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Abstract
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1. Introduction

We shall consider the following second order nonlinear vector differential equa-
tion:

Ẍ + AẊ +H(X) = P (t,X, Ẋ), (1.1)

where t ∈ R+, X : R+ → Rn, H : Rn → Rn, P : R+ × Rn × Rn → Rn, A
is an n × n symmetric, positive definite matrix and the dots as usual indicate
differentiation with respect to t. It is also assumed that the functions H and P
are continuous in their respective arguments displayed explicitly.

On the qualitative properties of second order differential equations, many in-
teresting results have been obtained. For results on stability [see: 1,2,3,10,11,
18,21,23,30,31], boundedness [see, 3,10,18,19,20,25,26,27,29] and convergence[
17,22,28]. But on the subject of a limiting regime in the sense of Demidovic,
as far as we know, nothing seems to have been done regarding second order
differential equations. The followings are some of the results on existence of a
limiting regime for third, fourth and fifth order differential equations.

In [15], Ezeilo used the ideas of Demidovic[12] and Ezeilo[16] to establish suffi-
cient conditions on the existence of a limiting regime to the third order nonlinear
differential equation of the form

x′′′ + ax′′ + bx′ + h(x) = p(t, x, x′, x′′)

where a, b are constants and h, p are continuous functions of their arguments.
Later, Afuwape and Omeike [8] considered a more general form of the equation
above which is of the form

x′′′ + ax′′ + g(x′) + h(x) = p(t, x, x′, x′′)

the authors improved on the earlier results on the subject of discussion. Fur-
thermore, Olutimo[24] extended the results of Afuwape and Omeike [8] to the
corresponding vector version by considering a differential equation of the form

...
X + AẌ +G(Ẋ) +H(X) = P (t,X, Ẋ, Ẍ)

Afuwape[9] also extended the results of Ezeilo[15] to the fourth order nonlinear
differential equation

xiv + ax′′′ + bx′′ + cx′ + h(x) = p(t, x, x′, x′′, x′′′)

where a, b, c are constants. Much later, Adesina[5] went further to consider a
more general fourth order nonlinear differential equation of the form

xiv + φ(x′′′) + f(x′′) + g(x′) + h(x) = p(t, x, x′, x′′, x′′′).

Adeina and Ukpera[4] on their part dealt with fifth order differential equation
of the form

xv + axiv + bx′′′ + cx′′ + dx′ + h(x) = p(t, x, x′, x′′, x′′′, x(iv))
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where a, b, c, d are constants.

Our goal in this paper is to establish sufficient conditions for the existence
of a limiting regime in the sense of Demidovic and also prove that the limit-
ing regime is periodic or almost periodic for a second order non-linear vector
differential equations defined in (1.1) whenever the forcing function P (t,X, Ẋ)
is periodic or almost periodic in t uniformly with respect to X and Ẋ. In es-
tablishing our results, we shall employ the direct method of Lyapunov coupled
with the approach of Demidovic[12] and theorems of Ezeilo[16].

2. Preliminary results and definition

Demidovic[12] in 1961 considered a nonlinear system given by

Ẋ = F (X) +G(t) (2.1)

where F (X) and G(t) are continuous functions of their respective arguments
displayed explicitly. He gave sufficient conditions which ensure the convergence
of all solutions of equation (2.1) to a periodic solution ( i.e limiting regime)
for t → ±∞. About four years later, Ezeilo[16] considered a more generalized
differential system of the form

Ẋ = f(t,X) + g(t,X) (2.2)

and came up with the following results.

Let f(t,X) in the equation (2.2) above satisfies either

‖f(t, 0)‖ ≤ m <∞ for all t ∈ R
or ∫ ∞

−∞
‖f(t, 0)‖pdt <∞, 1 ≤ p < 2,

while g(t,X) satisfies Lipschitz condition, with g(t, 0) ≡ 0. Then, Ezeilo in [16]
stated and proved the following theorems for equation (2.2) above.

Theorem 2.1 [16]
Suppose that:

(i) there exists a positive definite n× n matrix A such that the eigenvalues of
{D +DT}, where D = A ∂f

∂X , are all negative for all values of t and X.

