The Method of Transfer to the Derivative Space: 40 Years of Evolution
Author(s):
I. M. Burkin
Professor, head of department of mathematical analysis,
Department of Mechanics and Mathematics,
Tula State University,
Tula, Russia
i-burkin@yandex.ru
Abstract:
In 1975 the so called “method of transfer to the derivative space”
was proposed. It is an efficiently verified frequency criterion
of the existence of a nontrivial periodic solution in multidimensional
models of automatic control systems with one differentiable nonlinear term.
The method used the classical torus principle and refrained from any
constructions in the phase space of the system under study. Moreover,
the method allowed researchers to broaden the class of systems to that
it may be applied. In this work we give a survey of the results presenting
generalization and expansion of the method. We also show the connection
between the method of transfer to the derivative space, well known the
Poincare-Bendixon generalized principle proposed by R. A. Smith and the
results of contemporary authors who are active in the theory of oscillations
in multidimensional systems. During recent years the author obtained
frequency criteria of the existence of orbitally stable cycles in
multivariable automatic control systems (MIMO systems) and the methods
of construction of multidimensional systems having the only equilibrium
state and any given in advance number of orbitally stable cycles,
which are described in the paper. The extension of the Poincare-Bendixon
generalized principle to multidimensional systems with angular coordinate
is presented. We show the application of described methods of investigation
of oscillation processes in multidimensional dynamical systems to the solving
S. Smale problem from the biological cells chemical kinetics theory
and also to the finding hidden attractors of the Chua generalized
system and minimal global attractor of a system with a polynomial
nonlinear term. The publication is illustrated by numerous examples.
Keywords
- automatic control systems
- orbital stability
- periodic solutions
- Poincare-Bendixon principle
References:
- Burkin I. M. Leonov G. A. Chastotnye usloviya suschestvovaniya netrivial'nogo periodicheskogo resheniya u nelineynoy sistemy s odnoy stazionarnoy nelineynost'yu. Metody i modeli upravleniya. 1975, vyp. 9. RPI, Riga, s. 175-177
- Burkin I. M., Leonov G. A. O suschestvovanii netrivial'nych periodicheskich resheniy v avtokolebatel'nych sistemach. Sib. mat. zhurnal. 1977, №2,. s. 251-262
- Friedrichs D. O. On nonlinear vibrations of third order. Studies in Nonlinear Vibrarion Theory. Institute of Mathematics and Mechanics, New York University Press, 1946, pp. 65-103
- Rauch L. L., Oscillation of a third order nonlinear autonomous system, Contribution to the Theory of Nonlinear Oscillations. , Univ. Press 1950, pp. 39-88
- Shirokorad B. V. O suschestvovanii zikla vne usloviy absolyutnoy ustoychivosti trechmernoy sistemy. Avtomatika i telemechanika. 1958. T. 15, №10, s. 953-967
- Sherman S. A third-order nonlinear system arising from a nuclear spin generator, Contr. Dif. Eqns. 1963. no. 2, pp. 197- 227
- Vaysbord E. M. O suschestvovanii periodicheskogo resheniya u nelineynogo dif-ferenzial'nogo uravneniya tret'ego poryadka. . Matem. sb. 1962, 56(98):1 , c. 43-58
- V. A. Pliss. Nelokal'nye problemy teorii kolebaniy. 1964. M. " Nauka", 367 s
- Vinogradov N. N. Nekotorye teoremy o suschestvovanii periodicheskich resheniy odnoy avtonomnoy sistemy shesti differenzial'nych uravneniy. Dif. uravne-niya. 1965, t. 1, №3, s. 330-334
- Mulholland R. J., Nonlinear oscillations of a third-order differential equation. . J. nonlinear Mech. 1971, no 6, pp. 279- 294
