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Recall that F (φ0) ∈ L1(Ω) by assumption, so now we easily arrive at

‖φ̂(t)‖2
V ′ + α‖φ̂(t)‖2 + ‖

√
aφ(t)‖2 + ‖θ̂(t)‖2 + (F (φ(t)), 1)− (J ∗ φ(t), φ̂(t))

≤ E(0)e−ν3t +
1

ν3
Q(m). (125)

Also, by neglecting the positive term ν3E in (123) and integrating this time
over (t, t+ 1), we find, with (124), for all t ≥ 0,∫ t+1

t

(
‖φt(s)‖2

V ′ + α‖φt(s)‖2 + ‖θ(s)‖2
V

)
ds ≤ E(0)e−ν3t +

(
1

ν3
+ 1

)
Q(m).

(126)
Together, (125) and (126) establish (49).

The existence of the set Bα,ε0 described in (50) follows directly from the
dissipation estimate (49); indeed, (cf. e.g. [3]). To see why Bα,ε0 is absorbing,
consider any nonempty bounded subset B in Hα,ε

m \ B
α,ε
0 . Then we have that

Sα,ε(t)B ⊆ Bα,ε0 , in Hα,ε
m , for all t ≥ t0, where

t0 := max

{
1

ν3
ln(E(0)), 0

}
. (127)

This completes the proof. �
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linéaires. Dunod, Paris, 1969.

[32] Albert J. Milani and Norbert J. Koksch. An Introduction to Semiflows.
Monographs and Surveys in Pure and Applied Mathematics - Volume 134.
Chapman & Hall/CRC, Boca Raton, 2005.

[33] Alain Miranville and Sergey Zelik. Robust exponential attractors for singu-
larly perturbed phase-field type equations. Electron. J. Differential Equa-
tions, 2002(63):1–28, 2002.

[34] Francesco Della Porta and Maurizio Grasselli. Convective nonlocal cahn-
hilliard equations with reaction terms. Discrete Contin. Dyn. Syst. Ser. B,
20(5):1529–1553, 2015.

[35] James C. Robinson. Infinite–Dimensional Dynamical Systems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge,
2001.

[36] Joseph L. Shomberg. Well-posedness and global attractors for a non-
isothermal viscous relaxation of nonlocal Cahn–Hilliard equations. AIMS
Mathematics: Nonlinear Evolution PDEs, Interfaces and Applications,
1(2):102–136, 2016.

[37] Roger Temam. Infinite-Dimensional Dynamical Systems in Mechanics and
Physics. Applied Mathematical Sciences - Volume 68. Springer-Verlag, New
York, 1988.

Electronic Journal. http://diffjournal.spbu.ru 160



Differential Equations and Control Processes, N 2, 2019

[38] Roger Temam. Navier-Stokes Equations - Theory and Numerical Analysis.
AMS Chelsea Publishing, Providence, reprint edition, 2001.

[39] Songmu Zheng. Nonlinear Evolution Equations. Monographs and Surveys
in Pure and Applied Mathematics - Volume 133. Chapman & Hall/CRC,
Boca Raton, 2004.

[40] Songmu Zheng and Albert Milani. Global attractors for singular perturba-
tions of the Cahn–Hilliard equations. J. Differential Equations, 209(1):101–
139, 2005.

Electronic Journal. http://diffjournal.spbu.ru 161