(ii) f(t, 0) satisfies either

‖f(t, 0)‖ ≤ m <∞ for all t ∈ R
or ∫ ∞

−∞
‖f(t, 0)‖pdt <∞, 1 ≤ p < 2.
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(iii) g(t, 0) ≡ 0 and

‖g(t,X)− g(t, Y )‖ ≤ γ(t)‖X − Y ‖

for all X, Y, t, with γ(t) satisfying∫ ∞
−∞

γq(t)dt <∞, 1 ≤ q ≤ 2.

Then, there exists a unique solution X∗(t) of equation (2.2) such that

‖X∗(t)‖ ≤ m, for t ∈ R, (2.3)

and every solution X(t) of equation (2.2) converges to X∗(t) as t→ +∞.

Theorem 2.2 [16]
Suppose conditions (i) and (ii) of Theorem 2.1 hold, and if in addition the
following conditions hold

(i) if f(t,X) and g(t,X) are uniformly almost periodic in t for ‖X‖ ≤ m, then
the unique solution X∗(t) of equation (2.2) is uniformly almost periodic
(u.a.p) in t;

(ii) if f(t,X) and g(t,X) are both periodic functions of t, for ‖X‖ ≤ m and
have the same period ω, then X∗(t) is periodic in t, with a least period ω.

Definition 2.3 [8,12,15]
We say that a solution X∗(t) of equation (2.1) is a limiting regime in the sense
of Demidovic, if there exists a constant m, 0 < m < ∞ such that ‖X∗(t)‖ ≤
m, −∞ < t <∞ and if every other solution of equation(2.1)converges to X∗(t)
as t→∞.
Definition 2.4 [24]
A continuous function f : R → x is called almost periodic if for each ε > 0
there exists %(ε) > 0 such that every interval of length %(ε) contains a number
τ with property that

|f(t+ τ)− f(t)| < ε for each t ∈ R.

Lemma 2.5 Let A be an n× n real symmetric positive definite matrix. Then,
for X ∈ Rn

δa‖X‖2 ≤ 〈AX,X〉 ≤ ∆a‖X‖2, (2.4)

where δa and ∆a are, respectively, the least and greatest eigenvalues of the ma-
trix A.
Proof. See [6,7,13, 14] .

Lemma 2.6 [6,7,13,14]
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Following the conditions earlier defined on H(X) with H(0) = 0 and let JH(X)
denotes the Jacobian matrix ∂hi

∂xj
of H(X), then,

δh‖X‖2 ≤
∫ 1

0

〈H(sX), X〉ds ≤ ∆h‖X‖2,

where δh and ∆h are the least and greatest eigenvalues of matrix JH(X) respec-
tively.

Lemma 2.7 Let Q and D be any two real n×n commuting symmetric matrices.
Then,

(i) the eigenvalues λi(QD), (i = 1, 2, . . . , n) of the product matrix QD are
real and satisfy:

max
1≤j, k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ max
1≤j, k≤n

λj(Q)λk(D) (2.5)

(ii) the eigenvalues λi(Q+D), (i = 1, 2, . . . , n) of the sum of matrices Q and D
are real and satisfy:

{max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)} ≥ λi(Q+D) ≥ { min
1≥j≤n

λj(Q) + min
1≤k≤n

λk(D)}
(2.6)

where λj(Q) and λk(D) are, respectively, the eigenvalues of matrices Q and D.

Proof. See [6,7,13, 14].

Hence forth, it shall be assumed that vector function P (t,X, Ẋ) is separable in
the form

P (t,X, Ẋ) = r(t) +Q(t,X, Ẋ)

with r(t) = r(t) + Q(t, 0, 0) so that Q(t, 0, 0) ≡ 0. We shall write (1.1) in the
equivalent form as

Ẋ = Y +R(t), Ẏ = −AY −H(X) +Q(t,X, Y +R(t))− AR (2.7)

with ‖R(t)‖ = ‖
∫ t

0 r(τ)‖dτ ≤ D, D > 0.

3. Main result

The followings are the main theorems of this paper.

