ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

An Approach to the Construction of Two-sided Estimates for Sets of Solutions of Nonlinear Differential Equations with Interval Parameters by Projection Methods


Alexander Anatolievich Rogoza

Bauman Moscow State Technical University (BMSTU),
Kaluga, Bazenova st, 2.


The paper deals with issues related to the construction of two-sided estimates of the solution sets of systems of nonlinear differential equations with interval parameters. The convergence of interval estimates to the set of exact solutions in the Hausdorff metric has been substantiated. Theorems on coordinate wise convergence to the set of exact solutions have been proved. Thus, the proposed approach allows us to deal with wrapping effect. The algorithm constructs the approximate solutions of this problem by using analytical formulas obtained by projection methods. It is essential that the constructed approximation takes into account the global error interval estimate, which results in getting a guaranteed evaluation.



  1. Ahlefeld G. Yu Hertzberger. Vvedenie v intervalnie vichislenia [Introduction to interval calculations]. Moscow, Mir, 1987. 356 p
  2. Verbitsky V. I, Gorban A. N, Utyubaev G. S, Shokin Y. I. Effect Moore interval spaces. Dokl. USSR Academy of Sciences, 304, №1, 1989, 17-22. (In Russ)
  3. Dobronets B. S, Shaidurov V. V. Dvystoronnie chislennie metodi [Bilateral numerical methods]. Novosibirsk, Nauka, 1990. 208 p
  4. Kalmykov S. A, Shokin Y. I, Yuldashev Z. K. Methodi intervalnogo analiza [Methods of interval analysis]. Novosibirsk, Nauka, 1986. 221 p
  5. Krasovsky N. N. Igrovie zadachi o vstreche dvigenii [Game Problems on the motions]. Moscow, Nauka, 1970. 270 p
  6. Krasovsky N. N. Ypravlenie v dinamicheskih sistemah [Control of dynamic systems]. Moscow, Nauka, 1985
  7. Kostousova E. K. Poliedralnie approksimacii v zadachax garantirovannogo ypravlenia i ocenivania. Doct. Diss. [Polyhedral approximation in problems of guaranteed control and evaluation. Doct. Diss]. Ekaterinburg, 2005. 238 p
  8. Kurzhanskii A. B. Ypravlenie i nabludenie v ysloviah neopredelennosti [Control and surveillance in the face of uncertainty]. Moscow, Nauka, 1977
  9. Martynyuk A. A, Gutowski R. Integralnie neravenstva i ystoichivost dvizenia [Integral inequalities and sustainability movement]. Kiev, Naukova Dumka, 1979. 272 p
  10. Marchuk G. I., Agoshkov V. I. Vvedenie v proekcionno-setochnie methodi [Introduction to the projection-grid methods]. Moscow: Science, Home edition of Physical and mathematical literature, 1981. 416 p
  11. Nazin S. A. Ellipsoidalnoe i intervalnoe ocenivanie sostoianii i parametrov diskretnih dinamicheskih sistem s neopredelennim opisaniem parametrov // [Ellipsoidal and interval estimation states and parameters of discrete dynamical systems with uncertain model description. Doct. Diss]. Moscow, 2004. 118 p
  12. Rogalev A. N. Ensembles systems of differential equations with interval data. Interval Mathematics and distribution restrictions. 2004. 240-254. (In Russ. )
  13. Smirnov V. I. Kurs vishei matematiki [Course of Higher Mathematics], Volume 3, Part 2, Nauka. - 9 th ed., 1974. 671 p
  14. Chernousko F. L. Ocenivanie phasovogo sostoinia dinamicheskih sisietm [Evaluation of the phase state of dynamical systems]. Moscow, Nauka, 1988
  15. Chernousko F. L. State estimation for dynamic systems. Boca Raton, Florida: CRC Press, 1994
  16. Jaulin L., Kieffer M., Didrit O., Walter E. Applied interval analysis. London: Springer-Verlag, 2001
  17. Kurzhanski A. B., Valyi I. Ellipsoidal calculus for estimation and control. Boston: Birkhauser, 1997
  18. Kurzhanski A. B., Valiov V. M. (Eds). Modeling techniques for uncertain system. Boston: Birkhauser, 1994
  19. Matasov A. I. Estimators for uncertain dynamic systems. Boston: Kluwer, 1999
  20. Milanese M., Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators. IEEE Trans. Autom. Contr., 1982, 27, No. 2, pp. 408-414
  21. Milanese M., Norton J., Piet-Lahanier H., Walter E. (Eds). Bounding approaches to system identification. N. Y. : Plenum Press, 1996
  22. Moore R. E. Interval analysis. - Prentice Hall: Englewood Cliffs, N. -J., 1966. - 145 p
  23. Stewart N. F. A heuristic to reduce the wrapping effect in the numerical solution of x′ =f (t , x ). BIT, No. 11, 1971, 328-337
  24. Walter W. Differential and integral inequalities. - Berlin, Springer, 1970. - 195 p

Full text (pdf)