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Abstract 

In this paper, sufficient conditions for the null controllability of nonlinear neutral Volterra 

integrodifferential systems with infinite delay are developed. It is shown that if the uncontrolled 

system is uniformly asymptotically stable, and if the linear system is controllable, then the nonlinear 

infinite neutral system is null controllable. 

Keywords: Controllability, neutral Volterra integrodifferential system, infinite delay, uniform 

asymptotic stability. 

1.  Introduction 

It is well known that the future state of realistic models in the natural sciences, economics and 

engineering depend not only on the present but on the past state and the derivative of the past state [7]. 

Such models which contain past information are called hereditary system.           

Neutral functional differential equations are characterized by a delay in the derivative. Equations of 

this type have applications in many areas of applied mathematics [10]. For instance, it is well known 
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that the mixed initial-boundary hyperbolic partial differential equations which arise in the study of 

lossless transmission lines can be replaced by neutral differential systems [3]. This equivalence has 

been the basis of a number of investigations on the stability of distributed networks which is of 

immense importance to systems models in the control of fluctuation of current. Furthermore, most 

economic models for the control of capital stock from an initial capital endowment to the desired stock 

are governed by neutral systems [8]. 

Controllability is the property of being able to steer between two arbitrary points in the state space. On 

the other hand, null controllability is the property of being able to steer all points exactly to the origin. 

This has important connections with the concept of stabilizability. 

Investigation into the controllability of functional differential systems to the origin has attracted great 

attention in recent years with the growing interest in disease control models in which the number of 

infected individuals is desired to be controlled to zero [11]. Balachandran and Dauer [4] studied the 

null controllability of nonlinear infinite delay systems with time varying multiple delays in control 

whereas Balachandran and Leelamani [6] investigated the null controllability of neutral evolution 

integrodifferential systems with infinite delay. Iyai [12] discussed the Euclidean null controllability of 

infinite neutral differential systems. Sinha [15] derived a set of sufficient conditions for the 

nullcontrollability of nonlinear infinite delay systems with restrained controls. Onwuatu [14] studied 

the null controllability of nonlinear infinite neutral system. Eke [9] established a set of conditions for 

the null controllability of linear control systems. Umana and Nse [17] studied the null controllability of 

nonlinear integrodifferential systems with delays whereas Umana [16] discussed the relative null 

controllability of linear systems with multiple delays in state and control. 

The aim of this paper is to study the null controllability of nonlinear neutral Volterra 

integrodifferential systems with infinite delay on a finite interval 0 1[ , ]J t t , 1 0t t , when its linear 

system is assumed controllable and its uncontrolled system is uniformly asymptotically stable with the 

assumption that the perturbation function satisfies some smoothness and growth conditions. 
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Volterra integrodifferential equations occur often in applied mathematics [3]. For instance, a simplified 

model for compartmental systems with pipes is represented by nonlinear neutral Volterra 

integrodifferential equation. Compartmental models are frequently used in theoretical epidemiology, 

physiology, population dynamics, analysis of ecosystems, and chemical reaction kinetics [5]. 

2.  Preliminaries 

Let n  and m  be positive integers, R  the real line  ,  . We denote by nR , the space of real n

tuples with the Euclidean norm defined by  . If J  is any interval of R , the usual Lebesgue space of 

square integrable functions from J  to 
nR  will be denoted by  2 , nL J R . 

Let 0h    be a given real number and let  [ ,0], nB B R   be the Banach space of functions 

which are continuous and bounded on [ , ]o  with 0sup ( )s s    ,  [ ,0], nB R   . 

Consider the nonlinear neutral Volterra integrodifferential systems with infinite delay of the following 

form 

               ( ) ( ) ( ) ( ) ( ) ( ) ( )
t td

x t C t s x s ds g t Ax t G t s x s ds
dt  

      
     

                                                                           ( ) ( ) , ( ), ( )B t u t f t x t u t                        (2.1)  

                                                          ( ) ( )x t t ,     ( ,0]t   

where the initial function   is continuous and bounded on 
nR  and where nx R , mu R , ( )C t  is an 

n n  continuously differentiable matrix valued function whose elements are square integrable on 

( ,0] , ( )G t  is an n n  continuous matrix whose elements are square integrable on ( ,0] , and 

( )B t  is a continuous n m  matrix function, A  is a constant n n  matrix and f  and g  are 

respectively continuous and absolutely continuous n vector functions. 