Theorem 3.1
Suppose that H(0) = 0 such that:
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(i) the Jacobian matrix JH(X) of H(X) and matrix A are symmetric and
commute with each other and their eigenvalues λi(JH(X)) and λi(A),
(i = 1, 2, 3, . . . , n) respectively satisfy:

0 < δh ≤ λi(JH(X)) ≤ ∆h

and
0 < δa ≤ λi(A) ≤ ∆a

where δh and ∆h are the least and greatest eigenvalues of matrix JH(X)
and δa and ∆a are the least and greatest eigenvalues of matrix A, such that
δh, ∆h, δa and ∆a are all finites.

(ii)

‖Q(t,X2, Y2 +R)−Q(t,X1, Y1 +R)‖ ≤ γ0{‖X2−X1‖+ ‖Y2− Y1‖} (3.1)

for all t and Xi, Yi ∈ Rn, (i = 1, 2) and γ0 < ε, ε > 0.

Then, there exists a unique solution X∗(t) of (1.1) or (2.7) satisfying

‖X∗(t)‖2 + ‖Ẋ∗(t)‖2 ≤ D0,

for t ∈ R+, where D0 is a positive constant. Moreover, every other solution
X(t) of equation (1.1) converges to X∗(t) as t→∞.
Theorem 3.2
Suppose that H(0) = 0 and conditions (i) and (ii) of Theorem 3.1 hold. Further,
suppose that there exists a solution X(t) of equation (1.1) such that

‖X(t)‖2 + ‖Ẋ(t)‖2 ≤ D0.

Then,
(i) if Q(t,X, Y ) and R(t) are almost periodic in t, for

‖X(t)‖2 + ‖Ẋ(t)‖2 ≤ D0,

then X∗(t) is almost periodic in t.
(ii) if Q(t,X, Y ) and R(t) are periodic in t, with period η for

‖X(t)‖2 + ‖Ẋ(t)‖2 ≤ D0,

then X∗(t) is periodic in t, with period η.

Note, X∗(t) is a limiting regime.

The main tool in proving the two theorems stated above is the scalar func-
tion known as Lyapunov functional defined by:

2V (X(t), Y (t)) = 2

∫ 1

0

〈{A+B2}H(sX), X〉ds+〈B2Y, Y 〉+〈A3X,X〉+〈AY, Y 〉
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+2〈AX,AY 〉 (3.2)

where both A and B are n × n constant symmetric matrices which commute
with each other. It is obvious that V(0,0) = 0.

Lemma 3.3
Assuming that all the conditions of Theorem 1 hold. Then we can find some
positive constants δ1 and ∆1 such that

δ1{‖X‖2 + ‖Y ‖2} ≤ V (X, Y ) ≤ ∆1{‖X‖2 + ‖Y ‖2} (3.3)

for any X, Y belonging to Rn.

Proof of Lemma 3.3
On rearranging the function V defined above in equation (3.2), we obtain:

2V (X(t), Y (t)) = 2

∫ 1

0

〈{A+B2}H(sX), X〉ds+ 〈BY,BY 〉

+ ‖ A
3
2X + A

1
2Y ‖2

≥ 2

∫ 1

0

∫ 1

0

〈{A+B2}JH(s1s2X)X,X〉ds1ds2 + 〈BY,BY 〉.

By applying the hypothesis (i) of the Theorem 3.1, Lemma 2.5 - 2.7, we have:

V ≥ {δa + δ2
b}δh‖X‖2 +

1

2
δ2
b‖Y ‖2

If we let δ1 = 1
2 min{2δh(δa+ δ2

b ), δ
2
b}, then we obtain the lower bound for V as:

V (X, Y ) ≥ δ1{‖X‖2 + ‖Y ‖2}. (3.4)

The upper bound of V can also be obtained as follows.

2V (X(t), Y (t)) = 2

∫ 1

0

〈{A+B2}H(sX), X〉ds+ 〈BY,BY 〉

+ ‖ A
3
2X + A

1
2Y ‖2

= 2

∫ 1

0

∫ 1

0

〈{A+B2}JH(s1s2X)X,X〉ds1ds2 + 〈BY,BY 〉

+ 〈A3X,X〉+ 〈AY, Y 〉+ 2〈AX,AY 〉.

