ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Analytical-Numerical Methods for Search of Hidden Oscillations in Multidimensional Dynamical Systems

Author(s):

I. M. Burkin

Professor, head of department of mathematical analysis,
Department of Mechanics and Mathematics,
Tula State University,
Tula, Russia

i-burkin@yandex.ru

Nguyen Ngoc Hien

graduate student,
Department of Mechanics and Mathematics,
Tula State University,
Tula, Russia

hiendhdt@gmail.com

Abstract:

In nonlinear dynamical systems attractors can be regarded as self-excited and hidden ones. Self-excited attractors can be localized numerically by a standard computational procedure in which after a transient process a trajectory starting from a point of unstable manifold in a neighborhood of equilibrium reaches a state of oscillation; therefore one can easily identify it. In contrast, for a hidden attractor a basin of attraction does not intersect with small neighborhoods of equilibria. Since classical attractors are self-excited they therefore can be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. In this paper we propose a new efficient analytical–numerical method for the study of hidden oscillations in multidimensional dynamical systems.

References:

  1. Jafari, S., Sprott, J. C., Golpayegani, S. M. R. H. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A, 2013, vol. 377, pp. 699-702
  2. Molaie, M., Jafari, S., Sprott, J. C., Golpayegani, S. M. R. H. Simple chaotic flows with one stable equilibrium. Int. J. Bifurcation and Chaos. 2013, vol. 23, no. 11. 1350188
  3. X. Wangand, G. Chen, A chaotic system with only one stable equilibrium Communications in Nonlinear Science and Numerical Simulation. 2012, vol. 17, no. 3, pp. 1264-1272
  4. Wei, Z. Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A, 2011, vol. 376, pp. 102-108
  5. Wei, Z. Delayed feedback on the 3-D chaotic system only with two stable node-foci. Comput. Math. Appl. 2011, vol. 63, pp. 728-738
  6. Wang, X. , Chen, G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn., 2013, vol. 71, pp. 429-436
  7. Seng-Kin Lao, Shekofteh Y., Jafari . S, Sprott, J. C. Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor. Int. J. Bifurcation Chaos, 2014, vol. 24, no. 01. 1450010
  8. Leonov G. A. Eff ective methods for periodic oscillations search in dynamical systems. Appl. Math. Mech., 2010, vol. 74, no. 1, pp. 24-50
  9. Leonov G. A,. Vagaitsev V. I, Kuznetsov N. V. Algorithm for localizing Chua attractors based on the harmonic linearization method. Doklady Mathematics, 2010, vol. 82, no. 1, pp. 663-666. (doi:10. 1134/S1064562410040411)
  10. Leonov G. A, Bragin V. O., Kuznetsov N. V. Algorithm for constructing counterexamples to the Kalman problem. Doklady Mathematics, 2010, vol. 82, no. 1, pp. 540-542.. (doi:10. 1134/S1064562410040101)
  11. Leonov G. A., Kuznetsov N. V. Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 2011, vol. 8, no. 1, pp. 475-481. (doi:10. 1134/S1064562411040120)
  12. Leonov G. A., Kuznetsov N. V. Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems". IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no1, pp. 2494-2505. (doi:10. 3182/20110828-6-IT-1002. 03315)
  13. Kuznetsov N. V., Leonov G. A., Seledzhi S. M. Hidden oscillations in nonlinear control systems, IFAC Proceedings Volumes" IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no1, pp. 2506-2510. (doi: 10. 3182/20110828-6-IT-1002. 03316)
  14. Bragin V. O., Vagaitsev V. I., Kuznetsov N. V., Leonov G. A. Algorithms for fi nding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 2011, vol. 50, no. 4, pp. 511-543
  15. Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, vol. 375, pp. 2230-2233
  16. Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seledzhi, S. M., Vagaitsev, V. I. Hidden oscillations in dynamical systems, Trans Syst. Contr., 2011, . no. 6, pp. 54-67
  17. Leonov G. A, Kuznetsov N. V., Vagaitsev V. I. Hidden attractor in smooth Chua systems. Physica D: Nonlinear Phenomena, 2012, 241(18), pp. 1482-1486. (doi: 10. 1016/j. physd. 2012. 05. 016)
  18. Kuznetsov, N. V., Kuznetsova, O. A., Leonov, G. A., Vagaitsev, V. I. Analytical-numerical localization of hidden attractor in electrical Chua’s circuit. Lecture Notes in Electrical Engineering, 2013, 174, pp. 149-158
  19. Leonov, G. A., Kuznetsov N. V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcation and Chaos, 2013, vol. 23, no. 1. 1330002
