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Dynamical systems on manifolds

On absolute nonshadowability of transitive maps

Sergey Tikhomirov1

Abstract

We study shadowing property for random infinite pseudotrajectories of a continuous
map f of a compact metric space. For the cases of transitive maps and transitive attractors
we prove a dichotomy: either f satisfies shadowing property or random pseudotrajectory
is shadowable with probability 0.
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1 Introduction

The theory of shadowing of approximate trajectories (pseudotrajectories) of dy-
namical systems is now a well-developed part of the global theory of dynamical
systems (see the monographs [10, 11] and [13] for a survey of modern results).
The shadowing problem is related to the following question: under which con-
ditions, for any pseudotrajectory of f does there exist a close trajectory?

It is known that a diffeomorphism f has the shadowing property in a neigh-
borhood of a hyperbolic set [3, 4]. Moreover if f is structurally stable (see
definition for example in [7, 12]) then it has the shadowing property on the
whole manifold. At the same time, it is easy to give an example of a diffeomor-
phism that is not structurally stable but has the shadowing property (see [17],
for instance). Thus, structural stability is not equivalent to shadowing.

1Max Planck Institute for Mathematics in the Science Inselstrasse 22, 04103 Leipzig, Germany. Chebyshev
Laboratory, Saint-Petersburg State University 14th lane 29B, Vasilievsky Island, St. Petersburg, 199178, Russia.
email:sergey.tikhomirov@gmail.com



Differential Equations and Control Processes, N 3, 2016

At the same time it was proved that in several contexts shadowing and
structural stability are equivalent. Sakai prove that the C1-interior of the set
of diffeomorphisms having the shadowing property coincides with the set of
structurally stable diffeomorphisms [16] (see [14] for a similar result for the
orbital shadowing property). Abdenur and Diaz conjectured that a C1-generic
diffeomorphism with the shadowing property is structurally stable; they have
proved this conjecture for the so-called tame diffeomorphisms [2]. Jointly with
S. Pilyugin the author proved that so-called Lipschitz shadowing is equivalents
to structural stability [15]. Thus, set of not structurally stable diffeomorphisms
satisfying shadowing property is not very reach.

It is a natural problem to find a shadowing property which is satisfied for
a broader class of diffeomorphisms. One of the possible approaches is to con-
sider random pseudotrajectories: endow the space of pseudotrajectories with a
probability measure and find sufficient conditions for probability of a pseudo-
trajectory to be shadowable to be close to 1 or at least positive.

Such studies were initiated in [19]. In this work Yuan, Yorke constructed an
open set of diffeomorphisms for which probability of a pseudotrajectory to be
shadowable is 0. In a recent work [18] the author considered a special example
of linear skew product and found probability of a finite pseudotrajectory to be
shadowable.

Despite the naturalness of randomness approach currently consideration of
finite pseudotrajectories is more developed [5, 6, 17, 18]. One of the reasons is
lack of positive results about shadowing of random pseudotrajectories.

In the present paper we prove that such a positive result is not possible:
under transitivity assumption either all pseudotrajectories are shadowable or
probability of a pseudotrajectory to be shadowable is 0. Precise statements
of the results for transitive maps and transitive attractors are formulated in
Theorems 1, 2 respectively.

2 Transitive maps

Let (M, dist) be a compact metric space endowed with a finite Borel measure µ,
such that for any open set U the inequality µ(U) > 0 holds. For a > 0, x ∈M
denote by B(a, x) the open ball of radius a centered at x. Let f : M → M be
a homeomorphism.

Let I = [0, N ] or I = [0,+∞). For d > 0 we say that sequence {yn}n∈I is a

Electronic Journal. http://www.math.spbu.ru/diffjournal 58



Differential Equations and Control Processes, N 3, 2016

d-pseudotrajectory if

dist(yn+1, f(yn)) ≤ d, n, n+ 1 ∈ I. (1)

We say that a d-psedotrajectory {yn}n∈I can be ε-shadowed for ε > 0 if there
exists x0 ∈M such that

dist(yn, f
n(x0)) ≤ ε, n ∈ I. (2)

We say that f has shadowing property if for any ε > 0 there exists d > 0 such
that any d-pseudotrajectory {yn}n≥0 can be ε-shadowed.

Remark 1. In the definitions of pseudotrajectories and shadowing in equations
(1), (2) usually are used strict inequalities. The definition of the shadowing
property with not strict inequalities is equivalent to the classical one and allows
us to simplify the notation in the proofs of main results.

For y0 ∈ M , d > 0, N ∈ N ∪ {+∞} denote by ΩN(y0, d) the set of all
d-pseudotrajectories {yn}+∞

n=0 starting at y0. Let us consider point yn+1 being
chosen at random in B(d, f(yn)) uniformly with respect to the measure µ: for
a measurable set A ⊂M the equality

P (yn+1 ∈ A|yn) =
µ(A ∩B(d, f(yn)))

µ(B(d, f(yn)))

holds. Then ΩN(y0, d) forms a Markov chain. This naturally endows ΩN(y0, d)
with a probability measure P y0,d

N . For simplicity for N = +∞ we will omit it:
Ω(y0, d), P y0,d.