Using Lemmas 2.5 - 2.7 and the fact that 2|〈AY,AX〉| ≤ 〈AX,AX〉+〈AY,AY 〉,
we obtain

2V (X(t), Y (t)) ≤ 2{∆h(∆a + ∆2
b)}‖X‖2 + {∆2

a + ∆a + ∆2
b}‖Y ‖2

+ {∆3
a + ∆2

a}‖X‖2

= {2∆h(∆a + ∆2
b) + ∆3

a + ∆2
a}‖X‖2 + {∆2

a + ∆a + ∆2
b}‖Y ‖2.
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Letting ∆1 = 1
2 max{2∆h(∆a + ∆2

b) + ∆3
a + ∆2

a, ∆2
a + ∆a + ∆2

b}, we obtain the
upper bound of V as:

V ≤ ∆1{‖X‖2 + ‖Y ‖2}. (3.5)

Thus, inequality (3.3) follows on combining the estimates (3.4) and (3.5) to-
gether. This completes the proof of the Lemma 3.3.

Next, we find the derivative of V (X, Y ) with respect to t along the system
(2.7) for all solutions (X(t), Y(t)). This gives:

V̇ = −〈A2X,H(X)〉 − 〈B2Y,AY 〉+ 〈{A+B2}H(X)− AB2Y,R(t)〉
+ 〈{B2 + A}Y + A2X,Q〉

= −
∫ 1

0

〈A2X, JH(sX)X〉ds− 〈B2Y,AY 〉+ 〈{B2 + A}Y + A2X,Q〉

+

∫ 1

0

〈{A+B2}JH(sX)X − AB2Y,R(t)〉ds

in view of the assumption (i) of the Theorem 3.1 and Lemmas 2.5 - 2.7 we have

V̇ ≤ −δ2
aδh‖X‖2 − δ2

bδa‖Y ‖2 + {(∆a + ∆2
b)∆h‖X‖ − δaδ2

b‖Y ‖}D
+ {(∆2

b + ∆a)‖Y ‖+ ∆2
a‖X‖}‖Q(t,X, Y +R)‖

= −K3{‖X‖2 + ‖Y ‖2}+K4{‖X‖+ ‖Y ‖}
+ K5{‖X‖+ ‖Y ‖} × ‖Q(t,X, Y +R(t))‖ (3.6)

where K3 = min{δ2
aδh, δ

2
bδa} , K4 = max{(∆a + ∆2

b)∆h, δaδ
2
b}D and

K5 = max{∆2
b + ∆a,∆

2
a}.

Now, by applying the condition (ii) of Theorem 3.1, we obtain

V̇ ≤ −K3{‖X‖2 + ‖Y ‖2}+K6{‖X‖2 + ‖Y ‖2}
1
2

+ K7{‖X‖2 + ‖Y ‖2}
1
2 × γ0{‖X‖2 + ‖Y ‖2}

1
2

≤ −K3{‖X‖2 + ‖Y ‖2}+K6{‖X‖2 + ‖Y ‖2}
1
2 +K7γ0{‖X‖2 + ‖Y ‖2}

≤ −{K3 −K7γ0}{‖X‖2 + ‖Y ‖2}+K6{‖X‖2 + ‖Y ‖2}
1
2

The last inequality implies

V̇ ≤ −{K3 −K7γ0}V (t) +K6V
1
2 (t) (3.7)

where K6 = K4

√
2 and K7 = K5

√
2. Thus, ε can be taken to be ε = K−1

7 K3 > 0.
Hence, γ0 < ε as indicated in Theorem 3.1.

According to Ezeilo[7], the following Lemma will be quite useful.

Lemma 3.4
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Assuming that the conditions (i) and (ii) of Theorem 3.1 hold. Then, for arbi-
trary t0, there exists positive constants K8, K9 depending on A, H(X), Q and
R such that for t ≥ t0,

V (X(t), Y (t)) ≤ K8V (X(t0), Y (t0)) +K9. (3.8)

Moreover, there are finite constants η and K10, also depending only on
A, H(X), Q and R such that if V (X(t0), Y (t0)) ≤ K10, then

V (X(t0 + η), Y (t0 + η)) ≤ K10 (3.9)

for every η0 ≤ η <∞.
Proof
Let us set W (t) = V (X(t), Y (t))