Balachandran [1], Balachandran and Balasubramaniam [2] and Balachandran and Dauer [3] studied 

the 

controllability of the system (2.1) using the Schauder fixed point theorem. Our aim in this paper is to 
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study the null controllability problem for the system (2.1). We shall show that if the free system                        

( ) ( ) ( ) ( ) ( ) ( ) ( )
t td

x t C t s x s ds g t Ax t G t s x s ds
dt  

      
                                      (2.2) 

is uniformly asymptotically stable, and if the linear control system   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t td

x t C t s x s ds g t Ax t G t s x s ds B t u t
dt  

       
                      (2.3) 

is completely controllable, then system (2.1) is null controllable provided the continuous function f  

satisfies some smoothness and growth conditions. 

Equivalently, system (2.1) takes the form  

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t td

x t C t s x s ds g t C t s s ds Ax t G t s x s ds
dt


  

        
      

                                                   
0

( ) ( ) ( ) ( ) , ( ), ( )G t s s ds B t u t f t x t u t


                      (2.4)  

The solution of (2.4) can be written as in Wu [18]: 

0 0

( ) ( ) (0) (0) ( ) ( ) ( ) ( ) ( )x t Z t x g C s s ds g t C t s s ds 
 

       
     

 
0 0

0 0
( ) ( ) ( ) ( ) ( ) ( )

t t

Z t s g s C s d ds Z t s G s d ds     
 

         
         

  

 
0

( ) ( ) ( ) , ( ), ( )
t

Z t s B s u s f s x s u s ds                                                               (2.5) 

where ( ) ( )Z t s Z t s
t

  


 and ( )Z t  is an n n  continuously differential matrix satisfying the 

equation 

        
0

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t td
Z t C t s Z s ds C t s Z s ds AZ t G t s Z s ds

dt  

       
      

                                                                                              
0

( ) ( )G t s Z s ds


    

with (0)Z I , the identity matrix. 

In (2.5) set the matrix function ( ) ( ) ( , )Z t s B s Y t s   and define the controllability matrix W  by 

             
0

0( , ) ( , ) ( , )
t

T

t
W t t Y t s Y t s ds   
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where ᴛ denotes matrix transpose. 

Definition 2.1: The system (2.1) is said to be null controllable on J  if for each  [ ,0], nB R   , 

there exists a 1 0t t ,  2 0 1[ , ],u L t t IU , IU  a compact convex subset of nR , such that the solution 

 0( ) , , , ,x t x t t u f  of (2.1) satisfies  
0 0, , , ,tx t u f    and  1 0, , , , 0x t t u f  . 

3.  Main Results 

Theorem 3.1: For system (2.1) assume that the constraint set IU  is an arbitrary compact subset of nR

, and that 

    (i) the solution (2.2) is uniformly asymptotically stable so that the solution of (2.2) satisfies                          

   0

0, , ,0,0
t t

x t t Me


 
 

  for some 0  , 0M  , 

   (ii) the linear control system (2.3) is controllable, 

   (iii) the continuous function f  satisfies the following smoothness and growth conditions 

     , ( ), ( ) exp ( ), ( )f t x u t x u       , for all   0 2, ( ), ( ) [ , )t x u t B L      , 

where 

              
0

( ), ( )
t

t
x u ds K       and 0   , 

then the system (2.1) is Euclidean null controllable. 

Proof: By (ii), 1

0 1( , )W t t  exists for each 1 0t t . Suppose the pair of functions x , u  form a solution 

pair to the set of integral equations 

            0
1

1 0( ) ( , ) ( , ) ( ) (0) (0) ( ) ( ) ( )Tu t Y t t W t t Z t x g C s s ds g t



      
    

                         
0

0 0

( ) ( ) ( ) ( ) ( ) ( )
t

t
C t s s ds Z t s g s C s d ds    

 

      
      

                    
0 0

0

( ) ( ) ( ) ( ) , ( ), ( )
t t

t t
Z t s G s d ds Z t s f s x s u s ds   



     
                (3.1) 

for some suitably chosen 1 0t t t  , and 



Differential Equations and Control Processes, № 2,2011  

 

Electronic Journal. http://www.math.spbu.ru/user/diffjournal  53 

           
0 0

( ) ( ) (0) (0) ( ) ( ) ( ) ( ) ( )x t Z t x g C s s ds g t C t s s ds 
 

       
     

 
0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

t t
Z t s g s C s d ds Z t s G s d ds       

 

         
           

                  
0 0

( , ) ( ) ( ) , ( ), ( )
t t

t t
Y t s u s ds Z t s f s x s u s ds                                                      (3.2) 

               ( ) ( )x t t ,  0 0[ , ]t t t  . 

