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Abstract 
 
 
 

Some new properties of the Boubaker polynomials are presented in this paper. Among 
others, it is shown that that all positive zeros of the Boubaker polynomial Bn(x) are in [0,2]. 
Also, there are only two pure imaginary zeros of BBn(x). 
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1   Introduction 
 
Recently, the use of polynomial expansions took a big part of the most 
known mathematical expansion schemes and yielded meaningful results to 
both numerical and analytical analysis [1-8]. In this context, the Boubaker 
polynomials were established as a guide for solving some applied physics 
problems [9-22] where appears, i.e.  the following equation :    
 

t
txfk

x
txu

∂
∂

=
∂

∂ ),(
²

),(²                  (1)  

 
defined in the domain D: 
 

⎩
⎨
⎧
>

<<−
0

0
:D

t
xH

                                     (2) 

 
In this paper, we intend to to give some new properties of the Boubaker 
polynomials. We will show among others that all positive zeros of the 
Boubaker polynomial Bn(x) are in [0,2]. Also, we try to demonstrate that 
there are only two pure imaginary zeros of Bn(x). 
 
 
2   History of the Boubaker polynomials 
 
2.1 The Boubaker polynomials  
 
The first monomial definition of the Boubaker polynomials [9-12] appeared 
in a physical study that yielded an analytical solution to heat equation 
inside a physical model. This monomial definition is defined by [12-18] : 
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(The symbol: ⎣ ⎦ designates the floor function) 
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The Boubaker polynomials, which are a polynomial sequence with integer 
coefficients, have the explicit monic expression as follow: 
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 The recurrence relation of the Boubaker polynomials is 
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2.2 The modified Boubaker polynomials (Boubaker-Turki polynomials) 
 
The Boubaker-Turki polynomials or modified Boubaker polynomials 
[10,17], which are an enhanced form of the formerly defined polynomials, 
have been established as solutions of the second order differential 
equation: 
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The modified Boubaker polynomials have a recursive coefficient definition 
[17] expressed by equation : 
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Both Boubaker and Boubaker-Turki polynomials are the source of several 
registered integer sequences [12-14]. 
 
 
The ordinary generating function of the Boubaker-Turki polynomials:  
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2.3 The 4q-Boubaker polynomials subsequence 
 
The Boubaker polynomials BBn explicit monomial form evoked, while 
prospected, some singularities for m=4, 8, 12, etc. In fact for the general 
case: m=4q the 2q rank monomial term is removed from the explicit form so 
that the whole expression contains only 2q effective terms. Correspondent 
4q-order Boubaker polynomials [11] are presented in equation (9) as a 
general form and equation (10) as first functions: 
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3  The upper bound of the zeros of the Boubaker polynomial 
 
 
Theorem 3.1  Let  kx ( ) be zeros of the Boubaker polynomial Bnk ≤≤ 1 n, then: 
 
                                   nkforxk ≤≤<  1                           ,2                                                  (11) 
 
 
Proof.   Making use of the recurrence relation (5) ,we obtain the following 
relation: 
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and  
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Hence, from (12), zeros of the Boubaker polynomial BBn are also eigenvalues 
of matrix [ . In fact, the eigen polynomial of the matrix is precisely the 
Boubaker polynomial. We can use the Gerschgorin's theorem [6] to 
estimate the eigenvalues of 

]M

[ ]M . By the special structure of [ , it is easy to 
see that all eigenvalues are in the circle with centre at 0 and radius 2. This 
means that the result (11) holds. 

]M

 
 
 
Theorem 3.2  There holds the following expression: 
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Proof.   From (5), for m>2, one can get: 
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Summing the equalities together, gives the desired result as required. 
 
 
 
4  Some properties of the Boubaker polynomial Bn
 
Now let us introduce the m-distribution notion [1]. A nondecreasing 
bounded function  α  defined in ]-∞, ∞[,  is called an m-distribution, if it 
takes infinitely many distinct values, and its moments, that is, the improper 
Stieltjes integral:  
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exists and are finite for n=0,1,2,… 
 
 
Lemma 4.1 Let { }  0

∞
=nnp be the sequence of the orthogonal polynomials associated 

with an m-distribution α . Then each has exactly n  simple real zeros lying in 
the interior of the smallest interval containing supp(α). 

 np

 
 
Note that )1( 2 −=± ii  are two zeros of B2(x) and i± are two zeros of B3(x). 
 