1
2 , then we have from inequality (3.7) that

d

dt
{W (t) exp{1

2
[K3 −K7γ0]t}} ≤

1

2
K6 exp{1

2
[K3 −K7γ0]t}. (3.10)

Integrating (3.10) from t0 to t0 + S, S ≥ 0, we have

W (t0 + S) exp{1
2

[K3 −K7γ0](t0 + S)}

≤ W (t0) exp{1
2

[K3 −K7γ0]t0}+
1

2
K6

∫ t0+S

t0

exp{1
2

[K3 −K7γ0]t}dt (3.11)

It is obvious from the condition (ii) of Theorem 3.1 that the second term in the
inequality (3.11) above is a constant and also finite since γ0 is a constant. On
some arrangements of terms in (3.11), we obtain

W (t0 + S) ≤ K11W (t0) exp{−1

2
K3S}+K12, S ≥ 0 (3.12)

where K12 is a positive constant depending on K3, K6 and K7.
Now, if K11W (t0) ≤ K12, we have that

W (t0 + S) ≤ 2K12, for S ≥ 0. (3.13)

This means
V (t0 + S) ≤ {2K12}2, provided that S ≥ 0.

Also, if K11W (t0) > K12, we have from (3.12) that

W (t0 + S) < 2K11W (t0), for S ≥ 0.

This means

V (t0 + S) < {2K11}2V (t0), provided that S ≥ 0.
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Hence, in all cases, we have

V (t0 + S) ≤ {2K11}2V (t0) + {2K12}2, provided that S ≥ 0,

which is equivalent to (3.8) with K8 = {2K11}2 and K9 = {2K12}2.
The concluding part of the proof of the Lemma is now to show that for some
number, say η0 (whose value will be determined later),

V (t0 + η) ≤ K10

for every η0 ≤ η <∞ and K10 such that V (t0) ≤ K10.

Let’s define K13 = K9 = {2K12}2.
First, if V (t0) ≥ K13, we have that K12 <

1
2W (t0).

Therefore, from (3.12), we have

W (t0 + S) < K11W (t0) exp{−1

2
K3S}+

1

2
W (t0)

≤ W (t0) provided S ≥ 2 log 2K11

K3
>

log 2K11

K3
. (3.14)

That is,
V (t0 + S) ≤ V (t0),

each time V (t0) ≥ K13. Now, if V (t0) < K13, we have that W (t0) ≤ K
1
2
13. Thus,

from (3.12), we have that

W (t0 + S) < K11 exp{−1

2
K3S}K

1
2
13 +K

1
2
13

≤ 2K
1
2
13, provided that S ≥ 2 logK11

K3
>

log 2
3K11

K3
.

That is,

V (t0 + S) < 2K13, provided that S ≥ log 2K11

K3
.

Thus, on choosing η0 = log 2K11

K3
and K10 = 2K13 in the above inequality, inequal-

ity (3.9) of Lemma 3.4 is verified and this completes the proof of Lemma 3.4.

To prove Theorem 3.1 completely, we need to prove that any two solutions
of (2.7) converge. This will be shown in the lemma below.

Lemma 3.5
Suppose that conditions (i) and (ii) of Theorem 3.1 hold. Suppose that in
addition that there exists constants d3, d4, d5 whose magnitude depend on
A, H(X), Q, and R, then if (X1, Y1), (X2, Y2) are any two solutions of (2.7),
then

U(t) ≤ d3U(t0) exp{−(d4 − d5γ0)(t− t0)}, (3.15)
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where
U(t) = {‖X1(t)−X2(t)‖2 + ‖Y1(t)− Y2(t)‖2}.

Proof
Given that X1(t) and X2(t) are any two solutions of (2.7), we define a function
W = W (t) by

W (t) = V ((X1(t)−X2(t), (Y1(t)− Y2(t)))

where V is the function earlier defined in (3.2) but with X, Y replaced by
(X1(t) − X2(t)) and (Y1(t) − Y2(t)) respectively. Then, by inequality (3.3),
there exists positive constants say K14, K15 such that

K14U(t) ≤ W (t) ≤ K15U(t). (3.16)

Also by the inequality (3.16), it suffices to show that

W (t) ≤ d3W (t0) exp{−(d4 − d5γ0)(t− t0)}, (t ≥ t0). (3.17)

