

Existence of Periodic Solutions of Fourth Order Functional Differential Equations with p-Laplacian ${ }^{1}$

Yuji Liu, Haiping Shi, Department of Mathematics, Guangdong University of Business Studies, Guangzhou 510000, P.R.China
Basic Courses Department, Guangdong Baiyun Institute,
Guangzhou 510450, P.R. China
e-mail: liuyuji888@sohu.com

Abstract

Sufficient conditions for the existence of at least one periodic solution of a nonlinear fourth order functional differential equations with p-Laplacian are established. Examples are presented to illustrate the main result.

Keywords. Periodic solution; fourth order functional differential equation with p-Laplacian; fixed-point theorem; growth condition

2000 MR subject classification. 34B10, 34B15

1 Introduction

Fourth-order differential equations with or without p-Laplacian occur in beam theory $[1,3]$. The solvability of such equations with different boundary conditions has been studied in papers [4-11,13-30,32-34]. The methods used in above mentioned papers are the fixed point theorems in cones in Banach spaces $[1,9,13,16,17,21,19,20,28,30,33]$, the continuation theorem of coincidence degree $[11,26,23,27]$, the upper and lower solutions methods with the monotone iterative technique $[4-6,8,15,32,34]$ and the Leray-Schauder fixed point theorem $[7,13,25,28,33]$.

The properties of solutions of the fourth order ordinary or functional differential equations are also studied by many authors, for example, Amster and Mariani [2] studied the oscillatory properties of solutions of a fourth order differential equation. In paper [31], Tanigawa established oscillation and non-oscillation theorems for a class of fourth order differential equations with p-Laplacian.

[^0]However, the results on the existence of periodic solutions of the fourth order functional differential equations with p-Laplacian have not been found in known literature.

To fill this gap, in this paper, we use Mawhin's continuation theorem of coincidence degree (Theorem IV. 13 of [12]) to establish sufficient conditions for the existence of at least one T-periodic solution of the following fourth order functional differential equations with p-Laplacian

$$
\begin{equation*}
\left[q(t) \phi\left(x^{\prime \prime}(t)\right)\right]^{\prime \prime}=f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right), t \in R \tag{1-1}
\end{equation*}
$$

where $T>0$ is a constant, $\tau_{k} \in C^{1}(R)$ for all $k=1, \cdots, m$ are invertible, the inverse function of $\tau=\tau_{i}(t)$ is denoted by $t=\mu_{i}(\tau)(i=1,2, \cdots, m), f: R \times R^{m+1} \rightarrow R$ is a Caratheddory function, i.e., $f: t \rightarrow f\left(t, x_{0}, x_{1}, x_{2}, \cdots, x_{m}\right)$ is T-periodic and measurable on $[0, T], f:$ $\left(x_{0}, x_{1}, \cdots, x_{m}\right) \rightarrow f\left(t, x_{0}, x_{1}, \cdots, x_{m}\right)$ is continuous and for each $r>0$ there exists $\phi_{r} \in$ $L^{1}[0, T]$ such that $\left|f\left(t, x_{0}, x_{1}, x_{2}, \cdots, x_{m}\right)\right| \leq \phi_{r}(t)$ holds for all $t \in[0, T]$ and $\left|x_{i}\right| \leq r(i=$ $0,1,2,3, \cdots, m), q: R \rightarrow(0,+\infty)$ is T-periodic, $\phi(x)=|x|^{p-2} x$ with $p>1$, which is called a p-Laplacian, and its inverse function is $\phi^{-1}(x)=|x|^{q-2} x$ with $1 / q+1 / p=1$.

The remainder is divided into two sections. In Section 2, we present the main results. In Section 3, we give some examples to illustrate the main theorems.

2 Main Results

Let $P C^{0}$ be the set of all continuous T-periodic functions on R and $X=P C^{0} \times P C^{0}$, the norm is defined by

$$
\|(x, y)\|=\max \left\{\max _{t \in[0, T]}|x(t)|, \max _{t \in[0, T]}|y(t)|\right\}
$$

for $(x, y) \in X$. Then X is a real Banach space.
Let $P L^{1}$ be the set of all T-periodic functions which are measurable on $[0, T]$ and $Y=$ $P L^{1} \times P L^{1}$, the norm is defined by

$$
\|(u, v)\|=\max \left\{\int_{0}^{T}|u(t)| d t, \int_{0}^{T}|v(t)| d t\right\}
$$

for $(u, v) \in Y$. Then Y is a real Banach space.
We also use the Sobolev spaces

$$
P W^{2,1}=\left\{\begin{array}{c|c}
x: R \rightarrow R \mid & \left.\left.\begin{array}{c}
x, x^{\prime} \text { are absolutely continuous } \\
\text { and } T \text {-periodic on } R \text { with } x^{\prime \prime} \in P L^{1}
\end{array}\right\} .\right\} \text {. }
\end{array}\right\}
$$

and

$$
P W_{q}^{2,1}=\left\{\begin{array}{l|l}
x: R \rightarrow R \mid & q x,(q x)^{\prime} \text { are absolutely continuous } \\
\text { and } T \text {-periodic on } R \text { with }(q x)^{\prime \prime} \in P L^{1}
\end{array}\right\}
$$