- Kamachrin A. M. Existence and uniqueness of a periodic solution to a relay system with hysteresis. . Diff. Eqns. 1972, no. 8, pp. 1505-1506
- Leonov G. A. Chastotnye usloviya suschestvovaniya netrivial'nych periodicheskich resheniy v avtonomnych sistemach.. Sib. mat. zhurnal. 1973, T. 14, № 6, s. 1505-1506
- Williamson D., Periodic motion in nonlinear systems . IEEE trans. Automat. Control 1975, AC-20, no. 4, pp. 479-486
- Noldus E. A frequency domain approach to the problem of the existence of periodic motion in autonomous nonlinear feedback systems, Z. Angew. math. Mech. 1969, no. 3. pp. 166-177
- Noldus E. A counterpart of Popov’s theorem for the existence of periodic solutions. Int. J. Control 1971, vol. 13, no. 4, pp. 705- 719
- Hastings S., The existence of periodic solutions to Nagumo’s equation, Q. Jl. Math., Oxford Ser. 1974, 2(25), pp. 369-378
- Hastings S. P., Murray J. D. The existence of oscillatory solutions in the field-noyes model for the Belousov-Zhabotinskii reaction. SIAM J. Appl. Math. 1975, 28(3), pp. 678-688
- Tyson J. J., On the existence of oscillatory solutions in negative feedback cellular control process, . Math. Biol. 1975, no. 1, pp. 311-315
- Smith R. A. The Poincare-Bendixson theorem for certain differential equations of higher order. Proc. Roy. Soc. Edinburgh 1979, Sect. A 83, pp. 63-79
- Smith R. A. Existence of periodic orbits of autonomous ordinary differential equations. Proc. Roy. Soc. Edinburgh. 1980, Sect. A 85, pp. 153-172
- Smith R. A. An index theorem and Bendixson's negative criterion for certain differential equations of higher dimension. . Proc. Roy. Soc. Edinburgh. 1981, A91, pp. 63-77
- Smith R. A. Certain differential equations have only isolated periodic orbits. Ann. Mat. Pura. Appl. 1984, vol. 137, pp. 217-244
- Smith R. A. Poincaré index theorem concerning periodic orbits of differential equations. Proc. London Math. Soc. 1984, vol. 48, pp. 341-362
- Smith R. A. Massera's Convergence Theorem for Periodic Nonlinear Differential Equations. J. Math. Analysis and Appl.. 1986 vol. 120, pp. 679-708
- Smith R. A. Orbital stability for ordinary differential equations. J. Diff. Eq. 1987, vol. 69. no. 2, pp. 265 -287
- Smith R. A. Poincaré -Bendixson theory for certain retarded functional-differential equations. Diff. Int. Eq. 1992. no. 5, pp. 213-240
- Smith R. A. Some modified Michaelis-Menten equations having stable closed trajectories. Proc. Roy. Soc. Edinburgh, 1988, 109A, pp. 341-359
- Smith R. A. Orbital stability and inertial manifolds for certain reaction diffusion systems. Proc. London Math. Soc. 1994, vol. 69, no. 3, pp. 91-120
- Mallet-Paret J., Smith H. L., The Poincaré -Bendixson theorem for monotone feedback systems, J. Dynam. Diff. Eq. 1990, vol. 2, no. 4, , pp. 367-421
- Mallet-Paret J., Sell G. R., The Poincaré -Bendixson theorem for monotone cyclic feedback systems with delay, J. Diff. Eq. 1996, 125, pp. 441-489
- Sanchez L. A. Cones of rank 2 and the Poincaré -Bendixson property for a new class of monotone systems, J. Diff. Eq. 2009, 216, pp. 1170-1190
- Sanchez L. A. Existence of periodic orbits for high-dimensional autonomous systems. J. Math. Anal. Appl. 2010, 363 , pp. 409-418
- Leonov G. A., Burkin I. M., Shepelijavyi A. I Frequency Methods in Oscillation Theory. Kluwer Academic Publishers. 196б, 403 р
- Gelig A. Ch., Leonov G. A., Yakubovich V. A. Ustoychivost' nelineynych sistem s ne-edinstvennym sostoyaniem ravnovesiya. M. " Nauka", 1978, 400 s
- Heiden U. an der, Existence of periodic solutions of a nerve equation, Biol. Cybern. 1976, 21, pp. 37-39