By the earlier calculation of V̇ in (3.6), we have

Ẇ (t) ≤ −K16{‖X1 −X2‖2 + ‖Y1 − Y2‖2}+K∗17{‖X1 −X2‖+ ‖Y1 − Y2‖}‖θ‖,

where θ = Q(t,X2, Y2 +R)−Q(t,X1, Y1 +R). and K17 = K∗17

√
2

Let us set U(t) = {‖X1 −X2‖2 + ‖Y1 − Y2‖2} then, we have

Ẇ (t) ≤ −K16U(t) +K17U
1
2 (t)‖θ‖. (3.18)

Let β be any constant such that 1 ≤ β ≤ 2 and set 2α = 2 − β , so that
0 ≤ 2α ≤ 1.
We write inequality (3.18) in the form

Ẇ +K16U(t) ≤ K17U
αW ∗,

where
W ∗ = (‖θ‖ −K16K

−1
17 U

1
2 )S( 1

2−α).

We will consider separately two possible cases as follow.
(i) ‖θ‖ ≤ K16K

−1
17 U

1
2 and

(ii) ‖θ‖ > K16K
−1
17 U

1
2 .

We find out that in either case, there exists some constants K18 such that
W ∗(t) ≤ K18‖θ‖2(1−α). Thus, we can rewrite the inequality (3.18) as

Ẇ +K16U(t) ≤ K19U
αγ0U

(1−α)

where K19 ≥ 2K17K18. This immediately yields

Ẇ + (K20 −K21γ0)W (t) ≤ 0 (3.19)
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by (3.16), with positive constants K20 and K21. On integrating (3.19) from t0
to t1, (t1 ≥ t0), we obtain

W (t1) ≤ W (t0) exp{−(K20 −K21γ0)(t1 − t0)}.

Again, by using (3.16), we obtain (3.17). Thus, inequality (3.15) implies that
for all t1 − t0 ≥ 0 and γ0 < d4d

−1
5 , −(d4 − d5γ0)(t − t0) is negative and so, as

t = (t1 − t0)→∞, we have U(t)→ 0. Which implies

‖X1(t)−X2(t)‖ → 0, ‖Y1(t)− Y2(t)‖ → 0 as t→∞.

So that, for the unique solution X∗(t) of the equation (1), we have

‖X(t)−X∗(t)‖ = 0, ‖Ẋ(t)− Ẋ(t)‖ = 0,

which implies that
X(t) = X∗(t), Ẋ(t) = Ẋ(t).

This completes the proof of Lemma 3.5.

Proof of Theorem 3.1
Having proved Lemma 3.4 and Lemma 3.5, the proof of Theorem 3.1 then fol-
lows exactly as in Theorem 1 of [7] with the obvious modifications as required.

Proof of Theorem 3.2
The method to be used in proving Theorem 3.2 is as outlined in Ezeilo [7] but
with some modifications as a result of Q(t,X, Y +R) which is almost periodic
in t.
Let us consider the function defined as

ψ(t) = V (X(t+ η)−X(t), Y (t+ η)− Y (t))

where V is the function defined in equation (3.2) with X, Y replaced by
X(t + η) − X(t), Y (t + η) − Y (t)), respectively. Then, we easily have by the
inequality (3.3) that there exists positive constants c1, c2 both positive such
that

c1S(t) ≤ ψ(t) ≤ c2S(t) (3.20)

with
S(t) = {‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2}.

Following the approach used in proving Lemma 3.5, we have for some positive
constants c3, c4 that

ψ̇ ≤ −c3{‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2}
+ c4{‖X(t+ η)−X(t)‖+ ‖Y (t+ η)− Y (t)‖}‖θ‖ (3.21)

with θ = Q(t+ η,X(t+ η), Y (t+ η) +R(t+ η))−Q(t,X(t), Y (t) +R(t)).
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Now, we can rewrite (3.21) as

ψ̇ ≤ −c3{‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2}
+ {‖X(t+ η)−X(t)‖+ ‖Y (t+ η)− Y (t)‖}