Let $D(L)=P W^{2,1} \times P W_{q}^{2,1}$. Define the linear operator $L: D(L) \cap X \rightarrow Y$ by

$$
\begin{equation*}
L\binom{x(t)}{y(t)}=\binom{x^{\prime \prime}(t)}{(q(t) y(t))^{\prime \prime}} \text { for all }(x, y) \in D(L) \cap X \tag{2-2}
\end{equation*}
$$

Define the nonlinear operator $N: X \rightarrow Y$ by

$$
\begin{equation*}
N\binom{x(t)}{y(t)}=\binom{\phi^{-1}(y(t))}{f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)} \text { for all }(x, y) \in X \tag{2-3}
\end{equation*}
$$

Now, we will briefly recall some notation and an abstract existence result. Let X, Y be real Banach spaces, $L: D(L) \bigcap X \rightarrow Y$ be a Fredholm map of index 0 and $P: X \rightarrow X, Q: Y \rightarrow Y$ be continuous projectors such that $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L$ and $X=\operatorname{Ker} L \bigoplus \operatorname{Ker} P$, $Y=\operatorname{Im} L \bigoplus \operatorname{Im} Q$. It follows that $L_{D(L) \cap \operatorname{Ker} P}: D(L) L \bigcap \operatorname{Ker} P \rightarrow \operatorname{Im} L$ is invertible. We denote the inverse of that map by K_{p}. If Ω is an open bounded subject of X such that $D(L) \bigcap \Omega \neq \emptyset$, the map $N: X \rightarrow Y$ will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact.

Lemma 2.1.[12] Let X and Y be Banach spaces. Let $L: D(L) \bigcap X \rightarrow Y$ be a Fredholm operator of index zero and Ω be an open bounded subset of X with $\Omega \bigcap D(L) \neq \emptyset$. Suppose that $N: X \rightarrow Y$ be L-compact on $\bar{\Omega}$ and the following conditions are satisfied:
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(D(L) \backslash \operatorname{Ker} L) \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial \Omega$;
(iii) $\operatorname{deg}\left(\left.\wedge Q N\right|_{\operatorname{Ker} L}, \Omega \cap \operatorname{Ker} L, 0\right) \neq 0$, where $\wedge: \operatorname{Ker} L \rightarrow Y / \operatorname{Im} L$ is the isomorphism. Then the equation $L x=N x$ has at least one solution in $D(L) \cap \bar{\Omega}$.

Let $X=P C^{0} \times P C^{0}$ and $Y=P L^{1} \times P L^{1}$ and L, N be defined by (2) and (3) respectively. It is easy to show the following results. We omit their proofs since the proofs are simple and standard.
(i) $\operatorname{Ker} L=\{(a, b / q(t)): a, b \in R\}$;
(ii) $\operatorname{Im} L=\left\{(u, v) \in X: \int_{0}^{T} u(s) d s=0, \int_{0}^{T} v(t) d t=0\right\}$;
(iii) L is a Fredholm operator of index zero;
(iv) there exist the projectors $P: X \rightarrow X$ and $Q: X \rightarrow X$ such that $\operatorname{Ker} L=\operatorname{Im} P$ and $\operatorname{Ker} Q=\operatorname{Im} L$. There exists an isomorphism $\wedge: \operatorname{Ker} L \rightarrow Y / \operatorname{Im} L$.
(v) Let $\Omega \subset X$ be an open bounded subset with $\bar{\Omega} \cap D(L) \neq \emptyset$, then N is L-compact on $\bar{\Omega} ;$
(vi) $(x, y) \in D(L)$ is a solution of the operator equation $L(x, y)=N(x, y)$ implies that x is a T-periodic solution of equation (1).

In fact, let $F(t)=f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)$. We have, for $a, b \in R,(x, y) \in X$ and $(u, v) \in Y$, that