Remark 2. This concept was introduced in [19] for infinite pseudotrajectories,
see also [18] for a similar concept for finite pseudotrajectories.

For any y0 ∈M , d > 0, ε > 0, N ∈ N ∪ {+∞} consider set ShN(y0, d, ε) ⊂
ΩN(y0, d) of pseudotrajectories {yn} which can be ε-shadowed. For N = +∞
we denote the set as Sh(y0, d, ε). Note that each of the sets ShN(y0, d, ε) is
closed for N ∈ N and is measurable with respect to P y0,d

N . Hence Sh(y0, d, ε) is
a countable intersection of measurable events and is measurable itself.

Denote
p(y0, d, ε) = P y0,d(Sh(y0, d, ε))

the probability that a d-pseudotrajectory starting at y0 can be ε-shadowed.

We say that a map f is absolutely not shadowable if there exists ε > 0
such that for any y0 ∈ M , d > 0, p(y0, d, ε) = 0. Speaking informally almost
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any trajectory of f cannot be ε-shadowed. In [19] Yuan and Yorke provided a
class of examples of absolutely not shadowable diffeomorphism. Based on the
same technique Abdenur and Diaz proved that absolute nonshadowability is C1

generic among not structurally stable maps.

We say that f is transitive if there exists r ∈M such that

O+(r, f) = M. (3)

In [2] Abdenur and Diaz proved that C1-robustly transitive and not hyper-
bolic diffeomorphisms are absolutely not shadowable. Their proof is based on
construction of periodic orbits with different indices.

In the present paper we remove the differentiability assumption, and what
is more important, do not assume any properties of the perturbation of f .

Theorem 1. If f is a transitive map then one of the following holds

(i) f has the shadowing property;

(ii) f is absolutely not shadowable.

In the proof we will use the following folklore result.

Lemma 1. If for any ε > 0 there exists d > 0 such that any finite d-
pseudotrajectory {yn}Nn=0, N > 0 can be ε-shadowed then f satisfies the shad-
owing property.

Proof of Theorem 1. Assume that f does not satisfy shadowing property.

Lemma 1 implies that there exists ε > 0 such that for any d > 0 there exists
N and a d/2-pseudotrajectory {pn}Nn=0 which cannot be ε-shadowed.

Take this ε > 0 and fix arbitrarily d > 0 and corresponding N and {pn}Nn=0

a not ε-shadowable d/2-pseudotrajectory. Below we will show that

p(y0, d, ε/2) = 0. (4)

Let us note that any sequence {zn}Nn=0 satisfying

dist(pn, zn) < ε/2

is not ε/2-shadowable.

Since f is continuous there exists δ > 0 such that for any x ∈ M , y ∈
B(d/2, f(x)), z ∈ B(δ, x) the inclusion

B(δ, y) ⊂ B(d, f(z)) (5)
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holds.

Denote

η =
infx∈M µ(B(δ, x))

supx∈M µ(B(d, x))
6= 0, (6)

B = {{qn}Nn=0 : qn ∈ B(δ, pn)}.
Let us show that for any z0 ∈ B(δ, p0) the inequality

PN(ΩN(z0, d) ∩ B) ≥ ηN (7)

holds. Indeed, let z0, z1, . . . , zN be a random d-pseudotrajectory. Then for any
zk ∈ B(δ, pk) the inequality

PN(zk+1 ∈ B(δ, pk)|zk) ≥
µ(B(δ, pk+1))

µ(B(d, f(zk)))
≥ η

holds. Multiplying those inequalities for k = 0, . . . , N − 1 and using Markov
property we conclude that

PN(zk+1 ∈ B(δ, pk+1), k = 0, . . . , N − 1) ≥ ηN ,

which proves (7).

Let us consider finite covering {Ui} of M by open balls of radius δ1 = δ/4.
Let r ∈M satisfies (3). Trajectory of point r visits each of {Ui} infinitely many
times. Let K1 be such that {fn(r)}K1

n=0 visits each of {Ui} and K2 be such that
{fn(fK1+1(r))}K2

n=0 visits each of {Ui}. Set K = K1 + K2 + 1. For any z0 ∈ M
there exists 0 ≤ n1 ≤ n2 ≤ K such that

dist(z0, f
n1(r)) < 2δ1, dist(p0, f

n2(r)) < 2δ1. (8)

Consider sequence

{qn}n2−n1+N
n=0 = {fn1(r), . . . , fn2−1(r), p0, p1, . . . , pN}.