1
2 ×

‖Q(t+ η,X(t+ η), Y (t+ η) +R(t+ η))−Q(t,X(t)), Y (t) +R(t))‖
+ c4{‖X(t+ η)−X(t)‖+ ‖Y (t+ η)− Y (t)‖}‖θ‖. (3.22)

Assuming now that the function Q is uniformly almost periodic in t. Then for
arbitrary number µ > 0, we can find η > 0 such that

‖Q(t+η,X(t+η), Y (t+η)+R(t+η))−Q(t,X(t)), Y (t)+R(t))‖ ≤ λµ2 (3.23)

where λ is a constant whose value will be determined later to our credit. Thus,
from (3.22), we obtain

ψ̇ ≤ −c3S(t) + c5S
1
2 (t)‖θ‖+ c6S

1
2 (t)λµ2 (3.24)

where c5 = c4

√
2 and c6 =

√
2. By condition (ii) of Theorem 3.1, we have

{‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2}
1
2 ≤ D1 (3.25)

then
ψ̇ + c3S(t) ≤ c5S

1
2 (t)‖θ‖+ c6D1λµ

2. (3.26)

Let β be any constant such that 1 ≤ β ≤ 2 and set α = 1 − 1
2β, so that

0 ≤ α ≤ 1. Inequality (3.26) thus becomes,

dψ

dt
≤ c5S

αU ∗ + c6D1λµ
2 (3.27)

where U ∗ = S( 1
2−α)

(
‖θ‖ − c−1

5 c3S
1
2 (t)
)
.

Now, if ‖θ‖ ≤ c−1
5 c3S

1
2 (t), we obtain

U ∗ ≤ 0;

again, suppose that ‖θ‖ > c−1
5 c3S

1
2 (t), that is,

S < (c5c
−1
3 ‖θ‖)2, we get

U ∗ < c7‖θ‖2(1−α),

where c7 = (c5c
−1
3 )(2α−1).

Thus in the two cases, U ∗ < c7‖θ‖2(1−α). Therefore, on using the fact that

‖θ‖ ≤ γ0S
1
2 from inequality (3.1), inequality (3.27) becomes,

dψ

dt
≤ c7c5γ

2(1−α)
0 S(t) + c6D1λµ

2.
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On using inequality (3.20), we have

dψ

dt
+ c8γ

β
0ψ ≤ c6D1λµ

2 (3.28)

where c8 = −c7c5γ
β.

Integrating inequality 3.28 from t0 to t with t ≥ t0 and letting

c11 =

∫ t

t0

ec8sds,

we obtain

ψ(t) ≤ ψ(t0) exp{c8(t0 − t)}+ c11 exp{−c8t}D1λµ
2

≤ ψ(t0) exp{c8(t0 − t)}+ c12λµ
2 (3.29)

where c12 = c11 exp{−c8t}D1. By letting t0 → −∞ in inequality (3.29) and
noting that ψ(t0) is finite from (3.25), we then obtain

W (t) ≤ c12λµ
2

for arbitrary t. Now, by inequality (3.20) and the definition of W (t), we obtain

‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2 ≤ c12λµ
2c−1

1 . (3.30)

Taking λ = c1c
−1
12 , inequality (3.30) thus becomes

‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2 ≤ µ2. (3.31)

Multiplying inequality (3.31) by
√

2, we obtain
√

2{‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2} ≤
√

2µ2,

it then follows that

‖X(t+ η)−X(t)‖+ ‖Y (t+ η)− Y (t)‖ ≤ µ (3.32)

The proof of the first part of Theorem 3.2 is completes once we choose η to
satisfy (3.23) and λ = c1c

−1
12 .

The proof of the second part of Theorem 3.2 is as follows. Assuming that
Q(t,X, Y +R) is periodic in t with period ε and we fix the τ in the definition of
ψ(t). Then, the terms on the left hand side of (3.23) is identically zero, and if
we proceed just as we did above, we shall obtain the following in place of (3.30)

‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2 ≤ 0.

But the above cannot be less than zero. Therefore,

‖X(t+ η)−X(t)‖2 + ‖Y (t+ η)− Y (t)‖2 = 0.
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This obviously implies that

X(t+ η) = X(t) and Y (t+ η) = Y (t)

this therefore shows the periodicity as required and the proof of Theorem 3.2
is completed.
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