$$
\begin{aligned}
& P\binom{x(t)}{y(t)}=\binom{x(0)}{q(0) y(0) / q(t)}, \\
& Q\binom{u(t)}{v(t)}=\binom{\frac{1}{T} \int_{0}^{T} u(t) d t}{\frac{1}{T} \int_{0}^{T} v(t) d t}, \\
& K_{p}\binom{u(t)}{v(t)}=\binom{\int_{0}^{t}(t-s) u(s) d s-\frac{1}{T} \int_{0}^{T}(T-s) u(s) d s}{\frac{1}{q(t)}\left(\int_{0}^{t}(t-s) v(s) d s-\frac{1}{T} \int_{0}^{T}(T-s) v(s) d s\right)}, \\
& K_{p}(I-Q) N\binom{x(t)}{y(t)}=K_{p}(I-Q)\binom{\phi^{-1}(y(t))}{f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)} \\
& =\binom{\int_{0}^{t}(t-s) \phi^{-1}(y(s)) d s-\frac{1}{T} \int_{0}^{T}(T-s) \phi^{-1}(y(s)) d s}{\frac{1}{q(t)}\left(\int_{0}^{t}(t-s) F(s) d s-\frac{1}{T} \int_{0}^{T}(T-s) F(s) d s\right)} \\
& -\binom{\frac{t^{2}}{2 T} \int_{0}^{T} \phi^{-1}(y(s)) d s-\frac{T}{2} \int_{0}^{T} \phi^{-1}(y(s)) d s}{\frac{1}{q(t)}\left(\frac{t^{2}}{2 T} \int_{0}^{T} F(s) d s-\frac{T}{2} \int_{0}^{T} F(s) d s\right)}, \\
& \wedge\binom{a}{b / q(t)}=\binom{b}{a} .
\end{aligned}
$$

Let us list some assumptions:
(B1) there exist the numbers $\beta>0, \theta>1$, the nonnegative functions $p_{i} \in P C^{0}(i=$ $0,1,2, \cdots, m)$, the function $r: R \rightarrow R$ with $\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t<\infty$, and the Caratheddory functions $g\left(t, x_{0}, \cdots, x_{m}\right), h\left(t, x_{0}, \cdots, x_{m}\right)$ such that

$$
\begin{gathered}
f\left(t, x_{0}, \cdots, x_{m}\right)=g\left(t, x_{0}, \cdots, x_{m}\right)+h\left(t, x_{0}, \cdots, x_{m}\right) \\
g\left(t, x_{0}, x_{1}, \cdots, x_{m}\right) x_{0} \leq-\beta\left|x_{0}\right|^{\theta+1}
\end{gathered}
$$

and

$$
\left|h\left(t, x_{0}, \cdots, x_{m}\right)\right| \leq \sum_{i=0}^{m} p_{i}(t)\left|x_{i}\right|^{\theta}+r(t)
$$

for all $t \in R,\left(x_{0}, x_{1}, \cdots, x_{m}\right) \in R^{m+1}$.
(B2) there exists a positive constant μ such that $q(t)>\mu$ for all $t \in[0, T]$, and there exist nonnegative constants M_{i}^{0} such that $\left|\tau_{i}(T)-\tau_{i}(0)\right| \leq M_{i}^{0} T$ for $i=1, \cdots, m$.

Lemma 2.2. Let $\delta_{i}=\max _{t \in[0, T]} \frac{1}{\mid \tau_{i}^{\prime}(t),},(i=1, \cdots, m)$, and $\Omega_{1}=\{(x, y): L(x, y)=$ $\lambda N(x, y),((x, y), \lambda) \in[(D(L) \backslash \operatorname{Ker} L)] \times(0,1)\}$. Suppose that (B1) and (B2) hold. Then Ω_{1} is bounded if

$$
\begin{equation*}
\sup _{t \in[0, T]}\left|p_{0}(t)\right|+\sum_{i=1}^{m} \sup _{t \in[0, T]}\left|p_{i}(t)\right| M_{i}^{0} \delta_{i}^{\frac{\theta}{\theta+1}}<\beta . \tag{2-4}
\end{equation*}
$$

Proof. For $(x, y) \in \Omega_{1}$, we have $L(x, y)=\lambda N(x, y), \lambda \in(0,1)$, i.e.

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=\lambda \phi^{-1}(y(t)) \\
(q(t) y(t))^{\prime \prime}=\lambda f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)
\end{array}\right.
$$

It follows that

$$
\begin{equation*}
\left[q(t) \phi\left(x^{\prime \prime}(t)\right)\right]^{\prime \prime}=\phi(\lambda) \lambda f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) . \tag{2-5}
\end{equation*}
$$

Thus

$$
\left[q(t) \phi\left(x^{\prime \prime}(t)\right)\right]^{\prime \prime} x(t)=\phi(\lambda) \lambda f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t)
$$