 
Theorem 4.1  The Boubaker polynomial Bn(x) does not belong to orthogonal 
polynomial system associated with any m-distribution. 
 
 
The Boubaker polynomials have a similar Christoffel-Darboux formula. 
 
 
Theorem 4.2  The following equality holds: 
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Proof.   The recurrence relation (5) yields that: 
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in which :  . Summing (19) from 0 to n gives the 
desired formula. 
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If yx →  in (17), we obtain the following Corollary  
 
Corollary 4.1  The following equality is satisfied 
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5  Further study on zeros of  Bn(x) 
 
 
Lemma 5.1 Each Bn(x) (n≥1) has exactly n simple zeros. 
 
 

Theorem 5.1  The Boubaker polynomial Bn (n≥1) has 1
2

−⎥⎦
⎥
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⎢n  zeros for 0 < x < 2   

 
Proof.   Thanks to the relation 
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to find the zeros of BBn(x)=0 for 0<x<2,  we set x=2cost with 
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It follows easily that  BBn(x)=0  has 1
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⎢n   zeros for 0 < x < 2  and the proof is 

complete. 
 
 
 
Remark 5.1  Now we can count the zeros of Bn  as follows: 
 

1. when n is even, all of the zeros involve 12 −
n  positive real zeros and 12 −

n  

negative real zeros which locate symmetrically in[-2,2] and 2 conjugate pure 
imaginary zeros. 

2. when n is odd, all of the zeros involve ( ) 12
1 −−n  positive real zeros and 

( ) 12
1 −−n  negative real zeros which locate symmetrically in[-2,2] and 2 

conjugate pure imaginary zeros. 

The Boubaker polynomial Bn  (n≥1) has 1
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Corollary 5.1  The Boubaker polynomial Bn can’t have non-simple (or double) 
zeros) 
 
In fact,  if we suppose that there exists n  such that BBn has at least a non-
simple (or double) zero , denoted by x0: In view of Corollary 4.1, we 
deduce:  
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which is absurd and we are done.  
 

 
Theorem 5.2  Let ±tni be  the two pure imaginary zeros of the Boubaker  
polynomial Bn(x) (n≥2)  then tn converges to 3

32  
 

 
Proof.   We also have 
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To find solutions of BBn(x)=0  for positive imaginary x we set. 

 
even is  if            )coth(tanh2 nntt =           (26) 

and 
odd is  if            )tanh(tanh2 nntt =           (27) 

 
 
 
If n≥2 there is a unique solution tn >0 Since  for each 
fixed t>0, we obtain that . Therefore  

      as   1)tanh( ∞→→ nnt
1)tanh(2 →nt  /322)sinh(2 →nt . 

 
Theorem 5.3  There are only two pure imaginary zeros of the Boubaker 
polynomial B4q(x) of degree 4q 
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Proof.   Let ai (a>0)  be a pure imaginary zero of BB4q(x). 
)()( 4 aiBaf q=  

 
It is an easy task to show that the polynomial in  of degree 4q has 
only one positive real zero. From (9), we have:  
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Let us check the sign changes of the coefficients in . Let us denote the  
ratios of coefficients in  by 

)(af
)(af [ ]ppf ,1+α . Then: 
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Hence, the coefficient of is positive if p<q, otherwise is negative. By 
denoting the number of sign changes of coefficients in by V

pqa 24 −

)(af f and 
number of positive real zeros of  by N)(af f , we can use the Descartes's rule 
of signs to obtain: 

,2kVN ff −=                                                                (30) 
 

 
where k is an integer. 
 
 
It is clear that k=0 and then Nf =1,  which completes the proof. 
 
6. Conclusion  
 
 
The upper bound of the zeros of the Boubaker polynomials has been 
studied. This is of interest not only because of its application to determine 
new properties of Boubaker polynomials but also because the used method 
can be applied to solve problems in Physics, Chemistry Biology and 
Medicine.  By means of these polynomials, appropriate mathematical 
algorithms and computational methods can easily be developed to reveal 
specific information needed to solve real physiological and pathological 
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problems. For example, using the Boubaker polynomials expansion scheme 
described here, one can solve the Bloch NMR flow equations for different 
flow systems. With these possibilities, we can still find new and robust 
algorithms to solve very old problems. These possibilities will be explored 
in our next investigation. 
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