- Hastings S. P, Tyson J. J., Webster D., Existence of periodic solutions for negative feedback cellular control systems, J. Diff Eqns. 1977, vol. 25, pp. 39-64
- Lorenz E. N. Deterministic non-periodic flow. J. Atmos. Sci. 1963. vol. 20, pp. 130-141
- Smale S. Diffeomorphfisms with many periodic points. Combin. Topology. Princeton. Univ. Press. 1965, pp. 21-30/
- MatsumotoT. A chaotic attractor from Chua's circuit. IEEE Trans. CAS-31, 1984, pp. 1055-1058
- Hirsch M. W. Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 1982, vol. 13, pp. 167-179
- Hirsch M. W. Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere. SIAM J. Math. Anal. 1985, vol. 16, pp. 423-439
- Hirsch M. W. Systems of differential equations which are competitive or cooperative. III: Competing species. Nonlinearity. 1988, vol. 1, pp. 51-71
- Hirsch M. W. Systems of differential equations that are competitive or cooperative. IV: Structural stability in three dimensional systems. SIAM J. Math. Anal. 1990, vol. 21, pp. 1225-1234
- Hirsch M. W. Systems of differential equations that are competitive or cooperative. V. Convergence in 3-dimensional systems, J. Differential Equations, 1989, vol. 80, pp. 94-106
- Hirsch M. W. Systems of differential equations that are competitive or cooperative. VI. A local Crclosing lemma for 3-dimensional systems, Ergodic Theory Dynam. Systems, 1991, vol. 11, pp. 443-454
- Hirsch M. W., Smith H., Monotone dynamical systems, in: Handbook of Differential Systems (Ordinary Differential Equations). Elsevier, Amsterdam, 2005, vol. 2, pp. 239-358
- Smith H. L., Monotone Dynamical Systems, Amer. Math. Soc., Providence, 1995
- P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 1991. vol. 247, Longman Scientifi c and Technical, Harlow
- Angeli D., P. de Leenheer, Sontag E. D. Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Mathematical Biology, 2010, vol. 61, pp. 581-616
- Craciun G., Pantea C., Sontag E. D. Graph-theoretic analysis of multistability and monotonicity for biochemical reaction networks. Design and Analysis of Biomolecular Circuits , Springer-Verlag, 2011, pp. 63-72.
- Angeli D. Sontag E. D.. Behavior of responses of monotone and sign-definite systems. Mathematical System Theory, 2013, Create Space, pp. 51-64.
- Angeli D., Enciso G. A., Sontag E. D.. A small-gain result for orthant-monotone systems under mixed feedback. Systems and Control Letters, 2014, vol. 68, pp. 9-19.
- Ortega R., Sanchez L. A., Abstract competitive systems and orbital stability in R3, Proc. Amer. Math. Soc., 2000, vol. 128, pp. 2911-2919.
- Burkin I. M., Leonov G. A. O suschestvovanii netrivial'nych periodicheskich resheniy u odnoy nelineynoy sistemy tret'ego poryadka. Diff. uravneniya, 1984, t. 20, № 12, s. 1430-1435.
- Burkin I. M., Soboleva D. V. O strukture global'nogo attraktora mnogosvyaznych sistem avtomaticheskogo regulirovaniya. Izvestiya TulGU. Estestvennye nauki.. Izd. -vo TulGU, 2012, vyp. 1, s. 5-16
- Burkin I. M., Burkina L. I. Chastotnyy kriteriy suschestvovaniya ziklov u mnogo-svyaznych sistem avtomaticheskogo regulirovaniya. Vestnik TulGU. Seriya «Diffe-renzial'nye uravneniya i prikladnye zadachi», 2010, vyp. 1. TulGU,. s. 3-14
- Burkin I. M., Nguen N. K. Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems. Differential Equations, 2014, vol. 50, no. 13, pp. 1695-1717
- Shalfeev V. D., Matrosov V. V. Nelineynaya dinamika sistem fazovoy sinchronizazii. Izd. -vo Nizhegorodskogo universiteta, 2013, 366 s
- Burkin I. M. Chastotnyy kriteriy orbital'noy ustoychivosti predel'nych ziklov vtorogo roda. Diff. uravneniya, 1993, t. 29, №6, s. 1061-1063
- Burkin I. M. Obobschennyy prinzip Puankare-Bendiksona dlya dinamicheskich sistem s zilindricheskim fazovym prostranstvom. Vestnik TulGU. Seriya " Differenzial'nye uravneniya i prikladnye zadachi", 2009, vyp. 1. Tula, s. 3-20