Integrating it from 0 to T, we get

$$
\begin{equation*}
\int_{0}^{T} q(t) \phi\left(x^{\prime \prime}(t)\right) x^{\prime \prime}(t) d t=\phi(\lambda) \lambda \int_{0}^{T} f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \tag{2-6}
\end{equation*}
$$

together with (B1) and $\int_{0}^{T} q(t) \phi\left(x^{\prime \prime}(t)\right) x^{\prime \prime}(t) d t \geq 0$, we get that

$$
\begin{aligned}
& \quad \beta \int_{0}^{T}|x(t)|^{\theta+1} d t \\
& \quad \leq-\int_{0}^{T} g\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
& \quad \leq \int_{0}^{T} h\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
& \quad \leq \int_{0}^{T}\left|h\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)\right||x(t)| d t \\
& \quad \leq \int_{0}^{T} p_{0}(t)|x(t)|^{\theta+1} d t+\sum_{i=1}^{m} \int_{0}^{T} p_{i}(t)\left|x\left(\tau_{i}(t)\right)\right|^{\theta}|x(t)| d t+\int_{0}^{T} r(t)|x(t)| d t \\
& \leq \max _{t \in[0, T]}\left|p_{0}(t)\right| \int_{0}^{T}|x(t)|^{\theta+1} d t+\left[\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& + \\
& \sum_{i=1}^{m} \max _{t \in[0, T]}\left|p_{i}(t)\right|\left[\int_{0}^{T}\left|x\left(\tau_{i}(t)\right)\right|^{1+\theta} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& \leq \max _{t \in[0, T]}\left|p_{0}(t)\right| \int_{0}^{T}|x(t)|^{\theta+1} d t+\left[\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& + \\
& +\sum_{i=1}^{m} \max _{t \in[0, T]}\left|p_{i}(t)\right|\left[\int_{\tau_{i}(0)}^{\tau_{i}(T)}|x(s)|^{1+\theta} d \mu_{i}(s)\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& \leq \max _{t \in[0, T]}\left|p_{0}(t)\right| \int_{0}^{T}|x(t)|^{\theta+1} d t+\left[\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& \\
& \quad+\left.\left.\sum_{i=1}^{m} \max _{t \in[0, T]}\left|p_{i}(t)\right|\left|\int_{\tau_{i}(0)}^{\tau_{i}(T)}\right| x(s)\right|^{1+\theta} \frac{d s}{\left|\tau_{i}^{\prime}(t)\right|}\right|^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& \\
& \leq \max _{t \in[0, T]}\left|p_{0}(t)\right| \int_{0}^{T}|x(t)|^{\theta+1} d t+\left[\int_{0}^{T}|r(t)|^{\theta+1} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& \\
& +\left.\sum_{i=1}^{m} \max _{t \in[0, T]}\left|p_{i}(t)\right|\right|_{i} ^{\frac{\theta}{\theta+1}} M_{i}^{0} \int_{0}^{T}|x(t)|^{\theta+1} d t . \\
&
\end{aligned}
$$

Since

$$
\begin{equation*}
\beta>\max _{t \in[0, T]}\left|p_{0}(t)\right|+\sum_{i=1}^{m} \delta_{i}^{\frac{\theta}{\theta+1}} M_{i}^{0} \max _{t \in[0, T]}\left|p_{i}(t)\right|, \tag{2-7}
\end{equation*}
$$

there is a constant $M_{1}>0$ such that $\int_{0}^{T}|x(t)|^{\theta+1} d t \leq M_{1}$. So there is $\xi \in[0, T]$ such that $|x(\xi)| \leq\left(M_{1} / T\right)^{\frac{1}{\theta+1}}$. Further more we have

$$
\begin{aligned}
\int_{0}^{T} q(t)\left|x^{\prime \prime}(t)\right|^{p} d t= & \int_{0}^{T} q(t) \phi\left(x^{\prime \prime}(t)\right) x^{\prime \prime}(t) d t \\
= & \phi(\lambda) \lambda \int_{0}^{T} f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
= & \phi(\lambda) \lambda \int_{0}^{T} g\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
& +\phi(\lambda) \lambda \int_{0}^{T} h\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
\leq & \phi(\lambda) \lambda \int_{0}^{T} h\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right) x(t) d t \\
\leq & \int_{0}^{T}\left|h\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)\right||x(t)| d t \\
\leq & \max _{t \in[0, T]}\left|p_{0}(t)\right| \int_{0}^{T}|x(t)|^{\theta+1} d t+\left[\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t\right]^{\frac{\theta}{\theta+1}}\left[\int_{0}^{T}|x(t)|^{\theta+1} d t\right]^{\frac{1}{\theta+1}} \\
& +\sum_{i=1}^{m} \max _{t \in[0, T]}\left|p_{i}(t)\right| \delta_{i}^{\frac{\theta}{\theta+1}} M_{i}^{0} \int_{0}^{T}|x(t)|^{\theta+1} d t \\
\leq & \left\|p_{0}| | M_{1}+\left[\int_{0}^{T}|r(t)|^{\frac{\theta+1}{\theta}} d t\right]^{\frac{\theta}{\theta+1}} M_{1}^{\frac{1}{\theta+1}}+\sum_{i=1}^{m}\right\| p_{i}| |_{i}^{\frac{\theta}{\delta_{i}^{\theta+1}}} M_{i}^{0} M_{1} .
\end{aligned}
$$

