Extrapolation Algorithms for Stochastic Differential Systems Based on Modeling Special Branching Process
Author(s):
Konstantin A. Rybakov
Moscow aviation institute (national research university),
Mathematical cybernetics department, associate professor
associate professor, candidate of physico-mathematical sciences
rkoffice@mail.ru
Abstract:
New algorithms for solving the extrapolation problem for nonlinear
stochastic differential systems by statistical modeling are given.
These algorithms are based on optimal filtering algorithms by modeling
the special random process with terminating and branching paths.
The solution of extrapolation problem can be found by numerical methods for
solving stochastic differential equations and methods for modeling inhomogeneous Poisson flows.
References:
- Averina T. A. New Algorithms for Statistical Modeling of Inhomogeneous Poisson Ensembles. Computational Mathematics and Mathematical Physics, 2010, vol. 50, no. 1, pp. 12-18
- Kazakov I. Ye., Artem’ev V. M., Bukhalev V. A. Analiz sistem sluchaynoy struktury [Analysis of Systems with Random Structure]. Moscow, Fizmatlit [Fizmatlit Publishing Company, Nauka Publishers], 1993. (In Russian)
- Kuznetsov D. F. Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya [Stochastic Differential Equations: Theory and Practice of Numerical Solution]. St. Petersburg, Izd-vo Politekhn. un-ta [Publishing House of the St. Petersburg Polytechnic University], 2010. (In Russian)
- Miller B. M., Pankov A. R. Teoriya sluchaynykh protsessov v primerakh i zadachakh [Theory of Random Processes in Examples and Problems]. Moscow, Fizmatlit [Fizmatlit Publishing Company], 2002. (In Russian)
- Mikhaylov G. A., Averina T. A. The Maximal Section Algorithm in the Monte Carlo Method. Doklady Mathematics, 2009, vol. 80, no. 2, pp. 671-673
- Mikhailov G. A., Rogazinskii S. V. The Modified Majorant Frequency Method for Numerical Simulation of the Generalized Exponential Distribution. Doklady Mathematics, 2012, vol. 85, no. 3, pp. 325-327
- Oksendal B. Stochastic Differential Equations: An Introduction with Applications. Springer, 1998
- Panteleev A. V., Rudenko Ye. A., Bortakovskiy A. S. Nelineynye sistemy upravleniya: opisanie, analiz i sintez [Nonlinear Control Systems: Description, Analysis, and Synthesis]. Moscow, Vuzovskaya kniga [University Book], 2008. (In Russian)
- Pugachev V. S., Sinitsyn I. N. Stochastic Systems: Theory and Applications. World Scientific, 2001
- Rybakov K. A. Svedenie zadachi nelineynoy filtratsii k zadache analiza stokhasticheskikh sistem s obryvami i vetvleniyami traektoriy [Reducing the Nonlinear Filtering Problem to the Analysis of Stochastic Systems with Terminating and Branching Paths]. Differentsialnye uravneniya i protsessy upravleniya [Differential Equations and Control Processes], 2012, no. 3, pp. 91-110. Available at: http://www.math.spbu.ru/diffjournal. (In Russian)
- Rybakov K. A. Modifitsirovannyy algoritm optimal'noy fil'tratsii signalov na osnove modelirovaniya spetsial'nogo vetvyashchegosya protsessa [Modified Algorithm for Optimal Signal Filtering Based on Modeling Special Branching Process]. Aviakosmicheskoe priborostroenie [Aerospace Instrument-Making], 2013, no. 3, pp. 15-20. (In Russian)
- Sinitsyn I. N. Fil'try Kalmana i Pugacheva [Kalman and Pugachev Filters]. Moscow, Logos [Logos], 2007. (In Russian)
- Tikhonov V. I., Kul'man N. K. Nelineynaya fil'tratsiya i kvazikogerentnyy priem signalov [Nonlinear Filtering and Quasi-Coherent Reception of Signals]. Moscow, Sovetskoe radio [Soviet Radio], 1975. (In Russian)
- Artemiev S. S., Averina T. A. Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations. VSP, 1997
- Coleman W. A. Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering, 1968, vol. 32, pp. 76-81
- Kloeden P. E., Platen E. Numerical Solution of Stochastic Differential Equations. Springer, 1995
- Matsumoto M., Nishimura T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation, 1998, vol. 8, no. 1, pp. 3-30
- Thomas D. B., Luk W., Leong P. H. W., Villasenor J. D. Gaussian Random Number Generators. ACM Computing Surveys, 2007, vol. 39, no. 4, pp. 11:1-11:38