ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Three Mathematical Problems from Synergetic Control Theory

Author(s):

Alexander V. Bratishchev

Don State Technical University
Professor of Applied Mathematics Department
Rostov-on-Don, Gagarin sq.,1
Professor, doctor fiz.-mat. nauk

avbratishchev@spark-mail.ru

Abstract:

In the synergetic control theory for a given dynamic system and a manifold in the phase space there is the method of constructing the regulator for which this manifold will be invariant and attracting as a whole. In the article the criterion of the asymptotic stability of the equilibrium states of this regulator is obtained. We compare methods of parallel and sequential introduction of the attracting manifolds on the example of a third order autonomous system. The task about permissible equilibrium states of the synthesized regulator is discussed.

Keywords

References:

  1. Kolesnikov A. A. Posledovatelnaia optimizatcia nelineinikh agregirovannikh sistem upravleniia [Successive optimization of the aggregated nonlinear control systems]. Moscow, Energoatomizdat Publ., 1987. 160 p. 2 . Zubov V. I. Ustoichivost dvizheniia [ Stability of Motion]. Visshia Shkola Publ., 1973. 272 p
  2. Kolesnikov A. A. Sinergeticheskie metodi upravleniia slozhnimi sistemami. Teoriia sistemnogo sinteza [Synergetic control methods of complex systems. The theory of system synthesis]. Moscow, KomKniga Publ., 2005. 240 p
  3. Kolesnikov A. A., Veselov G. E., Popov A. N., Kolesnikov Al. A., Topchiev B. V., Mushenko A. S., Kobzev V. A. Sinergeticheskie metodi upravleniia slozhnimi sistemami. Mekhanicheskie i elektromekhanicheskie sistemi [Synergetic control methods of complex systems. Mechanical and Electromechanical systems]. Moscow, Komkniga Publ., 2006, 304 p
  4. Kolesnikov A. A., Veselov G. E., Popov A. N., Kuzmenko A. A., Pogorelov M. E., Kondratiev I. V. Sinergeticheskie metodi upravleniia slozhnimi sistemami. Energeticheskie sistemi [Synergetic control methods of complex systems. Energetic systems]. Moscow, Komkniga Publ., 2006. 248 p/ (In Russian)
  5. Kolesnikov A. A. Novie nelineinie metodi upravleniia poletom. [New methods on nonlinear flight control]. Moscow, FIZMATLIT Publ., 2013, 196 p
  6. Kolesnikov A. A. [Problems of analytical design of nonlinear controller and synergetic approached]. Sinergetika i problemi teorii upravleniia. Red. A. A. Kolesnikov. [Synergetics and problem of control theory. Ed. A. A. Kolesnikov], Moscow, FIZMATLIT Publ., 2004, 504 p. (In Russ. )
  7. Bratishchev A. V. [On the valid zero-dimensional attractors in synergetic control of dynamic system]. Sbornik trudov 7-oi Vserossiiskoi nauchnoi konferentcii ”Sistemnii analiz i prikladnaia sinergetika” (SAPS-2015) [Proceedings of 7-th all-Russian scientific conference " System synthesis and applied synergetics" (SSPS-2015)]. Taganrog, IuFU Publ., 2015. pp. 96-105. (In Russian)
  8. Bratishchev A. V. [Zero-dimensional attractors in synergetic control of dynamic system of third order]. Sbornik trudov XII mezhdunarodnoi nauchno-tekhnicheskoi konferentcii “Dinamika tekhnicheskikh sistem” " DTS-2015" [Proceedings of the XII international scientific-technical conference " Dynamics of technical systems" " DTS-2015" ]. Rostov-on-don, Publishing center DGTU, 2016, pp. 126-131. (In Russian)
  9. Bratishchev A. V. [Criterion for the stability of equilibrium points of synergetic controller]. Materiali konferentcii “Sovremennie problem teorii operatorov i garmonicheskogo analiza i ikh prilozheniia-VI” [Materials of the conference " Modern problems of operator theory and harmonic analysis and their applications -VI" ], Rostov-on-don, Publishing center DGTU, 2016, 164 p. ISBN: 978-5-9908135-0-2 (In Russian)
  10. Spivak M. Calculus on manifolds. New-York, Amsterdam, W. A. Benjamin, Inc. 1965
  11. Demidovich B. P. Lektsii po matematicheskoi teorii ustoichivosti [Lectures on mathematical stability theory]. Moscow, Nauka Publ., 1967, 472 p
  12. Chernavina, V. Y. [Synergetic synthesis of antichaotic control Laws of the Rossler system]. Materiali L nauchno-tekhnicheskoi konferentcii. 2004 [Proc. L scientific-technical conference. 2004], Izvestiia TRTU. Spetsialnii vipusk. Taganrog, 2004, pp. 145-146. (In Russ. )
  13. Lazarev Yu. Modelirovanie protcessov i sistem v MATLAB [Modeling processes and systems in MATLAB]. St. Petersburg, Kiev, BHV Publ., 2005. 512 p
  14. Kolesnikov A. A., Yakovlev V. B., Kolesnikov Al. A. [Synergetic control methods for nonlinear objects with chaotic dynamics]. Sinergetika i problemi teorii upravleniia. Red. A. A. Kolesnikov. [Synergetics and problem of control theory. Ed. A. A. Kolesnikov], Moscow, FIZMATLIT Publ., 2004, 504 p. (In Russ. )
  15. Bratishchev A. V. Matematicheskaia teoria upravliaemikh dinamicheskikh system. Vvedenie v poniatiia i metodi [Mathematical theory of controlled dynamical systems. Introduction to concepts and methods], Rostov-on-Don, Publishing center DSTU, 2015. 292p
  16. Rossler, O. E. An equation for continuous chaos, Phys. Lett. A. , 1976; vol. 57A, no. 5, pp. 397-398
  17. Sprott J. C. Elegant Chaos. World Scientific Publishing Co. pte. Ltd, 2010

Full text (pdf)