Since there exists $\eta \in[0, T]$ such that $x^{\prime}(\eta)=0$, it is easy to see from (B2) that

$$
\begin{aligned}
|x(t)| & =\left|x(\xi)+\int_{\xi}^{t} x^{\prime}(s) d s\right| \leq\left(M_{1} / T\right)^{\frac{1}{\theta+1}}+\int_{0}^{T}\left|x^{\prime \prime}(t)\right| d t \\
& \leq\left(M_{1} / T\right)^{\frac{1}{\theta+1}}+\frac{T^{\frac{p-1}{p}}}{\mu^{\frac{1}{p}}}\left(\mu \int_{0}^{T}\left|x^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& \leq\left(M_{1} / T\right)^{\frac{1}{\theta+1}}+\frac{T^{\frac{p-1}{p}}}{\mu^{\frac{1}{p}}}\left(\int_{0}^{T} q(t)\left|x^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& \leq\left(M_{1} / T\right)^{\frac{1}{\theta+1}}+\frac{T^{\frac{p-1}{p}}}{\mu^{\frac{1}{p}}}\left(\left\|p_{0}\right\| M_{1}+T^{\frac{\theta}{\theta+1}}\|r\| M_{1}^{\frac{1}{\theta+1}}+\left.\sum_{i=1}^{m}\left\|p_{i}\right\|\right|_{i} ^{\frac{\theta}{\theta+1}} M_{i}^{0} M_{1}\right)^{\frac{1}{p}}
\end{aligned}
$$

Hence there is a constant $M_{2}>0$ such that $\|x\| \leq M_{2}$.
It is easy to show that there exist numbers $\xi, \eta \in[0, T]$ such that $[q y]^{\prime}(\xi)=0$ and $[q y](\eta)=$ 0. Hence

$$
\begin{aligned}
\left|[q(t) y(t)]^{\prime}\right| & =\left|\int_{\xi}^{t}[q(t) y(t)]^{\prime \prime} d t\right| \leq \int_{0}^{T}\left|[q(t) y(t)]^{\prime \prime}\right| d t \\
& \leq \int_{0}^{T}\left|f\left(t, x(t), x\left(\tau_{1}(t)\right), \cdots, x\left(\tau_{m}(t)\right)\right)\right| d t \\
& \leq T_{t \in[0, T],\left|x_{i}\right| \leq M_{2}, i=0, \cdots, m}\left|f\left(t, x_{0}, \cdots, x_{m}\right)\right| .
\end{aligned}
$$

So

$$
|q(t) y(t)| \leq \int_{0}^{T}\left|(q(t) y(t))^{\prime}\right| d t \leq T_{t \in[0, T],\left|x_{i}\right| \leq M_{2}, i=0, \cdots, m}^{2}\left|f\left(t, x_{0}, \cdots, x_{m}\right)\right|, \quad t \in[0, T] .
$$

Then

$$
|y(t)| \leq \frac{T^{2}}{\mu} \max _{t \in[0, T],\left|x_{i}\right| \leq M_{2}, i=0, \cdots, m}\left|f\left(t, x_{0}, \cdots, x_{m}\right)\right|, \quad t \in[0, T] .
$$

This implies that

$$
\|y\| \leq \frac{T^{2}}{\mu} \max _{t \in[0, T],\left|x_{i}\right| \leq M_{2}, i=0, \cdots, m}\left|f\left(t, x_{0}, \cdots, x_{m}\right)\right|, \quad t \in[0, T] .
$$

It follows that, for $(x, y) \in \Omega_{1}$, one has that there is $H>0$ such that $\|(x, y)\| \leq H$. Hence Ω_{1} is bounded.

Suppose

(B3) There exists a constant $M>0$ such that

$$
a \int_{0}^{T} f(t, a, \cdots, a) d t>0 \text { for all }|a|>M
$$

Lemma 2.3. Suppose that (B3) holds. Then $\Omega_{2}=\{(x, y) \in \operatorname{Ker} L: N(x, y) \in \operatorname{Im} L\}$ is bounded.

Proof. For $(a, b / q(t)) \in \operatorname{Ker} L$, we have $N(a, b)=\left(\phi^{-1}(b / q(t)), f(t, a, \cdots, a)\right) . N(a, b) \in$ $\operatorname{Im} L$ implies that

$$
\int_{0}^{T} \phi^{-1}(b / q(t)) d t=0, \quad \int_{0}^{T} f(t, a, \cdots, a) d t=0
$$

It follows from condition (B3) that $|a| \leq M$ and $b=0$. Thus Ω_{2} is bounded.

Lemma 2.4. Suppose that (B3) holds. Then $\Omega_{3}=\{(x, y) \in \operatorname{Ker} L: \lambda \wedge(x, y)+(1-$ $\lambda) Q N(x, y)=0, \lambda \in[0,1]\}$ is bounded, where $\wedge: \operatorname{Ker} L \rightarrow Y / \operatorname{Im} L$ defined by $\wedge(a, b / q(t))=$ (b, a).

