ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations
Control Processes

Viscosity Sub-solutions in the Theory of M-hessian Equations


Nina Mihajlovna Ivochkina

Saint Petersburg State University
Professor of Department of Mathematical Physics
St. Petersburg, Peterhof, Universitetsky prospekt, 28
Professor. Doctor of Physical and Mathematical Sciences

Svetlana Ivanovna Prokof'eva

The St. Petersburg State University of Architecture and Civil Engineering
math. dept. Assoc.Prof.
St. Petersburg, 2-nd Krasnoarmeiskaia St. 4
Assoc.Prof. PhD in Physics and Mathematics

Galina Vladimirovna Yakunina

The St. Petersburg State University of Architecture and Civil Engineering
Associate Professor of Department of Mathematics
St. Petersburg, 2-nd Krasnoarmeiskaia St. 4
Assoc.Prof. PhD in Physics and Mathematics


We show that possible non-smoothness of viscosity sub-solutions is of no interest in the theory of m-Hessian operators. It is crucial that the set of viscosity C2-sub-solutions coincides with the set of correct setting of the Dirichlet problem. Moreover, we present an example to demonstrate that on the set of ellipticity of 5-Hessian operator the setting of the Dirichlet problem is incorrect because our problem has two infinitely differentiable solutions but only one of them is viscosity sub-solution.



  1. Bernshtejn S. N. Sobranie sochinenij [Collected works]. Vol. 3, AN SSSR, 1960. 440 p
  2. Nirenberg L. On nonlinear elliptic partial differential equations and Holder continuity. Comm. Pure and Appl. Math., 6 (1953), pp. 103-156
  3. Pogorelov A. V. Mnogomernaja problema Minkovskogo [Multidimensional Minkowski Problem]. Moscow, “Nauka”, 1975. 95 p
  4. Ivochkina N. M. [A priori estimate of !!!! ERROR!!! IMAGE IS NOT ALLOWERD! for convex solutions of the Dirichlet problem for the Monge-Ampere equations]. Zap. nauch. semin. LOMI, 1980; (96): 69-79. (In Russ. )
  5. Ladyzhenskaja O. A., Ural'ceva N. N. Linejnye i kvazilinejnye uravnenija jellipticheskogo tipa [Linear and quasilinear elliptic equations]. Moscow, “Nauka”, 1973. 576 p
  6. Lions P. -L. Optimal control of diffusion processes and Hamilton - Jacobi - Bellman equations. Part II: Viscosity solutions and uniqueness, Comm. Partial Diff. Eqns. 8 (1983), pp. 1229-1276
  7. Evans L. C. Classical solutions of fully nonlinear convex second order elliptic equations. Comm. Pure Appl. Math. 1982, 25, pp. 333-363
  8. Krylov N. V. [Boundedly nonhomogeneous elliptic and parabolic equations]. Izv. AN SSSR, Ser. Mat. , 1983; (47 №1): 75-108. (In Russ. )
  9. Safonov M. V. [The Harnack inequality and the Hö lder property of solutions of nonlinear elliptic equations with a nonstandard growth condition]. Zap. nauch. semin. LOMI, 1983; (12): 272-287. (In Russ. )
  10. Ivochkina N. M. [A description of the stability cones generated by differential operators of Monge-Ampere type]. Mat. sb., 1983; (22): 265-275. (In Russ. )
  11. Ivochkina N. M. [Solution of the Dirichlet problem for some equations of Monge-Ampere type]. Mat. sb, 1985; (128(170)): 403-415. (In Russ. )
  12. L. Caffarelli, L. Nirenberg, J. Spruck. The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the Hessian. Acta Math., 155 (1985), pp. 261-301
  13. Ivochkina N. M. [From Gå rding cones to p-convex hypersurfaces]. RUDN Fund. Napravlenija, 2012; (40): 94-104. (In Russ. )
  14. N. M. Ivochkina, S. I. Prokof'eva, G. V. Yakunina. The Gå rding cones in the modern theory of fully nonlinear second order differential equations. Journal of Mathematical Sciences., 2012, Vol. 184, Issue 3, pp. 295-315
  15. Ivochkina, N. M. Filimonenkova N. V. On the backgrounds of the theory of m-Hessian equations. Comm. Pure Appl. Anal., 12 (2013), №4
  16. Ivochkina N. M. On classic solvability of the m-Hessian evolution equation. AMS Transl. 229 (2010), Series 2, pp. 119-129
  17. M. C. Crandall, H. Ishii, P. L. Lions. User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., 1992, Vol. 27, pp. 1-67
  18. Trudinger N. S. The Dirichlet problem for the prescribed curvature equations. Arch. Rat. Mech. Anal., 1990, Vol. 111, pp. 153-179
  19. Ivochkina N. M. [The Dirichlet principle in the theory of equations of Monge-Ampere type]. Algabra i analiz, 1992; Vol. 4(6): 131-156. (In Russ. )
  20. Ishii H. On uniqueness and existance of viscosity solutions of fully nonlinear second order elliptic equtions. Comm. Pure Appl. Math., 1989, Vol. 42, pp. 14-45
  21. Jensen R. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rat. Mech. Anal., 1988, Vol. 101, pp. 1-27
  22. Ivochkina N. M. Filimonenkova N. V. [Geometrical models in the theory of the nonlinear differential equations]. Preprint SPbMO, 2016; (6). (In Russ. )
  23. Gå rding L. An inequality for hyperbolic polynomials., J. Math. Mech., 1959, Vol. 8, pp. 957-965
  24. Filimonenkova N. V., Bakusov P. A. [Hyperbolic polynomials and Gå rding cones]. Matematicheskoe prosveshhenie, 2016; (20): 143-166. (In Russ. )
  25. Prokof'eva S. I., Jakunina G. V. [The Notion of Ellipticity for Nonlinear Second Order Differential Equations]. Differencial'nie uravnenia i processy upravlenia, 2012, no. 1 (In Russ. ) Available at:

Full text (pdf)