Due to inequalities (8) sequence {qn} is a d/2-pseudotrajectory. Since it con-
tains {pn}Nn=0 it cannot be ε/2-shadowed. Similarly to (7)

P z0,d(zn ∈ B(δ, qn), n ∈ [0, n2 − n1 +N ]) ≥ ηn2−n1+N ≥ ηK+N .

Denote L = K +N + 1. Hence for any z0

P z0,d({zn}L−1
n=0 is not ε/2-shadowable|z0) ≥ ηL−1 ≥ ηL.
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Similarly for any k ≥ 0 and ykL ∈M

P y0,d({yn}(k+1)L−1
n=kL is not ε/2-shadowable|ykL) ≥ ηL.

Combining those inequalities we conclude that for any k ≥ 0

P y0,d({yn}(k+1)L−1
n=0 is not ε/2-shadowable) ≥ 1− (1− ηL)k.

The right-hand side of the letter expression tends to 1 as k →∞ hence

P y0,d({yn} is not ε/2-shadowable) = 1.

Theorem is proved.

3 Transitive attractors

We say that an invariant compact set Λ is an attractor if there exists an open
neighborhood U of Λ such that f(U) ⊂ U and ∩n≥0f

n(U) = A, see for instance
[8]. See book [9] for systematic studies of properties of attractors.

We will use the following two properties of an attractor:

1. dist(fn(x),Λ)→ 0 as n→∞ for any x ∈ U ;

2. for any neighborhood V ⊂ U of Λ there exists a neighborhood W ⊂ V

such that
f(W ) ⊂ W. (9)

Denote by D(Λ) the domain of attraction of Λ:

D(Λ) := {x ∈M : dist(fn(x),Λ)→ 0}.

Note that D(Λ) = ∪n≥0f
−n(U).

We say that f has the shadowing property on Λ if for any ε > 0 there exists
d > 0 such that for any d-pseudotrajectory {yn}n≥0 ⊂ Λ there exists x0 ∈ M
(not necessarily belonging to Λ) such that inequalities (2) hold.

We say that set Λ is transitive if there exists r ∈ Λ such that

Λ = O+(r, f).

The assumption for a map to be transitive is quite restrictive. At the same
time it is quite common for attractors. In some works transitivity is included
in the definition of attractor [1]. In this work it was proved that transitive
attractors persists under C1-generic perturbations.
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Theorem 2. Let Λ be a transitive attractor not satisfying shadowing property
then there exists ε0 > 0 such that for any y0 ∈ D(Λ) there exists d0 > 0 such
that for any d < d0 the probability of a d-pseudotrajectory starting at y0 to be
ε0-shadowed is 0:

p(y0, d, ε0) = 0.

Remark 3. Note that in Theorem 1 the choice of d was uniform with respect
to y0 and hence Theorem 1 does not follow from Theorem 2.

Proof. Similarly to Lemma 1 there exists ε > 0 such that for any d > 0 there
exists N > 0 and a d-pseudotrajectory {pn}Nn=0 which cannot be ε-shadowed.

Fix ε0 = ε/4, V = B(ε0,Λ) ∩ U and W , satisfying (9).

Fix y0 ∈ D(Λ). There exists n0 such that fn0(y0) ∈ W . Take d0 < ε/4 such
that

1. for any {yn}n0
n=0 ∈ Ω(y0, d0) the inclusion

yn0
∈ W (10)

holds;

2. B(d0, f(W )) ⊂ W .

Then for any d < d0 and {yn} ∈ Ω(y0, d) the inclusions

yn ∈ W, for n ≥ n0 (11)

holds.

Fix arbitrarily d < d0 and find N > 0 and a d-pseudotrajectory {pn}Nn=0 ⊂ Λ
which cannot be ε-shadowed.

Take δ < d/4 such that inclusion (5) holds. Due to compactness of M and
hence compactness of W there exists S > 0 such that

fn(z) ∈ B(δ/4,Λ), n ≥ S, z ∈ W.

Arguing similarly to the proof of Theorem 1 there exists K > 0 such that for
any z0 ∈ W there exists 0 < n1 < n2 < K such that

dist(fS(z0), f
n1(r)) < δ/2, dist(fn2(r), p0) < δ/2.

Hence the sequence

{qn}S+n2−n1+N
n=0 = {z0, f(z0), . . . , f

S−1(z0), f
n1(r), . . . , fn2−1(r), p0, . . . , pN}.
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Define η by (6) and L = S + K + N + 1. Arguing similarly to the proof of
Theorem 1 we conclude that

P z0,d(zn ∈ B(δ, qn), n ∈ [0, S + n2 − n1 +N ]) ≥ ηn2−n1+N ≥ ηK+S+N .

Again arguing similarly to Theorem 1 and using inclusion (11) we conclude that
for any z0 ∈ W the equality

P z0,d({zn} is ε-shadowable) = 0

holds. Combining the latter with inclusion (10) we conclude that

P y0,d({yn} is ε-shadowable) = 0,

which completes the proof of Theorem 2.
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