Proof. For $(a, b / q(t)) \in \Omega_{3}$, we have

$$
-(1-\lambda) \int_{0}^{T} \phi^{-1}(b / q(t)) d t=\lambda b T, \quad-(1-\lambda) \int_{0}^{T} f(t, a, \cdots, a) d t=\lambda a T
$$

where $\lambda \in[0,1]$.
If $\lambda=1$, then $a=b=0$. If $\lambda \neq 1$, and $|a|>M$, it follows from (B3) that

$$
0 \geq-(1-\lambda) a \int_{0}^{T} f(t, a, \cdots, a) d t=\lambda a^{2} T>0
$$

a contradiction. So $|a| \leq M$. Similarly, since

$$
0>-(1-\lambda) \int_{0}^{T} b \phi^{-1}(b / q(t)) d t=\lambda b^{2} T \geq 0 \text { for } \lambda \in[0,1), b \neq 0
$$

we get $b=0$. Hence Ω_{3} is bounded.

Theorem L. Suppose that (B1), (B2) and (B3) hold. Then equation (1) has at least one T-periodic solution if (4) holds.

Proof. Set Ω be a open bounded subset of X centered at zero such that $\Omega \supset \cup_{i=1}^{3} \overline{\Omega_{i}}$, where Ω_{1} is defined in Lemma 2.2, Ω_{2} in Lemma 2.3 and Ω_{3} in Lemma 2.4. By the definition of Ω, we have $\Omega \supset \overline{\Omega_{1}}$ and $\Omega \supset \overline{\Omega_{2}}$, thus, from Lemma 2.2 and Lemma 2.3, that $L(x, y) \neq \lambda N(x, y)$ for $(x, y) \in D(L) \backslash \operatorname{Ker} L) \cap \partial \Omega$ and $\lambda \in(0,1) ; N(x, y) \notin \operatorname{Im} L$ for $(x, y) \in \operatorname{Ker} L \cap \partial \Omega$.

We know that L is a Fredholm operator of index zero and N is L-compact on $\bar{\Omega}$. Since (x, y) is a solution of $L(x, y)=N(x, y)$ implies that x is a solution of equation (1). It suffices to get a solution (x, y) of $L(x, y)=N(x, y)$. To apply Lemma 2.1, we prove that (iii) of Lemma 2.1 (Theorem IV. 13 of [12]) hold.

In fact, let $H((x, y), \lambda)= \pm \lambda \wedge(x, y)+(1-\lambda) Q N(x, y)$. According the definition of Ω, we know $\Omega \supset \overline{\Omega_{3}}$, thus $H((x, y), \lambda) \neq 0$ for $(x, y) \in \partial \Omega \cap \operatorname{Ker} L$, thus, from Lemma 2.3, by homotopy property of degree,

$$
\begin{aligned}
& \operatorname{deg}\left(\left.Q N\right|_{\text {Ker } L}, \Omega \cap \operatorname{Ker} L, 0\right)=\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{Ker} L, 0) \\
= & \operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{Ker} L, 0)=\operatorname{deg}(\pm \wedge, \Omega \cap \operatorname{Ker} L, 0) \neq 0 \text { since } 0 \in \Omega
\end{aligned}
$$

Thus by Lemma 2.1 (Theorem IV. 13 of $[12]), L(x, y)=N(x, y)$ has at least one solution in $D(L) \cap \bar{\Omega}$, then x is a T-solution of equation (1). The proof is completed.

3 Examples

In this section, we present examples to illustrate the main result in section 2.
Example 3.1. Consider the equation

$$
\begin{equation*}
x^{\prime \prime \prime \prime}(t)=-\frac{[x(t)]^{\frac{3}{5}}}{1+2[\sin x(t)]^{8}}+\sum_{i=1}^{m} p_{i}(t)\left[x\left(t-\tau_{i}\right)\right]^{\frac{3}{5}}+r(t) \tag{3-8}
\end{equation*}
$$

where $T=2 \pi, p_{i}, r$ are all non-negative continuous 2π-periodic functions, $\tau_{i}>0(i=1, \cdots, m)$ are constants.

Corresponding to the assumptions of Theorem L, one sees

$$
f\left(t, x_{0}, x_{1}, \cdots, x_{m}\right)=-\frac{x_{0}^{\frac{3}{5}}}{1+2\left(\sin x_{0}\right)^{8}}+\sum_{i=1}^{m} p_{i}(t) x_{i}^{\frac{3}{5}}+r(t)
$$

we set

$$
g\left(t, x_{0}, x_{1}, \cdots, x_{m}\right)=-\frac{x_{0}^{\frac{3}{5}}}{1+2\left(\sin x_{0}\right)^{8}}
$$

and

$$
h\left(t, x_{0}, \cdots, x_{m}\right)=\sum_{i=1}^{m} p_{i}(t) x_{i}^{\frac{3}{5}}+r(t)
$$

and $\beta=1 / 3, \theta=3 / 5$. It is easy to see that (B1) holds.