- Leonov G. A., Smirnova V. B. Matematicheskie problemy teorii fazovoy sinchronizazii. Sankt-Peterburg. Nauka, 2000, 400 s
- Bobylev N. A., Bulatov A. V, Korovin S. K, Kutuzov A. A. Ob odnoy scheme issledo-vaniya ziklov nelineynych sistem. Diff. uravneniya, t. 32, № 1, s 3-8
- Byrnes C. I. Topological Methods for Nonlinear Oscillations . Notices of the AMS, 2010, vol. 57, no 9, pp. 1080-1090
- Burkin I. M, Burkina L. I., Leonov G. A. Problema Barbashina v teorii fazovych sistem. Diff. uravneniya, 1981, t. 17, №11, s. 1932-1944
- Burkin I. M, Soboleva D. V. O mnogomernych sistemach s needinstvennym ziklom i metode garmonicheskogo balansa. Izvestiya TulGU. Estestvennye nauki, Izd-vo TulGU, 2011, vyp. 3, s. 5-21
- Burkin I. M. O strukture minimal'nogo global'nogo attraktora mnogomernych sistem s edinstvennym polozheniem ravnovesiya. Diff. uravneniya, 1997, t. 33, №3, s. 418-420
- Burkin I. M. O yavlenii bufernosti v mnogomernych dinamicheskich sistemach. Diff. uravneniya, 2002, t. 38, №5, s. 585 - 595
- Burkin I. M., Yakushin O. A. O mnogomernom variante trinadzatoy problemy Smeyla. Izvestiya TulGU. Seriya " Differenzial'nye uravneniya i prikladnye zadachi", 2004, vyp. 1, s. 12-29
- Burkin I. M., Yakushin O. A. Kolebaniya s zhestkim vozbuzhdeniem i fenomen bu-fernosti v mnogomernych modelyach reguliruemych sistem. Izvestiya TulGU. Seriya " Differenzial'nye uravneniya i prikladnye zadachi, 2005, vyp. 1, s. 24-31
- Matveev A. S. Yakubovich V. A. Optimal'nye sistemy upravleniya: Obyknovennye differenzial'nye uravneniya. Spezial'nye zadachi, 2003. Izd. -vo S. -Peterburgskogo un. -ta, 540 s
- Voronov A. A. Osnovy teorii avtomaticheskogo upravleniya. Osobye lineynye i nelineynye sistemy. M., 1981, 303 s
- Leonov G. A. Ob odnoy gipoteze Voronova. Avtomatika i telemechanika, 1984. №5, c. 53-58
- Leonov G. A., Ponomarenko D. V., Smirnova V. B. Local instability and localization of attractors. Acta Applicandae Mathematicae, 1995, vol. 40, pp. 179-243
- Burkin I. M., Burkina L. I. O chisle ziklov trechmernoy sistemy i shestnadzatoy probleme Gil'berta. Izvestiya Rossiyskoy akademii estestvennych nauk. Diff. uravneniya, 2001, №5, s. 37-40
- Smeyl S. Matematicheskaya model' vzaimodeystviya dvuch kletok, ispol'zuyuschaya uravneniya T'yuringa. Bifurkaziya rozhdeniya zikla i ee prilozheniya. M., 1980, 360 s
- Burkin I. M, Soboleva D. V. On a Smale Problem. Diff. Equations, 2011, vol. 47, no. 1, pp. 1-9
- Leonov G. A,. Vagaitsev V. I, Kuznetsov N. V. Algorithm for localizing Chua attractors based on the harmonic linearization method. Doklady Mathematics, 2010, vol. 82, no. 1, pp. 663-666. (doi:10. 1134/S1064562410040411)
- Leonov G. A, Bragin V. O., Kuznetsov N. V. Algorithm for constructing counterexamples to the Kalman problem. Doklady Mathematics, 2010, vol. 82, no. 1, pp. 540-542. (doi:10. 1134/S1064562410040101)
- Leonov G. A., Kuznetsov N. V. Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 2011, vol. 8, no. 1, pp. 475-481. (doi:10. 1134/S1064562411040120)
- Leonov G. A., Kuznetsov N. V. Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems". IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no1, pp. 2494-2505. (doi:10. 3182/20110828-6-IT-1002. 03315)
- Kuznetsov N. V., Leonov G. A., Seledzhi S. M. Hidden oscillations in nonlinear control systems, IFAC Proceedings Volumes" IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, vol. 18, no1, pp. 2506-2510. (doi: 10. 3182/20110828-6-IT-1002. 03316)
- Bragin V. O., Vagaitsev V. I., Kuznetsov N. V., Leonov G. A. Algorithms for fi nding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 2011, vol. 50, no. 4, pp. 511-543