  20. Leonov G. A., Kuznetsov N. V. Analytical-numerical methods for hidden attractors localization: The 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuit. Numerical Methods for Differential Equations, Optimization, and Technological Problems, Computational Methods in Applied Sciences, 2013, vol. 27, Part 1 (Springer), pp. 41-64
  21. Andrievsky B. R., Kuznetsov N. V., Leonov G. A., Pogromsky A. Yu. Hidden Oscillations in Aircraft Flight Control System with Input Saturation. IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 5, no. 1, pp. 75-79. (doi: 10. 3182/20130703-3-FR-4039. 00026)
  22. Andrievsky B. R., Kuznetsov N. V., Leonov G. A., Seledzhi S. M. Hidden oscillations in stabilization system of flexible launcher with saturating actuators. IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 19, no. 1, pp. 37-41. (doi: 10. 3182/20130902-5-DE-2040. 00040)
  23. Chua L. O. A zoo of Strange Attractors from the Canonical Chua's Circuits. Proc. Of the IEEE 35th Midwest Symp. on Circuits and Systems (Cat. No. 92CH3099-9). Washington, 1992, vol. 2, pp. 916 - 926
  24. Lorenz E. N. Deterministic nonperiodic flow J. Atmos. Sci., 1963, vol. 20, pp. 65 -75
  25. Rö ssler O. E. An Equation for Continuous Chaos. Physics Letters A, 1976, vol. 57, no. 5, pp. 397 -398
  26. Burkin I. M. The Buffer Phenomenon in Multidimensional Dynamical Systems. Diff. Equations, 2002, vol. 38, no. 5, pp. 615-625
  27. Burkin I. M., Burkina L. I.. [Frequency criterion for the existence of cycles of MIMO automatic control systems] VestnicTulGU. " Differencialnie uravneniya ipricladnie zadachi", 2010, vol. 1, pp. 3-14. (In Russ)
  28. Burkin I. M., Soboleva D. V. [On structure of global attractor of MIMO automatic control systems]. IzvestiyaTulGU. Estestvenniyenauki, 2012, vol. 1, pp. 5-16. (In Russ)
  29. Burkin I. M., Burkina L. I [Hard excited oscillation of MIMO automatic control systems]. VestnicTulGU. " Differencialnie uravneniya ipricladnie zadachi", 2012, vol. 1, pp. 3-13. (In Russ)
  30. Savaci F. A., Gunel S. Harmonic Balance Analysis of the Generalized Chua’s Circuit. Int. J. Bifurcation and Chaos 2006, vol. 16, no 8, pp. 2325-2332
  31. Kalman R. E. Physical and Mathematical mechanisms of instability in nonlinear automatic control systems. Transactions of ASME. 1957, vol. 79, no. 3, pp. 553-566
  32. Gelig A. Kh., Leonov G. A., Yakubovich V. A. Ustoichivost nelinejnyh system s needinstvennim sostoyaniem ravnovesya [Nhe stability of nonlinear systems with nonunique equilibrium] Moscow, Nauka Publ., 1978. 400 p
  33. Leonov G. A., Burkin I. M., Shepeljavyi A. I. Frequency Methods in Oscillation Theory. Kluwer Academic Publishers, 1996. 404 p
  34. Holodniok M., Klich A., Kubichek M., Marek M. Metody analiza nelinejnyh
    dinamicheskih modelej
    [Methods of the analysis of nonlinear dynamic models], Moscow, Mir Publ, 1991. 366 p.
  35. Aizerman, M. A. [On a problem concerning the stability in the large of dynamical systems] Uspekhi Mat. Nauk, 1949, vol. 4, pp. 187-188 (in Russ)
  36. Krasovsky, N. N. [Theorems on the stability of motions determined by a system of two equations]. Prikl. Mat. Mekh., 1952, vol. 16, no. 5, pp. 547-554 (in Russ. )
  37. Pliss V. A. Nelokalnie problemy teorii kolebanii [Nonlocal problems of the theory of oscillations]. Moscow, Nauka Publ., 1964. 367 p
  38. Leonov G. A On stability in the large of nonlinear systems in the critical case of two zero roots] Pricl. Mat. Mekh, 1981, vol. 45, no. 4, pp. 752-755. (in Russ. )
  39. Leonov G. A., Ponomarenco D. V., Smirnova V. B. Frequancy methods for nonlinear analysis. Theory and applications.. Singapore: World Scientific, 1996, 498 p
  40. Barabanov, N. E. [On the Kalman problem] Sib. Mat. Juornal, 1988, vol. 24, no. 3, pp. 3-11. (in Russ. )
  41. Leonov G. A,. Andrievskii B. R,. Kuznetsov N. V., Pogromskii A. Yu. Aircraft Control with Anti-Windup Compensation. Differential Equations, 2012, vol. 48, no. 13, pp. 1700-1720
  42. Hahs, D., Sorrells, J. Dynamic vehicle control (Problem). Proc. American Control Conf. (ACC 1991). 1991, Boston, USA, pp. 2967-2968
  43. Neimark Yu. I. Landa P. S. Stohasticheskie i haoticheskie kolebaniya [Stochastic and chaotic osillations] Moscow, Nauka Publ., 1987. 423 p
  44. Leonov G. A., Boichenko V. A. Lyapunov’s Direct Method in the Estimation of the Hausdorf Dimesion of Attractors. Acta Applicandae Mathematicae. 1992, vol. 26, pp. 1-60
  45. Leonov G. A [Upper Estimates of the Hausdorff Dimension of Attractors]. Vestnik St. Petersburg University, Mathematics, 1998, vol. 31, no. 1, pp. 19-22. (in Russ. )
  46. Magnitskii N. A., Sidorov S. V. New Methods for Chaotic Dynamics. Singapure:World Scientific, 2006, 363 p

Full text (pdf)