Since

$$
\begin{aligned}
c \int_{0}^{2 \pi} f(t, c, \cdots, c) d t & =\int_{0}^{2 \pi}\left(-\frac{c^{\frac{8}{5}}}{1+2[\sin c]^{8}}+\sum_{i=1}^{m} p_{i}(t) c^{\frac{8}{5}}+c r(t)\right) d t \\
& =-\frac{2 \pi c^{\frac{8}{5}}}{1+2[\sin c]^{8}}+\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t c^{\frac{8}{5}}+c \int_{0}^{T} r(t) d t \\
& \geq\left(\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi\right) c^{\frac{8}{5}}+c \int_{0}^{2 \pi} r(t) d t
\end{aligned}
$$

implies that there is $M>0$ such that $c \int_{0}^{2 \pi} f(t, c, \cdots, c) d t>0$ for all $|c|>M$ if $\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi$. So (B3)holds if $\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi$.

It is easy to see that $\mu=1, \delta_{i}=1, M_{i}^{0}=1$, it follows that (B2) holds.
It follows from Theorem L that (8) has at least one 2π-periodic solution if

$$
\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t>2 \pi, \quad \sum_{i=1}^{m} \max _{t \in[0,2 \pi]} p_{i}(t)<\frac{1}{3}
$$

Example 3.2. Consider the equation

$$
\begin{equation*}
\left[\left((\sin t)^{2}+2\right) \phi\left(x^{\prime \prime}(t)\right)\right]^{\prime \prime}=-\frac{[x(t)]^{5}}{1+2[\sin x(t)]^{8}}+\sum_{i=1}^{m} p_{i}(t)\left[x\left(t-\tau_{i}\right)\right]^{5}+r(t) \tag{3-9}
\end{equation*}
$$

where $T=2 \pi, \phi(x)=|x|^{4} x, q(t)=(\sin t)^{2}+2, p_{i}, r$ are all non-negative with $\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t>$ $2 \pi, \tau_{i}(i=1,2, \cdots, m)$ are constants.

Corresponding to the assumptions of Theorem L, one sees

$$
f\left(t, x_{0}, x_{1}, \cdots, x_{m}\right)=-\frac{x_{0}^{5}}{1+2\left(\sin x_{0}\right)^{8}}+\sum_{i=1}^{m} p_{i}(t) x_{i}^{5}+r(t),
$$

we set

$$
g\left(t, x_{0}, x_{1}, \cdots, x_{m}\right)=-\frac{x_{0}^{5}}{1+2\left(\sin x_{0}\right)^{8}}
$$

and

$$
h\left(t, x_{0}, \cdots, x_{m}\right)=\sum_{i=1}^{m} p_{i}(t) x_{i}^{5}+r(t)
$$

and $\beta=1 / 3, \theta=5$. It is easy to see that (B1) holds.
It is easy to see $\mu=2, \delta_{i}=1, M_{i}^{0}=1$, it follows that (B2) holds.
Since

$$
\begin{aligned}
c \int_{0}^{2 \pi} f(t, c, \cdots, c) d t & =\int_{0}^{2 \pi}\left(-\frac{c^{6}}{1+2[\sin c]^{8}}+\sum_{i=1}^{m} p_{i}(t) c^{6}+c r(t)\right) d t \\
& =-\frac{2 \pi c^{6}}{1+2[\sin c]^{8}}+\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t c^{6}+c \int_{0}^{T} r(t) d t \\
& \geq\left(\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi\right) c^{6}+c \int_{0}^{2 \pi} r(t) d t
\end{aligned}
$$

implies that there is $M>0$ such that $c \int_{0}^{2 \pi} f(t, c, \cdots, c) d t>0$ for all $|c|>M$ if $\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi>0$. So (B3) holds if $\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t-2 \pi>0$.

It follows from Theorem L that equation (9) has at least one solution if

$$
\sum_{i=1}^{m} \int_{0}^{2 \pi} p_{i}(t) d t>2 \pi, \quad \frac{1}{3}>\sum_{i=0}^{m} \max _{t \in[0, T]} p_{i}(t) .
$$