- Leonov G. A., Kuznetsov N. V., Vagaitsev, V. I. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, vol. 375, pp. 2230-2233
- Leonov G. A., Kuznetsov N. V., Kuznetsova O. A., Seledzhi S. M., Vagaitsev, V. I. Hidden oscillations in dynamical systems, Trans Syst. Contr., 2011, . no. 6, pp. 54-67
- Leonov G. A, Kuznetsov N. V., Vagaitsev V. I. Hidden attractor in smooth Chua systems. Physica D: Nonlinear Phenomena, 2012, 241(18), pp. 1482-1486. (doi: 10. 1016/j. physd. 2012. 05. 016)
- Kuznetsov N. V., Kuznetsova O. A., Leonov G. A., Vagaitsev V. I. Analytical-numerical localization of hidden attractor in electrical Chua’s circuit. Lecture Notes in Electrical Engineering, 2013, 174, pp. 149-158
- Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcation and Chaos, 2013, vol. 23, no. 1. 1330002
- Leonov G. A., Kuznetsov N. V. Analytical-numerical methods for hidden attractors localization: The 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuit. Numerical Methods for Differential Equations, Optimization, and Technological Problems, Computational Methods in Applied Sciences, 2013, vol. 27, Part 1 (Springer), pp. 41-64
- Andrievsky B. R., Kuznetsov N. V., Leonov G. A., Pogromsky A. Yu. Hidden Oscillations in Aircraft Flight Control System with Input Saturation. IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 5, no. 1, pp. 75-79. (doi: 10. 3182/20130703-3-FR-4039. 00026)
- Andrievsky B. R., Kuznetsov N. V., Leonov G. A., Seledzhi S. M. Hidden oscillations in stabilization system of flexible launcher with saturating actuators. IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 19, no. 1, pp. 37-41. (doi: 10. 3182/20130902-5-DE-2040. 00040)
- Chua L. O. A zoo of Strange Attractors from the Canonical Chua's Circuits. Proc. Of the IEEE 35th Midwest Symp. on Circuits and Systems (Cat. No. 92CH3099-9). Washington, 1992, vol. 2, pp. 916 - 926
- Jafari S., Sprott J. C., Golpayegani S. M. R. H. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A, 2013, vol. 377, pp. 699-702
- Molaie M., Jafari S., Sprott J. C., Golpayegani, S. M. R. H. Simple chaotic flows with one stable equilibrium. Int. J. Bifurcation and Chaos. 2013, vol. 23, no. 11. 1350188
- Wangand X., Chen G. A chaotic system with only one stable equilibrium communications in Nonlinear Science and Numerical Simulation. 2012, vol. 17, no. 3, pp. 1264-1272
- Wei Z. Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A, 2011, vol. 376, pp. 102-108
- Wei Z. Delayed feedback on the 3-D chaotic system only with two stable node-foci. Comput. Math. Appl. 2011, vol. 63, pp. 728-738
- Wang X. , Chen G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn., 2013, vol. 71, pp. 429-436
- Seng-Kin Lao, Shekofteh Y., Jafari . S, Sprott, J. C. Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor. Int. J. Bifurcation Chaos, 2014, vol. 24, no. 01. 1450010
- Pham, V. -T., Rahma, F., Frasca, M., Fortuna, L. Dynamics and synchronization of a novel hyperchaotic system without equilibrium. International Journal of Bifurcation and Chaos, 2014, 24(06). art. num. 1450087
- Zhao H., Lin Y., Dai Y. Hidden attractors and dynamics of a general autonomous van der Pol-Duffing oscillator. International Journal of Bifurcation and Chaos, 201424(06). art. num. 1450080
- Q. Li, H. Zeng, X. -S. Yang On hidden twin attractors and bifurcation in the Chua’s circuit . Nonlinear Dyn., 2014, 77 (1-2) , pp. 255-266
- Burkin I. M., Nguen Ngok Chien. O strukture minimal'nogo global'nogo attraktora obobschennoy sistemy L'enara s polinomial'noy nelineynost'yu. Izvestiya TulGU. Estestvennye nauki. Izd. -vo TulGU, 2014, vyp. 2. s. 46-52