Then u  is square integrable on 0 1[ , ]t t  and x  is a solution of (2.1) corresponding to u  with initial 

state 
0( )x t  . Also, 

1( ) 0x t  . Now it is shown that 0 1:[ , ]u t t IU  is in a compact constraint subset 

of 
mR , that is u a  for some constant 0a  .By (i), 1

1 0 0 1 1( , ) ( , )TY t t W t t k   for some 1 0k  , and 

 
0

2 1 0( ) (0) (0) ( ) ( ) ( ) exp ( , )Z t x g C s s ds g t k t t 


      
    for some 2 0k  . Hence, 

             
1

0
1 2 1 0 1( ) exp ( , ) exp ( ) exp( ) ( ), ( )

t

t
u t k k t t M t s s x u ds           

   . 

Then 

                  1 2 1 0 1( ) exp ( ) exp( )u t k k t t KM t       ,                                                      (3.3) 

since 0    and 0 0s t  . From (3.3), 1t  can be chosen so large that ( )u t a , 0 1[ , ]t t t  which 

proves that u  is an admissible control for this choice of 1t . 

We now prove the existence of a solution pair of the integral equations (3.1) and (3.2). Let B  be the 

Banach space of all functions 

                       0 1 0 1( , ) :[ , ] [ , ] n mx u t h t t h t R R      

where  0 1[ , ], nx B t h t R   and  2 0 1[ , ], mu L t h t R   with the norm defined by 
2 2

( , )x u x u  , 

where     

                  1

0

1
22

2
( )

t

t h
x x s ds


   and  1

0

1
22

2
( )

t

t h
u u s ds


  . 

Define the operator :T B B  by ( , ) ( , )T x u y v , where 
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                0
1

1 0 1( ) ( , ) ( , ) ( ) (0) (0) ( ) ( ) ( )Tv t Y t t W t t Z t x g C s s ds g t



      
  

 

                      
0

0 0

( ) ( ) ( ) ( ) ( ) ( )
t

t
C t s s ds Z t s g s C s d ds    

 

      
      

                         
0 0

0

( ) ( ) ( ) ( ) , ( ), ( )
t t

t t
Z t s G s d ds Z t s f s x s u s ds   



     
                          (3.4) 

for 
0 1[ , ]t J t t  ; 

          
0 0

( ) ( ) (0) (0) ( ) ( ) ( ) ( ) ( )y t Z t x g C s s ds g t C t s s ds 
 

       
     

                        
0 0

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

t t
Z t s g s C s d ds Z t s G s d ds       

 

         
           

                     
0 0

( , ) ( ) ( ) , ( ), ( )
t t

t t
Y t s v s ds Z t s f s x s u s ds                                                             (3.5) 

for t J  and ( ) ( )y t t , 0 0[ , ]t t t  . 

From equation (3.3) it is clear that ( )v t a , t J  and also 0 0:[ , ]v t h t IU  , so ( )v t a . Hence 

                    
1
2

1 0 02
( )v a t h t     . 

Next  

                    
0

2 1 0 4 1( ) exp ( ) ( ) exp( )
t

t
y t k t t k v s ds KM t        

where 4 sup ( , )k Y t s . Since 0  , 0 0t t  , we deduce that 

                        2 4 1 0( )y t k k a t t KM      , t J  

and 

 

                         ( ) sup ( )y t t   , 0 0[ , ]t t t  . 

Hence, if  max ,   , then 

                     
1
2

1 0 12
( )y t h t     . 

Let  0 1max ,r   . Then if we let 
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                     2 2
( ) ( , ) : ,Q r x u B x r u r     

we have proved that : ( ) ( )T Q r Q r . Since ( )Q r  is closed, bounded and convex, by Riesz’s theorem 

[13], it is relatively compact under the transformation T . The Schauder theorem implies that T  has a 

fixed point ( , ) ( )x u Q r . This fixed point ( , )x u  of T  is a solution pair of the set of integral equations 

(3.4) and (3.5), hence, the system (2.1) is Euclidean null controllable. 

Conclusion 

The paper contains sufficient conditions for the null controllability of nonlinear neutral Volterra 

integrodifferential systems with infinite delay. These conditions are given with respect to the uniform 

asymptotic stability of the free linear base system and the controllability of the linear controllable base 

system, with the assumption that the perturbation function f  satisfies some smoothness and growth 

conditions. 
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