References

1. R.P. Agarwal, H. Lu, D. O'Regan, Positive solutions for the boundary value problem $\left(\left|x^{\prime \prime}(t)\right|^{p-2} x^{\prime \prime}(t)\right)^{\prime \prime}=\lambda q(t) f(x(t))$, Memoirs on Differential Equations and Math. Physics, 28(2003)33-44.
2. P. Amster, M. C. Mariani, Oscillating solutions of a nonlinear fourth-order ordinary differential equation, J. Math. Anal. Appl., 325(2007)1133-1141.
3. F. Bernis, Compactness of the support in convex and nonconvex fourth-order elasticity problems, Nonl. Anal., 6(1982)1221-1242.
4. Z. Bai, B. Huang, W. Ge, The iterative solutions for some fourth-order p-Laplace equation boundary value problems, Appl. Math. Letters, 19(2006)8-14.
5. A. Cabada, The monotone method for first-order problems with linear and nonlinear boundary conditions, Appl. Math. Comput., 63(1994)163-186.
6. A. Cabada, The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems, J. Math. Anal. Appl., 185(1994) 302-320.
7. A. Cabada, R.L. Pouso, Existence theory for functional p-Laplacian equations with variable exponents. Nonl. Anal., 52(2003)557-572.
8. A. Cabada, S. Lois, Maximum principles for fourth and sixth order periodic boundary value problems, Nonl. Anal., 29(1997) 1161-1171.
9. S. Chen, W. Ni, C. Wang, Positive solution of fourth order ordinary differential equation with four-point boundary conditions, Appl. Math. Letters, 19(2006)161-168.
10. J. Chaparova, Existence and numerical approximations of periodic solutions of similinear fourth-order differential equations, J. Math. Anal. Appl., 273(2002)121-136.
11. X. Cai, J. Yu, Z. Guo, Existence of periodic solutions for fourth order difference equations, Comput. Math. Appl., 50(2005)49-55.
12. R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., 568, Springer, Berlin, 1977.
13. M. Grossinho, L. Sanchez, S. Tersian, On the solvability of a boundary value problem for a fourth-order ordinary differential equation, Appl. Math. Letters, 18(2005)439-444.
14. J. K. Hale, S. Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1993.
15. D. Jiang, W. Gao, A. Wan, A monotone method for constructing extremal solutions to fourth-order periodic boundary value problems, Appl. Math. Comput., 132(2002)411-421.
16. D. Jiang, H. Liu, X. Xu, Nonresonant singular fourth-order boundary value problems, Appl. Math. Letters, 18(2005) 69-75.
17. D. Jiang, H. Liu, L. Zhang, Optimal existence theory for single and multiple positive solutions to fourth order periodic boundary value problems, Nonl. Anal., 7(2006)841-852.
18. V.B. Kolmanoskii, Stability of functional differential equations, Academic Press, London, 1986.
19. Y. Li, Positive solutions of fourth-order periodic boundary value problems, Nonl. Anal., 54(2003)1069-1078.
20. Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281(2003)477-484.
21. X. Lin, D. Jiang, X. Li, Existence and uniqueness of solutions for singular fourth-order boundary value problems, J. Comput. Appl. Math., 196(2006)155-161.
22. Y. Liu, W. Ge, Existence theorems of positive solutions for fourth order four points boundary value problems, Anal. Appl., 2(2004)71-85.
23. Y. Liu, W. Ge, Solvability of two-point BVPs for fourth-order differential equations at resonance, Zeitschrift fur Analysis und Ihre Anwendungen, 22(2003)977-989.
24. Y. Liu, W. Ge, Solvability of nonlocal boundary value problems for ordinary differential equations of higher order, Nonl. Anal., 57(2004)435-458.
25. Y. Liu, W. Ge, Positive solutions of three-point boundary value problems for fourth order differential equation with p-Laplacian operator. Canada. Appl. Math. Qua. 12(2004)177198.
26. Y. Liu, Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations, J. Math. Anal. Appl., 327(2007)435-452.
27. Y. Liu, Solvability of periodic boundary value problems for nth-order ordinary differential equations, Comput. Math. Appl., 52(2006)1165-1182.
28. R. Ma, Nodal solutions for a fourth-order two-point boundary value problem, J. Math. Anal. Appl., 314(2006) 254-265.
29. A. Nurmuhammad, M. Muhammad, M. Mori, M. Sugihara, Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation, J. Comput. Appl. Math., 182(2005) 32-50.
30. C. Pang, W. Dong, Z. Wei, Multiple solutions for fourth-order boundary value problem, J. Math. Anal. Appl., 314(2006)464-476.
31. T. Tanigawa, Oscillation and nonoscilation theorems for a class of fourth-order quasilinear functional differential equations, Hiroshima Math. J., 33(2003)297-316.
32. Z. Wei and C. Pang, The method of lower and upper solutions for fourth order singular m-point boundary value problems, J. Math. Anal. Appl., 322(2006)675-692.
33. Q. Yao, Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem, Nonl. Anal., 63(2005)237-246.
34. Q. Zhang, S. Chen, J. Lü, Upper and lower solution method for fourth-order four-point boundary value problems, J. Comput. Appl. Math., 196(2006)387-393.

[^0]: ${ }^{1}$ Supported by Natural Science Foundation of Hunan province, P.R.China(No:06JJ5008) and Natural Science Foundation of Guangdong province(No:7004569)

